Sven Lataire. Knowledge and Talent required to minimalise the economical exposures along the Custody transfer chain

Similar documents
Transcription:

LNG Training The LNG Trade Course Sven Lataire Knowledge and Talent required to minimalise the economical exposures along the Custody transfer chain 1

AT A GLANCE Nº1 WORLD LEADER 90,000 EMPLOYEES 2000 OFFICES AND LABORATORIES 11 GLOBAL INDUSTRIES GLOBAL SERVICE LOCAL EXPERTISE 2

Global LNG Coverage Gas Competence Center LNG LPG/Chemical Gasses Gas Competence Center Americas Gas Competence Center EAME Gas Competence Center Asiapacific France Spain Portugal Libya Algeria Das Island Oman UK Belgium Greece Eq.Guinea Egypt Dubai Qatar Italy Norway Russia Nigeria Angola Yemen Turkey Netherlands UAE 3

Global LNG Coverage Gas Competence Center LNG LPG/Chemical Gasses Gas Competence Center Americas Gas Competence Center EAME Gas Competence Center Asiapacific USA Canada Mexico Trinidad Argentina Baltimore Lake Charles Freeport D. Republic Brasil Boston Cameron Sabine Pass Chile Savannah Golden Pass 4

Global LNG Coverage Gas Competence Center LNG LPG/Chemical Gasses Gas Competence Center Americas Gas Competence Center EAME Gas Competence Center Asiapacific Australia Indonesia Malaysia Korea India PNG Thailand China Japan Taiwan 5

Knowledge and Talent required to minimalise the economical exposures along the Custody transfer chain Agenda Application area Large Scale the pitfalls Small scale the pitfalls LNG bunkering the pitfalls Knowledge and talent required 6

LNG Application area 3 main area s LNG large scale LNG Small Scale LNG bunkering SPA Legal aspect Financial/commercial aspect Technical Aspect General Avoiding disputes Loading vs unloading FOB vs DES International Standards Terminal regulations vs Contractual regulations 7

LNG Large Scale 8

LNG Large Scale 9

The Pitfalls Inaccuracy of the custody transfer system: financial exposure

Inaccuracy Gauging Devices Volume Level Trim List Temperature Liquid Temperature Vapour Temperature Pressure 11

Sensitivity analysis: Vapour Pressure Sensitivity Analysis P vap BTU] Net Energy [MM 3.508.000 3.506.000 3.504.000 3.502.000 3.500.000 1025 1050 1100 1150 1200 Vapour Pressure [mbar] * For a 150000 m³ vessel 12

Sensitivity analysis: Vapour Pressure Sensitivity Analysis P vap Energy [MMB BTU] 2.500 2.000 1.500 1.000 500 0 1025 1050 1100 1150 1200 Vapour Pressure [mbar] * For a 150000 m³ vessel 13

Sensitivity analysis: Liquid Temperature Sensitivity Analysis T liq Net Energy [MM MBTU] 3.510.000 3.508.000 3.506.000 3.504.000 3.502.000 3.500.000 3.498.000-160,2-160,1-160,0-159,9-159,8-159,7-159,6 Temperature LNG [ C] * For a 150000 m³ vessel 14

Sensitivity analysis: Liquid Temperature Sensitivity Analysis T liq Energy [MMB BTU] 8.000 6.000 4.000 2.000 0-160,2-160,1-160,0-159,9-159,8-159,7-159,6 Temperature LNG [ C] * For a 150000 m³ vessel 15

LNG Large Scale 16

Gas Chromatography: Round Robin Case Study Round Robin: 1 Sample: 40 labs Quality of ANALYSIS (excluding sampling) 40 Labs 40 different results 17

Gas analysis: commercial exposure Calculate energy for typical LNG cargo: Volume: 150000 m³ Tliq: -159.9 C Tvap: -140 C Pvap= 1150 mbar Composition: results RR Calculate GHV (ISO 6976, 15 C) Calculate Density (ISO 6578) Calculate Energy 18

Gas Chromatography: Round Robin Energy [MMB BTU] 3.480.000 3.460.000 3.440.000 3.420.000 3.400.000 3.380.000 3.360.000 3.340.000 3.320.000 3.300.000 3.280.000 0 5 10 15 20 25 30 35 40 Lab N 19

