Li 2 OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes

Size: px
Start display at page:

Download "Li 2 OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes"

Transcription

1 Supporting Information Li 2 OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes Zachary D. Hood, 1,2, Hui Wang, 1, Amaresh Samuthira Pandian, 1 Jong Kahk Keum 1,3 and Chengdu Liang 1,* 1 Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA 2 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA 3 Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA These authors contributed equally to this publication Experimental Methods: Synthesis of the LiOH-LiCl electrolytes: Fast-cooled LiOH-LiCl crystalline electrolytes were prepared in a nickel crucible by mixing appropriate molar ratios of LiOH (Sigma Aldrich, 98%) and LiCl (Sigma Aldrich, 99%) and heating to 350 C for 30 minutes to achieve a homogeneous melt, and then cooled quickly to room temperature (this process took about 20 minutes). All reagents were used without further purification. The precursors were dried on a Schlenk line for 4 hours prior to moving the powders to the Argon-filled glove box. Slow-cooled anti-perovskite LiOH-LiCl crystalline electrolytes were prepared in a nickel crucible using the same precursors; the nickel crucible was then sealed with a copper gasket in a bomb reactor and heated to 350 C for 24 hours and cooled slowly at 8 C/ hour to 250 C, held at this temperature for 24 additional hours, and cooled to room temperature at 25 C/ hour. The samples were then ground to a fine powder with a mortar and pestle and ball milled (8000M Spex Mixer Mill) using a mixture of 3 mm and 5 mm Y-ZrO 2 ball milling media in a 1:25 (solid electrolyte: media) mass ratio in a HDPE vial. All processes were carried out under Argon, as the LiOH-LiCl electrolytes and precursors are sensitive to moisture and air. Structural and electrolyte characterization: Crystallographic phase characterization was conducted with a PANalytical X Pert Pro Powder Diffractometer with Cu-K α radiation. All samples were prepared in an Argon-filled glove box and sealed with Kapton films S1

2 on quartz slides. Rietveld refinement was completed using HighScore Plus, a software package developed by PANalytical. To investigate the phase transitions, LiOH-LiCl crystalline electrolytes were sealed with Kapton films and silver paste on quartz slides. The quartz slides were places in an Ashton Paar Align.Stage Hot Stage, which was heated between 30 C-200 C in 10 C increments; the temperature was maintained for 30 minutes prior to collecting crystallographic data. Phase transition reversibility was also confirmed by ramping the hot stage from 200 C to 30 C in 10 C increments. A Zeiss Merlin Scanning Electronic Microscope (SEM) was used to collect images of the pellet surface at 5.0kV. Energy-dispersive X-ray spectroscopy (EDX) was completed with a gun acceleration of 10.0kV to observe surface and cross-sectional elemental distribution in the molten lithium exposed Li 2 OHCl crystalline electrolyte. Samples were placed on carbon conductive tape and sealed under Argon prior to collecting SEM images. After ball milling the LiOH-LiCl samples, about 140 mg of each sample were coldpressed at 300 MPa into a pellet with a diameter of 1/2" and sealed in a pressurized cell developed by our group. For electrochemical impedance spectroscopy (EIS), pellets were pressed with Al/C blocking electrodes and a Solartron 1260 coupled with a Maccor environmental chamber was used to determine Arrhenius activation energy measurements from C. All EIS measurements were completed from 1 MHz 1Hz with amplitude 100 mv. Phase reversibility was confirmed through EIS by ramping cells from C. A Maccor multifunction Model 4200 battery cell cycler collected all cell cycling data. Specialized pressurized cells developed by our group were used to assemble Li/Li 2 OHCl/ Li symmetric cells. First, ball-milled Li 2 OHCl was cold-pressed at 300 MPa to form a continuous membrane across the pressurized cell s dye. Next, lithium foil ( 15 mg) was placed on each side of the solid electrolyte membrane. Carbon mesh was placed on each side of the lithium to prevent molten lithium leakage into the cell. After sealing the cell, the symmetric cell was moved to a Fischer Scientific TM Isotemp TM forced air oven at 195 C for 2 hours prior to collecting data. All processes for cell fabrication (for cell cycling and EIS measurements) were completed under inert atmosphere as LiOH-LiCl electrolytes are sensitive to moisture and air. S2

