State-of-the-Art and Future for POPs Analysis

Size: px
Start display at page:

Download "State-of-the-Art and Future for POPs Analysis"

Transcription

1 State-of-the-Art and Future for POPs Analysis Jacob de Boer Wageningen University Netherlands Institute for Fisheries Research

2 Benefit Risk Safer World Better Transport Better Communication Better Fire Safety Growing Population Use of More Substances Increase of Exposure Human Health Risks Environmental Deterioration

3

4

5 sssssssssssssssssssss

6 Aquatic Environment as a Sink

7 PBT Contaminants (Stockholm Conventie) Chloorbenzenes Chlordane, Heptachlor DDT Mirex Toxaphene Dieldrin, Endrin, Aldrin PCBs Polychlorinated dioxines and furans

8 Dioxines, Furanen en PCBs

9

10

11

12 Accumulation in Food Chain PBDEs HBCD

13 Basic Questions for Environmental Chemist Are there Effects of the Cocktail of >30,000 Compounds to which we are Exposed? Which are the Important Ones? Can we Quantify them? Can we Regulate them?

14 Effects on Organisms Gen Cel Individual Population B A D C Genomic Biomarker Histologic Reproduction

15 Identification of Compounds Unknown

16 Development in Sensitivity ng/kg ng/kg

17 Interlab Studies: Past - Present Study DDE Conc. CV % y-hch Conc. CV % Dieldr. Conc. CV % ICES, ICES, QUAS QUAS

18 QUASIMEME Lab. Performance for CBs and OCPs CV (%) ,01 0, Concentration p,p'-dde g-hch dieldrin CB52 CB153 J. Chromatogr (2003), 223

19 RSDs of Perfluorinated Alkyl Compounds 300 Study standard Fish liver extract 250 Fish tissue Water RSD (%) c Human plasma Human whole blood N=2 0 PFHxS PFOS PFHxA PFOA PFNA PFDoA PFOSA

20

21

22

23 8 PCNs Cly PCDEs Cly PBDEs Brx Clx O Clx O Bry DB-1 x HT PCDTs PCDD/Fs OCPs Cly Cly S O O Clx Clx Cly O Clx PCBs PBBs Cly Clx Bry Brx Toxaphene congeners +PCA Sec Min

24 How does GCxGC work?

25 How does GCxGC work? s 10 s

26 2D Plots 46 min 10 s s 43 2nd dimension 0 s 10 s 2nd dimension 0 1st dimension 43 46

27 Liquid-nitrogen nitrogen-cooled jet modulator (N 2 jets) Injector N 2 (g) N 2 (g) Detector Heater N 2 (l) Cold jets 2 nd dim. column Hot jets 1 st dim. column

28 Cryogenic modulation carrier gas CO 2 1. Trapping stationary phase 1 stationary phase 2 1 st st column nd column 2 nd CO 2 2. Release CO 2 3. Trapping and Separation

29 Milk: PCB fraction (DB-XLB x LC-50) 2 nd dimension retention time [s] st dimension retention time [min]

30 Milk: Dioxins (DB-XLB x LC-50) 5D1 2 nd dimension retention time [s] 4F1 4D1 5F1 5F2 6F3 6D3 6F2 6D2 6F1 6D1 6F4 7F1 7F2 OCDF 7D1 OCDD 1 st dimension retention time [min]

31 Improved clean-up and solvent grade 2nd dimension retention time [s] A 4F1 4D1 5F1 5F2 5D1 6F3 6D3 6F2 6D2 7F1 6F1 6D1 6F4 7F2 2nd dimension retention time [s] B 4F1 4D1 5F1 5F2 5D1 6F4 6F3 6D3 6F2 6D1 6F1 6D2 7F1 7F2 7D1 7D1 OCDD 1 st dimension retention time [min] 1 st dimension retention time [min]