Gas analysis: commercial exposure Minimum Maximum Difference Methane (mol%) 89.0510 95.1620 6.1110 Nitrogen (mol%) 0.9867 2.4000 1.4133 GHV @ 15 C (MJ/kg) 51.8582 54.1049 2.2467 Density @ -159.9 C (kg/m³) 439.99 472.61 32.62 Energy @ 15 C (MMBTU) 3306988 3471087 164 099 20

Role of Gauging Devices in Custody Transfer 21

The Pitfalls The economical consequences in using different LNG standards

Typical values 150000 m³ 67 500 tons of LNG 3 500 000 MMBTU 23

Transferred Energy E transferred = D LNG * V * GHV LNG LNG E gas displaced E transferred = energy transferred from loading facilities to LNG carrier of from LNG carrier to unloading facilities D LNG = Density of LNG loaded or unloaded (kg/m³) V LNG = Volume of LNG loaded or unloaded (m³) GHV = Gross Heating Value of LNG loaded or unloaded (MJ/kg or MMBTU/kg): quantity of heat produced by complete combustion in air of a unit of volume or mass of the gas, at a constant absolute pressure of 1,01325 bar and at a temperature T E gas displaced = quantity of energy in gaseous form displaced during loading or unloading 24

Using different LNG standards International standards GPA 2145 ISO 6578 ISO 6976 NBS IR 77-867 NBS TN 1030 Etc. G.I.I.G.N.L. LNG Custody Transfer Handbook 25

Using different LNG standards: Density Σ ( Xi * Mi ) Density = Σ ( Xi * Vi ) [(k1 + (k2 k1)*xn) * Xm] 0.0425 Xi, Xn, Xm determined by analysis in gas chromatograph Xi: Molar fraction of the i th component Xn: Molar fraction of Nitrogen Xm: Molar fraction of Methane Mi by standard Molecular mass of the i th component Vi by standard and dependent on T liq Molecular volume of the i th component K1, k2 by standard and dependent on T liq and molar mass Correction factors for Nitrogen and Methane 26

Using different LNG standards: Density Density (kg/m³) 456,694 456,791 456,730 456,709 456,806 456,745 456,698 456,795 456,734 Difference between min and max = 0.113 kg/m³ +/- 900 MMBTU 27

Using different LNG standards: GHV H m = ( Xi * Hmi* Mi) ( Xi * Mi) Xi determined by analysis in gas chromatograph Hmi by standard Molecular Gross Heating Value Mi by standard Molecular mass of the i th component 28

Using different LNG standards: Hmi (15 C) GHV (MJ/kg) 54,3763 54,3907 54,3914 Difference between min and max = 0,015 MJ/kg +/- 980 MMBTU 29

Using different LNG standards: Energy Qnet (MMBTU) 3518408 3519160 3518689 3518526 3519279 3518807 3518437 3519189 3518718 3517428 3518180 3517709 3517545 3518298 3517826 3517457 3518209 3517737 30

Using different LNG standards: Energy Qnet (MMBTU) 3518360 3519112 3518641 3518478 3519231 3518759 3518389 3519141 3518670 31

Using different LNG standards: Energy Combination of D and GHV to calculate E transferred 27 different results between 3517428 MMBTU and 3519279 MMBTU 1850 MMBTU 32

Using same standard under different Reference conditions Calculation of GHV according ISO 6976 0 C 15 C 60 F 20 C 25 C Difference in energy value is 10104 MMBTU 33

LNG SPA calculation review: Case Study 1

LNG SPA review: Case Study: Calculation Section Master agreement: Client wanted to know what method was more favourable: Terminal regulations or Calculation method specified in SPA SGS compared energy calculations A typical composition from LP was requested Calculations are done for typical cargo (+/- 150000 m³) Additional: SGS compares the calculations with other calculation methods using different standards, reference conditions Graphs show what calculation method is more favorable for clients 35

LNG SPA review: Case Study: Calculation Section Using a typical composition of the LP, the following calculations were performed using the different international accepted standards and reference temperatures E net (MMBTU) 3378787 3378620 3378609 3379010 3378843 3378832 3378919 3378752 3378741 36

