Transparent Heat Mirror Using Plasma Polymer Fluorocarbon Fabricated by Continuous Roll-to-Roll Sputtering

Similar documents
Transcription:

2R Conference USA 2018 Transparent Heat Mirror Using Plasma Polymer Fluorocarbon Fabricated by Continuous Roll-to-Roll Sputtering Sang-Jin Lee, Ph.D/Principal Researcher Sung Hyun Kim, Mac Kim, Tae-Woon Kang, Eunmi Cho, Jae Heung Lee Korea Research Institute of Chemical Technology

1 2 3 4

Transparent Heat Mirror Window film - 3M web page Low-e film - http://www.austinwindows.co/low-e-window-film/ IR Reflector - https://solarshieldwindowtinting.co.za/solar-film/

Window Film US Market Revenue U.S. Solar Window film Market revenue, By Application, 2013-2024(USD Million) CAGR : 6% 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 Construction Automotive In 2015, the US window film market was about $500 million. The compound annual growth rate (2016 2024) : 6%. Construction accounts for the largest portion at 57.4% (2015). By 2024, the US market for window films is expected to reach $850 million.

Transparent Heat Mirrors Oxide/Metal/Oxide structure High refractive index / metal / high refractive index structure THMs - High refractive index materials : AZO(n 1.90), TiO 2 (n 2.91), WO 3 (n 2.19) - Metal layer for IR blocking : Ag, Au, Cu, etc. - Deposition method : R.F. Sputtering D. Miao et al. AZO/Ag/AZO J.C.C. Fan et al. TiO2/Ag/TiO2 M.F. Al-Kuhaili et al.wo 3 /Ag/WO 3 Ceram. Int. 2014, 40, 12847. Appl. Opt. 1976, 15, 1012. Sol. Energy 2009, 83, 1571. M.F. Al-Kuhaili et al.wo3/au/wo3 Y.P. Wang et al. AZO/Cu/AZO Sol. Energy 2012, 86, 3183. Appl. Surf. Sci. 2011, 257, 5966.

Transparent Heat Mirrors Oxide/Nitride/Oxide structure High (low) / low (high) / high (low) refractive index structure THMs - Alternatives to noble metals (Ag, Au) - Chemically stable and extreme hardness - Deposition method : single target used reactive R.F. Sputtering K. Andersson et al. ZrO/ZrN/ZrO M. Okada et al. TiO 2 /TiN/TiO 2 Sol. Energy Mater. Sol. Cells 1994, 32, 199. Vacuum 2006, 80, 732.

Transparent Heat Mirrors Nanoparticle K. Katagiri et al. suggest infrared-shielding coating Films - Prepared using perhydropolysilazane(phps) and hydrophobized ITO nanoparticles by liquid phase process - Completely blocked IR light at wavelengths longer than 1400 nm. R. Das et al. synthesis ZnO: Al nanoparticle - Prepared by R.F. sputtering in Ar and Ar + H 2 atmospheres - The transmission of the ZnO:Al film in the visible range is above 90% and that at 1400 nm is only 3.2% ZnO:Al nanoparticle ACS Appl. Mater. Interfaces 2013, 5, 10240. J. Phys. D: Appl. Phys. 2003, 36, 152.

Transparent Heat Mirrors To make high performance Transparent Heat Mirror : High VIS Transmittance & Very Low NIR Transmittance VIS range : transmittance increases NIR range : transmittance decreases

Self-Cleaning Transparent Heat Mirror (SC- THM) Hydrophobic Surface Transparent Heat Mirror Plasma polymer fluorocarbon (PPFC) Nitride layer Noble Metal : Ag Self-Cleaning Transparent Heat Mir

Concept Plasma Polymer Fluorocarbon (PPFC) Large Thin Area Films Deposition by pilot scale R2R Sputtering Composite Target : CNT 5 wt% / PTFE 95 wt% Target Size : 127 mm 950 mm 6mm Roll (Line) Speed : 1 m/min MF power : 3 kw Base/Working Pressure : 5 10-5 Pa / 4.85 10-1 Pa Pre-treatment : Heat treatment@300, Ar/O 2 Plasma Treatment Coating Length : > 100 m Transmittance 92% Film Thickness 100 nm Water Contact Angle 115º

Refractive index Plasma Polymer Fluorocarbon Thin Films Amorphous structure Chemical structure Refractive Index 1.60 1.55 1.50 PureCS CNT01CS CNT05CS CNT10CS CNT15CS 1.45 1.40 1.35 1.30 250 500 750 1000 wavelength (nm) Hydrophobic Surface High Hardness Coating on Fabric

SC-THM Structure Substrate : 700-mm-wide PET film High Refractive Index Layer : SiNx (n 2.05) Reflection Layer : Ag Low Refractive Index Layer : Plasma Polymer Fluorocarbon (PPFC) (n 1.38)

3-layers Structure SC-THM Optical Simulation Results for 3-layers Structure SC-THM using Macleod Program On the basis of simulation results, optimal SiNx thickness is 30 nm & Ag thickness is 10 nm

3-layers Structure SC-THM Optical Transmittance Results for 3-layers structure SC-THM In the 3-layers SC THM with PPFC 50nm / Ag 10 nm / SiNx 30 nm Maximum visible light transmittance : 54.42% @ 400 nm wavelength The IR transmittance : 8.71% @ 1,000 nm wavelength

5-layers Structure SC-THM Optical Simulation Results for 5-layers Structure SC-THM using Macleod Program On the basis of simulation results, optimal SiNx thickness is 50 nm & Ag thickness is 10 nm

5-layers Structure SC-THM Structural Analysis by TEM & TOF-SIMS TEM TOF-SIMS Successful deposition of the two-dyad Ag/SiNx and PPFC multilayers onto the PET substrate via the continuous roll-to-roll sputtering process!

5-layers Structure SC-THM Optical Transmittance Results for 5-layers structure SC-THM In the 5-layers SC THM with PPFC 50nm / Ag 10 nm / SiNx 30 nm Ag 8 nm / SiNx 30 nm Maximum visible light transmittance : 60.67% @ 404 nm wavelength The IR transmittance : 6.86% @ 1,000 nm wavelength & 2.50% @ 1,500 nm wavelength

5-layers Structure SC-THM Figure of merit factor φ Evaluation of Performance Integrated Solar and Integrated Visible Structur e λ max (nm) T max τ vis (nm) R IR (nm) Φ (nm 2 ) T sol T vis R sol R vis T vis /T sol 3-layer 0.400 0.5442 111.73 900.21 5.47 10 4 0.224 0.354 0.681 0.549 1.58 5-layer 0.404 0.6067 127.06 947.59 7.30 10 4 0.240 0.407 0.717 0.577 1.70

Performance of SC-THM Optical Transmittance Results for 5-layers structure SC-THM

Performance of SC-THM Heat Mirror Test : IR Reflection

Performance of SC-THM Heat Mirror Test : IR Irradiation 44.6 ⁰C 22.9 ⁰C After IR irradiation for 45 minutes The box with glass on top : Temp. 19.3 ⁰C 44.6 ⁰C The box with SC-THM on top : Temp. 18.7 ⁰C 22.9 ⁰C

Thank you for your kind attention! See you in R2R Conference Asia at KRICT next year!! 28 30 May, 2019 Korea Research Institute of Chemical Technology South Korea