3 Figure S1. XRD patterns at room temperature for as-synthesized LiOH-LiCl crystalline electrolytes from a) uncontrolled fast cooling from 350 C and b) slow cooling at 8 C/ hour from 350 C to 250 C and holding at 250 C for 24 hours. Figure S2. Impedance spectra of fast-cooled Li 2 OHCl measured at a) 25 to 80 C and b) 100 to 200 C. All measurements were completed from 1 MHz 1Hz with amplitude 100 mv. The total ionic conductivity is determined by using the intercept between the semi-circle or semi-arc and straight line as total resistance. S3

4 Figure S3. Teflon cast and plunger used to prepare LiOH-LiCl membranes. Figure S4. SEM images of Li 2 OHCl after the molten salt was poured into Teflon casts, showing (a) the surface of Li 2 OHCl when no pressure was applied to the surface of the pellet, (b) a closeup of Figure S3a. Applying pressure to the surface of the melt allows for a dense Li 2 OHCl membrane to be fabricated (Figure 3). S4

5 Figure S5. Molten lithium cyclability in a Li/Li 2 OHCl/Li symmetric cell with a current density of 1.0 ma cm -2 at 195 C, demonstrating stability between the molten lithium anode and the crystalline electrolyte for 14,000 minutes. Figure S6. Molten lithium cyclability in a Li/Li 2 OHCl/Li symmetric cell at different current densities (0.1, 0.5 and 1.0 ma cm -2 ) at 195 C. S5

6 Figure S7. SEM images of Li/Li 2 OHCl/Li symmetric cell surface layers with EDX mapping of chlorine in green and oxygen in red. The SEI is mainly composed of Li 2 O. Figure S8. SEM image of Li/Li 2 OHCl/Li symmetric cell showing a cross section of the SEI (a) after 40 and (b) after 160 charge/ discharge cycles. The SEI was uniform across electrolyte and measures 50 µm for both cells, demonstrating that the SEI layer stabilizes the molten lithium anode with Li 2 OHCl. S6

Anomalous high ionic conductivity of nanoporous β-li 3 PS 4

Anomalous high ionic conductivity of nanoporous β-li 3 PS 4 Anomalous high ionic conductivity of nanoporous β-li 3 PS 4 Zengcai Liu 1, Wujun Fu 1, E. Andrew Payzant 1,2, Xiang Yu 1, Zili Wu 1,3, Nancy J. Dudney 2, Jim Kiggans 2, Kunlun Hong 1, Adam J. Rondinone

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information High performance All-Solid-State Li-Se Batteries induced

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Surface graphited carbon scaffold enables simple

More information

Supporting Information

Supporting Information Supporting Information Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO 3 Yifan Dong, Tyler Slade, Matthew J. Stolt, Linsen Li, Steven N. Girard, Liqiang

More information

Electronic Supporting Information. Synthesis of single crystalline hexagonal nanobricks of

Electronic Supporting Information. Synthesis of single crystalline hexagonal nanobricks of Electronic Supporting Information Synthesis of single crystalline hexagonal nanobricks of LiNi 1/3 Co 1/3 Mn 1/3 O 2 with high percentage of exposed {010} active facets as high rate performance cathode

More information

Supplementary Information for

Supplementary Information for Supplementary Information for An elastic and Li-ion-percolating hybrid membrane stabilizes Li metal plating Quan Pang, Laidong Zhou, Linda F. Nazar* Department of Chemistry and the Waterloo Institute for

More information

Supporting Information

Supporting Information Supporting Information Mg 2 B 2 O 5 Nanowires Enabled Multifunctional Solid-State Electrolyte with High Ionic Conductivity, Excellent Mechanical Properties and Flame-retardant Performance Ouwei Sheng,

More information

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4 Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information Efficient energy storage capabilities promoted by hierarchically

More information

Low Charge Overpotentials in Lithium-Oxygen Batteries Based on Tetraglyme Electrolytes with Limited Amount of Water

Low Charge Overpotentials in Lithium-Oxygen Batteries Based on Tetraglyme Electrolytes with Limited Amount of Water Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supporting Information (ESI) Low Charge Overpotentials in Lithium-Oxygen

More information

Nanostructured Li 2 S-C Composites as Cathode Material for High Energy Lithium/Sulfur Batteries

Nanostructured Li 2 S-C Composites as Cathode Material for High Energy Lithium/Sulfur Batteries Supplementary Information Nanostructured Li 2 S-C Composites as Cathode Material for High Energy Lithium/Sulfur Batteries Kunpeng Cai 1,, Min-Kyu Song 1,, Elton J. Cairns 2,3, and Yuegang Zhang 1,,* 1