32 Sewage sludge with improved clean-up 6F4 2 nd dimension retention time [s] 4F1 4D1 5F1 5F2 5D1 6F3 6F2 6D1 6F1 6D3 6D2 7F1 7D1 7F2 1 st dimension retention time [min]

33 I. DB HT 8 2nd dimension retention time (sec) C10 C13 63% Cl C10 C13 55% Cl C10 C % Cl C14 C17 57% Cl C14 C17 42% Cl C18 C20 36% Cl hain c t r o Sh iu m d e M 1 n chai Lo ai n h c ng st dimension retention time (min) 60

34 1,2-C8Cl2 1,2-C9Cl2 1,1,1,3-C8Cl4 1,2-C10Cl2 1,1,1,3-C9Cl4 1,2-C11Cl2 1,1,1,3-C10Cl4 1,2-C12Cl2 1,1,1,3-C11Cl4 1,2-C13Cl2 1,2-C14Cl2 1,2,7,8-C8Cl4 1,2,8,9-C9Cl4 1,1,1,3-C12Cl4 1,2,9,10-C10Cl4 1,1,1,3-C13Cl4 1,2,10,11-C 11Cl4 1,1,1,3-C14Cl4 1,2,11,12-C 12Cl4 1,2,13,14-C14Cl4 2,5,6,9-C10Cl4 1,2,5,6,9-C10Cl5 1,1,1,3,8,9-C9Cl6 1,1,1,3,6,8,8,8-C8Cl8 1,1,1,3,9,10-C10Cl6 1,2,5,6,9,10-C10 1,1,1,3,10,11-C11Cl6 1,1,1,3,8,10,10,10-C10 1,1,1,3,11,12-C12Cl6 1,1,1,3,9,11,11,11-C 1,1,1,3,12,13-C13Cl6 1,1,1,3,10,12,12,12-C 1,1,1,3,11,13,13,13-C 1,1,1,3,12,14,14,14-C ,12-C12Cl2 Cl6 Cl8 11Cl8 12Cl8 13Cl8 14Cl8 2 nd dimension retention time (s) st dimension retention time (min)

35 I. DB HT 8 PCTs 2nd dimension retention time (sec) 7 6 Toxaphene PCAs st dimension retention time (min) 75 85

36 II. DB-1 LC-50 2 nd dimension retention time (sec) PCDD/Fs PCBs PBBs PBDEs PCDEs OCPs Toxaphenes PCNs PCDTs , st dimension retention time (min)

37 GCxGC of OCPs DB HT ε-hch δ-hch β-hch α-hch γ-hch hexachlorobenzene pentachlorobenzene α-chlordene cis-heptachloro epoxide γ-chlordene aldrin trans-heptachloro epoxide I.S. octachlorostyrene heptachlor oxy-chlordane o,p -DDE γ-chlordane o,p -DDD α-endosulfan α-chlordane β-endosulfan dieldrin p,p -DDE trans-nonachlor p,p -DDD o,p -DDT endrin p,p -DDT

38 Accuracy 30% 20% 10% 0% -10% -20% -30% -40% -50% -60% Deviation from GC-HRMS Pork fat Hake Salmon Tuna Trout Cod Spiked milk ked milk 2 Fly ash Milk edingstuff ingstuff 2 ge sludge ge sludge 2 Sediment Herring oil Spiked milk getable oil Eel mpound feed Fish oil -70% DIAC 1 DIAC 2 DIAC 3 DIFF CERT Spi Fe Feed Sewa Sewa Ve Co

39 Fish oil: HRMS vs. LRMS/MS 5.0 PCDD/Fs Fish oil (Herring) Concentration (pg/g) ,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF GC-HRMS GC-ITMS/MS