LNG SPA review: Case Study: Calculation Section E net (MMBTU) 3378970 3378803 3378792 3379192 3379026 3379015 3379102 3378935 3378924 3377881 3377715 3377703 3378104 3377937 3377926 3378013 3377847 3377835 37

LNG SPA review: Case Study: Calculation Section E net (MMBTU) 3384173 3384006 3383995 3384396 3384229 3384218 3384305 3384139 3384127 3378850 3378684 3378672 3379073 3378906 3378895 3378982 3378816 3378804 38

LNG SPA review: Case Study: Calculation Section E net (MMBTU) 3377108 3376942 3376931 3377331 3377164 3377153 3377240 3377074 3377063 3375338 3375172 3375160 3375560 3375394 3375383 3375470 39

LNG SPA review: Case Study: Calculation Section Energy (MMBTU) 3386000 3384000 3382000 3380000 3378000 3376000 3374000 3375160 3375483 3378700 3384396 3372000 minimum SPA calculations Terminal Regulations maximum Calculation Method 40

LNG SPA review: Case Study: Calculation Section 10000 9236 Energy (MMBTU) 8000 6000 4000 2000 0 0 323 3540 minimum SPA calculations Terminal Regulations maximum Calculation Method 41

LNG SPA review: Case Study: Calculation Section Calculation was done for both SPA calculation section and terminal regulations and the following results were found: Terminal Regulations: 3378700 MMBTU SPA agreement: 3375483 MMBTU Difference = 3217 MMBTU By accepting Terminal regulations client gained on average around 3200 MMBTU per shipment when selling the cargo 42

LNG SPA review: Case Study: Calculation Section Analysis of difference between calculation sections Different reference temperatures this case SPA: 25 C vs terminal regulations: 15 C vapour return included: yes/no Difference might be around 12000 MMBTU/cargo Other standards used Roundings 43

LNG SPA calculation review: Case Study 2

LNG SPA review: Case Study: Calculation Section Energy (M MMBTU) 3.360.000 3.355.000 3.350.000 3.345.000 3.340.000 3.335.000 3.330.000 3.325.000 3.320.000 3.332.590 T&M calculations 3.355.496 Terminal Regulations 45

LNG SPA review: Case Study: Calculation Section 25.000 22.906 20.000 Energy (M MMBTU) 15.000 10.000 5.000 0 0 T&M calculations Terminal Regulations 46

The Pitfalls - The Specs

Specifications : GHV influence reference conditions (1) I D E A L R E A L LP 1 LP 2 LP 3 LP 4 LP 5 LP 6 LP 7 LP 8 Min Spec 36,90 36,90 36,90 36,90 36,90 36,90 36,90 36,90 Max Spec 43,71 43,71 43,71 43,71 43,71 43,71 43,71 43,71 0/0 43,26 40,76 42,50 44,76 45,86 40,89 41,78 43,69 15/15 40,95 38,58 40,23 42,36 43,41 38,70 39,55 41,35 15/0 43,20 40,70 42,43 44,69 45,79 40,83 41,72 43,62 20/20 40,23 37,90 39,52 41,62 42,64 38,02 38,85 40,63 25/0 43,15 40,66 42,39 44,64 45,74 40,78 41,68 43,58 25/20 40,21 37,88 39,50 41,60 42,62 38,00 38,83 40,60 0/0 43,39 40,87 42,62 44,91 46,02 41,00 41,90 43,83 15/15 41,05 38,66 40,32 42,48 43,53 38,78 39,64 41,46 15/0 43,33 40,80 42,56 44,84 45,95 40,93 41,83 43,76 20/20 40,32 37,98 39,61 41,73 42,76 38,10 38,94 40,73 25/0 43,28 40,76 42,51 44,79 45,91 40,89 41,79 43,71 25/20 40,30 37,96 39,59 41,71 42,74 38,08 38,92 40,70 48