More information

Energy Storage and Distributed Resources Division, Energy Technologies Area, Lawrence

Energy Storage and Distributed Resources Division, Energy Technologies Area, Lawrence Supporting Information Bio-mimetic ant-nest electrode structures for high sulfur ratio lithium-sulfur batteries Guo Ai,, Yiling Dai, Wenfeng Mao,, Hui Zhao, Yanbao Fu, Xiangyun Song, Yunfei En, Vincent

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting information An amorphous material with sponge-like structure as anode for Liion and

More information

Towards High-Safety Potassium-Sulfur Battery Using. Potassium Polysulfide Catholyte and Metal-Free Anode

Towards High-Safety Potassium-Sulfur Battery Using. Potassium Polysulfide Catholyte and Metal-Free Anode Supporting Information Towards High-Safety Potassium-Sulfur Battery Using Potassium Polysulfide Catholyte and Metal-Free Anode Jang-Yeon Hwang, Hee Min Kim, Chong S. Yoon, Yang-Kook Sun* Department of

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. Electronic Supplementary Information Novel solid metal-organic self-propagation combustion for controllable synthesis of hierarchically

More information

MXene-Bonded Activated Carbon as a Flexible. Electrode for High-Performance Supercapacitors

MXene-Bonded Activated Carbon as a Flexible. Electrode for High-Performance Supercapacitors Supporting information MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors Lanyong Yu, Longfeng Hu, Babak Anasori, Yi-Tao Liu, Qizhen Zhu, Peng Zhang, Yury Gogotsi,

More information

SUPPORTING INFORMATION. A Rechargeable Aluminum-Ion Battery Based on MoS 2. Microsphere Cathode

SUPPORTING INFORMATION. A Rechargeable Aluminum-Ion Battery Based on MoS 2. Microsphere Cathode SUPPORTING INFORMATION A Rechargeable Aluminum-Ion Battery Based on MoS 2 Microsphere Cathode Zhanyu Li a, Bangbang Niu a, Jian Liu a, Jianling Li a* Feiyu Kang b a School of Metallurgical and Ecological

More information

High-Performance All-Solid-State Lithium-Sulfur. Battery Enabled by a Mixed-Conductive Li 2 S

High-Performance All-Solid-State Lithium-Sulfur. Battery Enabled by a Mixed-Conductive Li 2 S Supporting information High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li 2 S Nanocomposite Fudong Han, Jie Yue, Xiulin Fan, Tao Gao, Chao Luo, Zhaohui Ma, Liumin

More information

Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries

Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries Supporting Information Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries Bin Liu, Jun Zhang, Xianfu Wang, Gui Chen, Di

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Supporting information A Low Temperature Molten Salt Process for Aluminothermic

More information

Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-type Solid-state Li Batteries

Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-type Solid-state Li Batteries Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-type Solid-state Li Batteries Yuanjun Shao 1,2,#,Hongchun Wang 2,#,Zhengliang Gong 2,*,Dawei Wang 3, Bizhu Zheng 3, Jianping

More information

Transition from Super-lithiophobicity to Super-lithiophilicity of Garnet Solid-State Electrolyte

Transition from Super-lithiophobicity to Super-lithiophilicity of Garnet Solid-State Electrolyte Supporting Information Transition from Super-lithiophobicity to Super-lithiophilicity of Garnet Solid-State Electrolyte Wei Luo, 1,2, Yunhui Gong, 1,3, Yizhou Zhu, 1,3 Kun (Kelvin) Fu, 1,3 Jiaqi Dai, 1,3

More information

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Improving cyclic performance of Si anode for lithium-ion batteries by

More information

High energy all-solid-state lithium batteries with

High energy all-solid-state lithium batteries with Supporting Information High energy all-solid-state lithium batteries with ultralong cycle life Xiayin Yao, Deng Liu, Chunsheng Wang, Peng Long, Gang Peng, Yong-Sheng Hu, *, Hong Li, Liquan Chen, and Xiaoxiong

More information

[Supporting Information] Infiltration of solution-processable solid electrolytes. into conventional Li-ion-battery electrodes for allsolid-state

[Supporting Information] Infiltration of solution-processable solid electrolytes. into conventional Li-ion-battery electrodes for allsolid-state [Supporting Information] Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for allsolid-state Li-ion batteries Dong Hyeon Kim, Dae Yang Oh, Kern Ho Park,