40 (Active) Biological Monitoring

41

42 Extractie

43 Clean-up Destructive method MLS Non-destructive method GPC Matrix Dioxin, PCBs e.g. PAH

44 Investigating Fat / Fat Retainer Ratios in Selective ASE Björklund, Müller, von Holst, Anal. Chem. 2001, 73, 4050 ASE ml cell Flow Filter SFE support Matrix / Na 2 SO 4 / Sand Filter Fat Retainer Silica gel 2 Filters H 2 SO 4 /Silica gel Florisil Basic alumina Neutral alumina Acidic alumina PCBs (+ Fat)

45

46 Clean-up of fat using selective ASE ASE300, 34mL cells, triglycerides 0,5g (n=3, s.e.m.) 5-20g silica C 50 C 100 C 50 C 100 C 50 C 100 C 50 C Retained fat (%) Pentane Hexane Heptane ,100 0,100 0,075 0,075 0,050 0,050 0,025 0,025 Fat / fat retainer ratio (FFR) Sporring, Björklund, J. Chrom. A 2004, 1040, 155

47 Traditional extraction/clean-up vs. PLE pgteq/g Oil pgteq/g Oil Vegetable oil Lab A Lab B PLE Fish oil (n=6) Lab A Lab B PLE PCDD/F PCB Total-TEQ

48 ASE 300 Integrated Fractionation of PCBs and Dioxins 1. Heptane 2. Heptane- 3. Toluene Dichloormethane (1:1) Na 2 SO 4 Matrix/Na 2 SO 4 Na 2 SO % Carbon/Celite Carbon/Celite Carbon/Celite Na 2 SO 4 Bulk PCBs Mono-ortho- PCBs Non-ortho-PCBs en PCDD/Fs

49 Elution profile integrated carbon fractionation Fish oil Fat recovery (%) Fraction 1 98,7 Fraction 2 0,7 Fraction 3 0,1 % Bulk-PCBs Mon-ortho PCBs Non-ortho PCBs PCDDs and PCDFs 1. Heptane 2B. Acetone/heptane (2.5:1) 2A. DCM/heptane (1:1) 3.Toluene

50 DR-CALUX

51 Accuracy of CALUX results DIOXIN fraction PCB fraction Calux Calux 12 GC-HRMS GC-HRMS milk fish oil chicken feed pork chicken tissue clay egg herring milk fish oil chicken feed pork chicken tissue clay egg herring

52 LC-MS: HBCD and TBBP-A A in a Porpoise C /7479 Porpoise Β-HBCD : SIR of 1 Channel ES e4 Area % α-hbcd γ-hbcd 0 C TBBP-A 3: SIR of 1 Channel ES e6 Area % 0 Time

53 Developments in LCMS instruments LC-ion trap MS LC/triple quad MS UPLC/MS LC-ToF/MS

54 Identification Unknown Toxic Compounds Toxicity Identification Evaluation (TIE) Extract Bioassays Toxic signal yes Chemical analysis Explanation Toxicity yes no no Identification Unknown Compounds e.g. GC-MS GC(xGC)-ToF-MS

55 Biacore: Surface Plasmon Resonance Detection

56 Gecertificeerde Referentiematerialen

57 CRMs for POPs in Biota CRM c-c t-c Dieldr diox/ DDT HCB Mirex PCB furan SRM1974a mussel X X X X SRM1588a cod liver X X X X X SRM1945 whale bl. X X X X X SRM2974 mussel X X X X SRM2977 mussel X X X X SRM2978 mussel X X X X X 140/OC plant X X X BCR598 cod liver X X X X X X CARP-1 carp X X BCR349 cod liver X BCR350 mackerel X BCR682 mussel X BCR718 herring X

58 Some Conclusions Sensitivity has improved dramatically and will further improve Relevance of toxic effects should be considered Genomics-based techniques and bioassays will become more important There is an increasing need for good CRMs

59 BFR2007: Amsterdam April

60 New Address per 1 May 2006: Institute for Environmental Studies (IVM) Free University De Boelelaan HV Amsterdam jacob.de.boer@ivm.vu.nl