Specifications : GHV influence reference conditions (2) I D E A L R E A L LP 9 LP 10 LP 11 LP 12 LP 13 LP 14 LP 15 LP 16 Min Spec 36,90 36,90 36,90 36,90 36,90 36,90 36,90 36,90 Max Spec 43,71 43,71 43,71 43,71 43,71 43,71 43,71 43,71 0/0 42,85 41,67 41,55 43,68 43,89 42,33 44,05 42,27 15/15 40,56 39,44 39,32 41,34 41,55 40,06 41,69 40,01 15/0 42,79 41,61 41,48 43,61 43,83 42,26 43,98 42,21 20/20 39,85 38,75 38,63 40,62 40,82 39,36 40,96 39,31 25/0 42,74 41,57 41,44 43,57 43,78 42,22 43,94 42,16 25/20 39,83 38,73 38,61 40,59 40,79 39,34 40,94 39,29 0/0 42,98 41,79 41,66 43,81 44,03 42,45 44,19 42,39 15/15 40,66 39,53 39,41 41,45 41,65 40,16 41,80 40,10 15/0 42,91 41,72 41,59 43,75 43,97 42,38 44,12 42,33 20/20 39,94 38,83 38,71 40,71 40,92 39,45 41,06 39,40 25/0 42,87 41,68 41,55 43,70 43,92 42,34 44,08 42,28 25/20 39,92 38,81 38,69 40,69 40,90 39,43 41,04 39,37 49

LNG Small Scale 50

The Pitfalls along the custody transfer chain for small scale LNG

LNG Small Scale SPA Custody Transfer System Level Main and back up system Some of them are only equipped with one system Accuracies? Min measurable range? Temp and Pressure Accuracies might be different Number of temperature probes? 3 versus 6 Scale? Ref pressure semi pressurized vessels Hard to meet as the scale is to big Local governmental regulations rules should be requested! No gassing up cooling down tables 52

LNG Small Scale Ship Acceptance Previous Cargo was something different then LNG Butane LNG Can we load on top of Butane?» Melting point at atm Pressure: -140 C is this an issue?» What are the impurites? Ethylene LNG Chemical reaction? Ref LPG change over Chart Arrival Specs: realistic? Ref above - 99.9% pure Nitrogen Ref 99.5% - remaining 5000 PPM O2 max pipeline spec is 5ppm will be uniformised to 10 ppm As to obtain those Arrival specs whose responsibility? Costs? Vapor return Possible contamination in tank or network 53

LNG Small Scale SPA Arrival Spec Compliance Analysis of arrival condition Capabilities? Temp & Press requirements on arrival Load port! Discharge port! Sampling What s the min flow rate as to take representative samples? Back up? Sulphur testing Diversification of downstream applications 54

LNG Small Scale SPA Operational Ship to Ship Where will the official measurements be taken How much deviation is allowed between the two vessels What in case vapor return is a different grade? Quality determination? Back up? Ageing? Shore to Ship Increase of pressure ( and hence temp ) due to The lines are smaller No high duty compressor to return the vapor The vessels they do have compressors and maybe little blowers but not designed to return vapour as we re used to the big scale LNG vessels? 55

LNG Small Scale SPA Calculation Density Calculation Application limit KMK 115K or -158.15 C» What in case it s warmer ( ref semi pressurized ) Observed temperature before discharge -156,5 C -156,6 C -156,7 C -155,7 C -155,9 C -156,3 C -155,1 C -156,2 C -156,4 C -156,5 C 56

LNG Bunkering 57

The Pitfalls along the custody transfer chain for LNG bunkering

LNG bunkering Required Parameter are totally different MN Impurities Ammonia Particles content Fluorines and Chlorines Calculations Technology Sampling On the shore On the Ship Ageing? Metering Approved technologies Norms/standards and provers 59

Knowledge and Talent required 60

Knowledge and talent required Leadership Communication Interpersonal Skills Business Planning Personal Time Management Organization, Planning and Scheduling Innovation and Initiative Commitment Problem Solving Cultural, Political and Business Sensitivities Passion Safety (HSE) Ethics Trust and Integrity Negotiation Analytical Job Knowledge. Quality and Quantity 61

Knowledge and talent required Competencies are skills you can do and acquire through Study Training Work experience Life experience Having the right mentors! 62

WISH YOU A SAFE OPERATION Thank you Sven 63