More information

Layered TiS 2 Positive Electrode for Mg Batteries

Layered TiS 2 Positive Electrode for Mg Batteries Supporting Information: Layered TiS 2 Positive Electrode for Mg Batteries Xiaoqi Sun, Patrick Bonnick and Linda F. Nazar* Department of Chemistry and the Waterloo Institute of Nanotechnology, University

More information

Supporting Information

Supporting Information Supporting Information Novel DMSO-based Electrolyte for High Performance Rechargeable Li-O 2 Batteries Dan Xu, a Zhong-li Wang, a Ji-jing Xu, a Lei-lei Zhang, a,b and Xin-bo Zhang a* a State Key Laboratory

More information

Supporting Information

Supporting Information Supporting Information Nucleation and Growth of Lithium Peroxide in the Li O2 Battery Sampson Lau and Lynden A. Archer * * E-mail: laa25@cornell.edu Chemical and Biomolecular Engineering, Cornell University,

More information

Intercalation of Bi nanoparticles into graphite enables ultrafast. and ultra-stable anode material for Sodium-ion

Intercalation of Bi nanoparticles into graphite enables ultrafast. and ultra-stable anode material for Sodium-ion Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Intercalation of Bi nanoparticles into

More information

High Performance Lithium Battery Anodes Using Silicon Nanowires

High Performance Lithium Battery Anodes Using Silicon Nanowires Supporting Online Materials For High Performance Lithium Battery Anodes Using Silicon Nanowires Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Huggins and Yi Cui * *To

More information

All-solid-state Batteries with Thick Electrode Configurations

All-solid-state Batteries with Thick Electrode Configurations All-solid-state Batteries with Thick Electrode Configurations Yuki Kato, * Shinya Shiotani, Keisuke Morita, Kota Suzuki, Masaaki Hirayama, Ryoji Kanno Toyota Motor Europe NV/SA, Hoge Wei 33, 1930 Zaventem,

More information

Polymer-Rich Composite Electrolytes for All Solid-State Li-S Cells

Polymer-Rich Composite Electrolytes for All Solid-State Li-S Cells Supporting Information Polymer-Rich Composite Electrolytes for All Solid-State Li-S Cells Xabier Judez,, Heng Zhang,*, Chunmei Li,*, Gebrekidan Gebresilassie Eshetu, Yan Zhang, José A. González-Marcos,

More information

Supporting Information for. A Water-in-Salt Electrolyte for Potassium-Ion Batteries

Supporting Information for. A Water-in-Salt Electrolyte for Potassium-Ion Batteries Supporting Information for A Water-in-Salt Electrolyte for Potassium-Ion Batteries Daniel P. Leonard #, Zhixuan Wei #, Gang Chen, Fei Du *, Xiulei Ji * Department of Chemistry, Oregon State University,

More information

INVESTIGATION ON ALUMINUM-BASED AMORPHOUS METALLIC GLASS

INVESTIGATION ON ALUMINUM-BASED AMORPHOUS METALLIC GLASS INVESTIGATION ON ALUMINUM-BASED AMORPHOUS METALLIC GLASS AS NEW ANODE MATERIAL IN LITHIUM ION BATTERIES Shirley Y. Meng 1, Li Yi 1,2 and G. Ceder 1,3 1. Singapore-MIT liance, Advanced Materials for Micro-

More information

Supporting Information

Supporting Information Supporting Information In Situ-formed Li 2 S in Lithiated Graphite Electrodes for Lithium-Sulfur Batteries Yongzhu Fu, Chenxi Zu, Arumugam Manthiram Electrochemical Energy Laboratory & Materials Science

More information

Novel concept of rechargeable battery using iron oxide nanorods. anode and nickel hydroxide cathode in aqueous electrolyte

Novel concept of rechargeable battery using iron oxide nanorods. anode and nickel hydroxide cathode in aqueous electrolyte Supplementary Information for: Novel concept of rechargeable battery using iron oxide nanorods anode and nickel hydroxide cathode in aqueous electrolyte Zhaolin Liu *, Siok Wei Tay and Xu Li Institute

More information

Supplementary Information

Supplementary Information Supplementary Information Low Temperature Plasma Synthesis of Mesoporous Fe 3 O 4 Nanorods Grafted on Reduced Graphene Oxide for High Performance Lithium Storage Quan Zhou, a Zongbin Zhao,* a Zhiyu Wang,

More information

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Huanying Liu, a, b Xuefeng Zhu, a * Mojie Cheng, c You Cong, a Weishen Yang a * a State Key Laboratory of Catalysis,

More information

Fabrication of 1D Nickel Sulfide Nanocrystals with High

Fabrication of 1D Nickel Sulfide Nanocrystals with High Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Fabrication of 1D Nickel Sulfide Nanocrystals with High Capacitances and Remarkable Durability

More information

Supplementary Information

Supplementary Information Supplementary Information Disperse fine equiaxed alpha alumina nanoparticles with narrow size distribution synthesised by selective corrosion and coagulation separation Sanxu Pu, Lu Li, Ji Ma, Fuliang

More information

Supporting Information for

Supporting Information for Supporting Information for Improved Sodium-Ion Storage Performance of Ultrasmall Iron Selenide Nanoparticles Feipeng Zhao, 1 Sida Shen, 1 Liang Cheng, 1 Lu Ma, 2 Junhua Zhou, 1 Hualin Ye, 1 Na Han, 1 Tianpin

More information

Supporting Information. Toward Highly Reversible Magnesium-Sulfur Batteries with Efficient and Practical Mg[B(hfip) 4 ] 2 Electrolyte

Supporting Information. Toward Highly Reversible Magnesium-Sulfur Batteries with Efficient and Practical Mg[B(hfip) 4 ] 2 Electrolyte Supporting Information Toward Highly Reversible Magnesium-Sulfur Batteries with Efficient and Practical Mg[B(hfip) 4 ] 2 Electrolyte Zhirong Zhao-Karger,* a Runyu Liu, b Wenxu Dai, b Zhenyou Li, a Thomas

More information

Supporting Information

Supporting Information Supporting Information Garnet electrolyte with an ultra-low interfacial resistance for Li-metal batteries Yutao Li, Xi Chen, Andrei Dolocan, Zhiming Cui, Sen Xin, Leigang Xue, Henghui Xu, Kyusung Park,

More information

School of Materials Science and Engineering, South China University of Technology,

School of Materials Science and Engineering, South China University of Technology, Supporting information Zn/MnO 2 Battery Chemistry With H + and Zn 2+ Co-Insertion Wei Sun, Fei Wang, Singyuk Hou, Chongyin Yang, Xiulin Fan, Zhaohui Ma, Tao Gao, Fudong Han, Renzong Hu, Min Zhu *, Chunsheng

More information

Design and Comparative Study of O3/P2 Hybrid Structures for

Design and Comparative Study of O3/P2 Hybrid Structures for Supporting Information Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries Xingguo Qi, a,b,# Lilu Liu, a,b,# Ningning Song, c Fei Gao, d Kai Yang, d Yaxiang

More information

SOFC Powders and Unit Cell Research at NIMTE. Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang

SOFC Powders and Unit Cell Research at NIMTE. Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang 595 10.1149/1.3205571 The Electrochemical Society SOFC Powders and Unit Cell Research at NIMTE Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang Division of Fuel Cell and Energy Technology Ningbo Institute

More information

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance Chapter 7 Evaluation of Electrode Performance by Electrochemical Impedance Spectroscopy (EIS) 7.1 Introduction A significant fraction of internal resistance of a cell comes from the interfacial polarization

More information

Nitrogen-Doped Graphdiyne Applied for Lithium-

Nitrogen-Doped Graphdiyne Applied for Lithium- Supporting Information for Nitrogen-Doped Graphdiyne Applied for Lithium- Ion Storage Shengliang Zhang,, Huiping Du,, Jianjiang He,, Changshui Huang,*, Huibiao Liu, Guanglei Cui and Yuliang Li Qingdao

More information

Large-Scale Delamination of Multi-Layers Transition Metal Carbides and Carbonitrides MXenes

Large-Scale Delamination of Multi-Layers Transition Metal Carbides and Carbonitrides MXenes Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information for: Large-Scale Delamination of Multi-Layers Transition

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Title: Identification and Characterisation of High

More information

Supplemental Information. A Low-Cost and High-Energy Hybrid. Iron-Aluminum Liquid Battery Achieved. by Deep Eutectic Solvents

Supplemental Information. A Low-Cost and High-Energy Hybrid. Iron-Aluminum Liquid Battery Achieved. by Deep Eutectic Solvents JOUL, Volume 1 Supplemental Information A Low-Cost and High-Energy Hybrid Iron-Aluminum Liquid Battery Achieved by Deep Eutectic Solvents Leyuan Zhang, Changkun Zhang, Yu Ding, Katrina Ramirez-Meyers,

More information

Supporting Information

Supporting Information Supporting Information Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries Xuanpeng Wang, Xiaoming Xu, Chaojiang Niu*, Jiashen Meng, Meng Huang, Xiong Liu,

More information

Supporting Information. Hematite photoanode with gradient structure shows an unprecedentedly low onset

Supporting Information. Hematite photoanode with gradient structure shows an unprecedentedly low onset Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information Hematite photoanode with gradient structure shows an unprecedentedly

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information The Effect of Pore Connectivity on Li Dendrite Propagation Within LLZO Electrolytes Observed with Synchrotron X-Ray Tomography Fengyu Shen 1,2*, Marm Dixit 2*, Xianghui

More information

A hyperbranched conjugated Schiff base polymer network: a. potential negative electrode for flexible thin film batteries

A hyperbranched conjugated Schiff base polymer network: a. potential negative electrode for flexible thin film batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 A hyperbranched conjugated Schiff base polymer network: a potential negative electrode for flexible

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013 Sodium-ion battery based on ion exchange membranes as electrolyte and separator Chengying Cao, Weiwei Liu, Lei Tan, Xiaozhen Liao and Lei Li* School of Chemical and Chemistry Engineering, Shanghai Jiaotong

More information

SUPPORTING INFORMATION. Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, 373-1

SUPPORTING INFORMATION. Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, 373-1 SUPPORTING INFORMATION Electrospun Core-Shell Fibers for Robust Silicon Nanoparticle Based Lithium Ion Battery Anodes Tae Hoon Hwang, Yong Min Lee, Byung Seon Kong, Jin-Seok Seo, and Jang Wook Choi,,*

More information

LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries

LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries Supporting Information LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries Xiaolong Zhang, Fangyi Cheng, Jingang Yang, Jun Chen* Key Laboratory of Advanced Energy

More information

Reducing the charging voltage of a Li-O 2 battery to 1.9 V by incorporating a photocatalyst

Reducing the charging voltage of a Li-O 2 battery to 1.9 V by incorporating a photocatalyst Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Reducing the charging voltage of a Li-O 2 battery to 1.9 V by incorporating

More information

Supplemental Information for:

Supplemental Information for: Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 215 Supplemental Information for: A Novel Lithium-sulfur Battery Cathode from Butadiene Rubber-caged

More information

Unlocking the Potential of Amorphous Red Phosphorus Films as Long-term Stable. Negative Electrode for the Lithium Battery

Unlocking the Potential of Amorphous Red Phosphorus Films as Long-term Stable. Negative Electrode for the Lithium Battery Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information Unlocking the Potential of Amorphous Red Phosphorus

More information

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries /8 SUPPORTING INFORMATION Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries Yu Zhao, Lele Peng, Borui Liu, Guihua Yu* Materials Science and Engineering Program and Department of Mechanical

More information

LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and. cycle stability for Li-S battery**

LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and. cycle stability for Li-S battery** Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for Li-S battery**

More information

A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries

A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting information A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries

More information

Supporting Information

Supporting Information Supporting Information Conditioning-Free Electrolytes for Magnesium Batteries Using Sulfone-Ether Mixtures with Increased Thermal Stability Laura C. Merrill and Jennifer L. Schaefer*, University of Notre

More information

A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme electrolyte

A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme electrolyte Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme

More information

Supporting Information

Supporting Information Supporting Information Li 4 PS 4 I: A Li + Superionic Conductor synthesized by a Solvent-based Soft Chemistry Approach Stefan J. Sedlmaier*, Sylvio Indris, Christian Dietrich, Murat Yavuz, Christoph Dräger,

More information

suppressing charging instabilities of Li-O 2 batteries

suppressing charging instabilities of Li-O 2 batteries Supporting information for Highly efficient Br /NO 3 dual-anion electrolyte for suppressing charging instabilities of Li-O 2 batteries Xing Xin, Kimihiko Ito, Yoshimi Kubo* GREEN, National Institute for

More information

Novel Ag-doped glass frit for high-efficiency crystalline silicon solar. cells

Novel Ag-doped glass frit for high-efficiency crystalline silicon solar. cells Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Electronic Supporting Information Novel Ag-doped glass frit for high-efficiency crystalline silicon

More information

A Desalination Battery

A Desalination Battery SUPPORTING INFORMATION A Desalination Battery Mauro Pasta 1, Colin D. Wessells 2, Yi Cui 2,3 and Fabio La Mantia 1, 1 Analytische Chemie Zentrum für Elektrochemie, Ruhr-Universität Bochum, Universitätsstr.

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Supporting Information

Supporting Information Supporting Information Hydrogenation Driven Conductive Na 2 Nanoarrays as Robust Binder-Free Anodes for Sodium-Ion Batteries Shidong Fu, Jiangfeng Ni, Yong Xu, Qiao Zhang*, and Liang Li*, College of Physics,

More information

Electronic Supplementary Information (ESI) for

Electronic Supplementary Information (ESI) for Electronic Supplementary Information (ESI) for Binder-free CNT network/mos 2 composite as high performance anode material in lithium ion battery Congxiang Lu, ab Wen-wen Liu b, Hong Li c and Beng Kang

More information

SYNTHESIS AND ELECTRICAL PROPERTIES OF Sr 3 NiNb 2 O 9 MATERIALS FOR SOFCs

SYNTHESIS AND ELECTRICAL PROPERTIES OF Sr 3 NiNb 2 O 9 MATERIALS FOR SOFCs Journal of Ovonic Research Vol. 12, No. 2, March April 2016, p. 81-86 SYNTHESIS AND ELECTRICAL PROPERTIES OF MATERIALS FOR SOFCs Q. LI *, Z. P. LIU, R. YAN, L. M. DONG College of Materials Science and

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information CO 2 -to-co Conversion on Layered Persovskite

More information

Supplementary Materials:

Supplementary Materials: Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is The Royal Society of Chemistry 2014 Supplementary Materials: Materials and Methods: The mixed ion conducting

More information

SUPPORTING INFORMATION. High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery

SUPPORTING INFORMATION. High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery SUPPORTING INFORMATION High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery Huali Wang, Sichen Gu, Ying Bai,, ** Shi Chen, Feng Wu,, and Chuan Wu,, ** Beijing Key

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Supplementary Information Printed Microelectrodes for Scalable, High-areal-capacity

More information

A SOLVENT-FREE COMPOSITE SOLID ELECTROLYTES OF Li 2 CO 3 Al 2 O 3 SYSTEM PREPARED VIA WATER BASED SOL GEL METHOD

A SOLVENT-FREE COMPOSITE SOLID ELECTROLYTES OF Li 2 CO 3 Al 2 O 3 SYSTEM PREPARED VIA WATER BASED SOL GEL METHOD 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS A SOLVENT-FREE COMPOSITE SOLID ELECTROLYTES OF Li 2 CO 3 Al 2 O 3 SYSTEM PREPARED VIA WATER BASED SOL GEL METHOD M. Sulaiman 1, *, A.A. Rahman 1, N.S.

More information

In Situ IonicÕElectric Conductivity Measurement of La 0.55 Li 0.35 TiO 3 Ceramic at Different Li Insertion Levels

In Situ IonicÕElectric Conductivity Measurement of La 0.55 Li 0.35 TiO 3 Ceramic at Different Li Insertion Levels A1196 Journal of The Electrochemical Society, 151 8 A1196-A1201 2004 0013-4651/2004/151 8 /A1196/6/$7.00 The Electrochemical Society, Inc. In Situ IonicÕElectric Conductivity Measurement of La 0.55 Li

More information

Terephthalonitrile-derived nitrogen-rich networks for high

Terephthalonitrile-derived nitrogen-rich networks for high Electronic Supplementary Information Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors Long Hao, a Bin Luo, a Xianglong Li, a Meihua Jin, a Yan Fang, a Zhihong Tang,

More information

Supporting Information

Supporting Information Supporting Information A Class of Organopolysulfides as Liquid Cathode Materials for High Energy Density Lithium Batteries Amruth Bhargav, Michaela Elaine Bell, Jonathan Karty, Yi Cui, and Yongzhu Fu #

More information

Supporting Information for

Supporting Information for Supporting Information for Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries Guangyuan Zheng, Yuan Yang, Judy J. Cha, Seung Sae Hong and Yi

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. Supporting Information for Adv. Energy Mater., DOI: 10.1002/aenm.201703513 Fe 2 O 3 Nanoparticle Seed Catalysts Enhance Cyclability

More information

Operando Electron Magnetic Measurements in Li-ion Batteries. Supporting Information

Operando Electron Magnetic Measurements in Li-ion Batteries. Supporting Information Electronic Supplementary Material (ESI) for Energy. This journal is The Royal Society of Chemistry 2014 Operando Electron Magnetic Measurements in Li-ion Batteries Gregory Gershinsky, Elad Bar, Laure Monconduit,

More information

A high tenacity electrode by assembly of a soft sorbent and. hard skeleton for lithium-sulfur batteries

A high tenacity electrode by assembly of a soft sorbent and. hard skeleton for lithium-sulfur batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 A high tenacity electrode by assembly of a soft sorbent and hard skeleton

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information In situ electrochemical activation of Ni-based colloids from NiCl 2 electrode

More information

Morphology and Active-Site Engineering for Stable Round-Trip Efficiency Li-O 2 Batteries: A Search for the Most Active Catalytic Site in Co 3 O 4

Morphology and Active-Site Engineering for Stable Round-Trip Efficiency Li-O 2 Batteries: A Search for the Most Active Catalytic Site in Co 3 O 4 Supporting information: Morphology and Active-Site Engineering for Stable Round-Trip Efficiency Li-O 2 Batteries: A Search for the Most Active Catalytic Site in Co 3 O 4 Kyeongse Song, Eunbi Cho and Yong-Mook

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supplementary Information for Ta and Nb co-doped TiO 2, and Its Carbon-Hybrid

More information

Supplementary Information

Supplementary Information Supplementary Information Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes Jie Sun, 1,6 Guangyuan Zheng, 2 Hyun-Wook

More information

The Influence of Solvent Coordination on Hybrid. Organic-Inorganic Perovskite Formation. (Supporting Information)

The Influence of Solvent Coordination on Hybrid. Organic-Inorganic Perovskite Formation. (Supporting Information) The Influence of Solvent Coordination on Hybrid Organic-Inorganic Perovskite Formation (Supporting Information) J. Clay Hamill, Jr., Jeffrey Schwartz, and Yueh-Lin Loo, * Department of Chemical and Biological

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2018 Supporting Information Tuning nanosheet Fe 2 O 3 photoanode with C 3 N 4

More information

Synthesis, crystal structure and conductive properties of garnet-type lithium ion conductor Al-free Li 7 x La 3 Zr 2 x Ta x O 12 (0 x 0.

Synthesis, crystal structure and conductive properties of garnet-type lithium ion conductor Al-free Li 7 x La 3 Zr 2 x Ta x O 12 (0 x 0. Full paper Synthesis, crystal structure and conductive properties of garnet-type lithium ion conductor Al-free Li 7 x La 3 Zr 2 x Ta x O 12 (0 x 0.6) Naoki HAMAO, Kunimitsu KATAOKA, Norihito KIJIMA and

More information

Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes

Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes Supplementary Information Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes Nian Liu 1, Kaifu Huo 2,3, Matthew T. McDowell 2, Jie Zhao 2 & Yi Cui 2,4

More information

Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications

Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications Supporting Information Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications Naoki Morimoto, Takuya Kubo and Yuta Nishina 1. Materials. Graphite (SP-1) was purchased

More information

Effect of melt temperature on the oxidation behavior of AZ91D magnesium alloy in 1,1,1,2-tetrafluoroethane/air atmospheres

Effect of melt temperature on the oxidation behavior of AZ91D magnesium alloy in 1,1,1,2-tetrafluoroethane/air atmospheres available at www.sciencedirect.com www.elsevier.com/locate/matchar Effect of melt temperature on the oxidation behavior of AZ91D magnesium alloy in 1,1,1,2-tetrafluoroethane/air atmospheres Hukui Chen

More information

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) Porous Co3O4 irregular Micro-cubes with lithium storage performances Ting Wanga, Hao Zhengb, Jinsong Chengc,

More information

Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries

Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 2017 Unlocking the potential of amorphous red phosphorus films

More information

3D dendritic WSe 2 catalyst grown on carbon nanofiber mats for efficient hydrogen evolution

3D dendritic WSe 2 catalyst grown on carbon nanofiber mats for efficient hydrogen evolution Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information 3D dendritic WSe 2 catalyst grown on carbon nanofiber

More information

Supplementary Information. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries

Supplementary Information. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Information Capacity fade in high energy silicon-graphite electrodes for lithium-ion

More information

Extremely Stable Sodium Metal Batteries Enabled by Localized. High Concentration Electrolytes

Extremely Stable Sodium Metal Batteries Enabled by Localized. High Concentration Electrolytes Supplementary Information for Extremely Stable Sodium Metal Batteries Enabled by Localized High Concentration Electrolytes Jianming Zheng, Shuru Chen, Wengao Zhao, Junhua Song, Mark H. Engelhard, Ji-Guang

More information