Pressurised gasification of coal and biomass for the production of H 2 -rich gas

Similar documents
Transcription:

Department of Energy & Pressurised gasification of coal and biomass for the production of -rich gas J. Fermoso, B. Arias, M.G. Plaza, C. Pevida, M.D. Casal, C.F. Martín, F. Rubiera, J.J. Pis Instituto Nacional del Carbón, C.S.I.C. Apartado 73. 33080 Oviedo (Spain) frubiera@incar.csic.es

INTRODUCTION OBJECTIVES EXPERIMENTAL RESULTS CONCLUSIONS

HYDROGEN ECONOMY Hydrogen: Energy carrier of the future Production of FOSSIL FUELS Coal RENEWABLES Biomass Wind NUCLEAR 18 % Oil 96 30 % Tidal Energy Solar Reduction of CO 2 emissions: Natural Gas 48 % Hydraulic Geothermal Increased efficiency Effective co-utilisation with biomass CO-GASIFICATION: COAL & BIOMASS Introduction

FutureGen / Hypogen / Coal21 / EAGLE GT Electricity ST Fuel Cells Steam Oxygen Gasifier + CO Shift Reactors CO 2 Capture CO 2 Coal Biomass Petcoke Particulate Removal Slag Sulphur Recovery Fischer-Tropsch Methanol Sulphur Liquid fuels Project CENIT-PiIBE Deployment of Biodiesel Chemicals Use in Spain Introduction

OBJECTIVES Objectives: To study the effect of the operation variables on gas production during the gasification of a bituminous coal. To study the effect of blending a bituminous coal with petcoke and biomass during their co-gasification. Objectives

INTRODUCTION OBJECTIVES EXPERIMENTAL RESULTS CONCLUSIONS

Electricity Generation in Spain by Source Natural Gas 31.7% Nuclear 17.7% Renewables 19.8% Hydraulic 9.8% Coal 24.2% Oil 6.6% Wind 8.7% Biomass 0.6% Biogas 0.2% MSW 0.5% Solar Photovoltaic 0.1% Solar Thermal 0.003% Experimental

Biomass in Spain. Regions with higher potential. PER 2005-2010 (Spanish Renewable Energy Plan) Forest Residues Agricultural Res. (Wood) Agricultural Residues (Herbaceous) Agro-forestry industrial Res. Energy crops ELCOGAS Experimental

Fuels Analysis Sample Proximate Analysis (wt%) Ultimate Analysis (wt%, dry basis) Ash (db) VM (db) FC* (db) C H N S O* HHV (MJ/kg) PT (coal) 36.3 24.7 39.0 45.3 3.1 1.0 1.1 13.2 18.5 DT (coal) 10.9 29.0.1 73.0 4.4 0.7 1.1 13.2 28.9 SA (coal) 14.9 25.6 59.5 66.9 4.1 1.7 0.6 11.8 28.0 HV (coal) 8.8 8.6 82.6 82.7 2.5 1.6 1.7 2.7 32.0 PC (petcoke) 0.3 9.6 90.1 87.4 3.8 1.4 6.2 0.9 35.0 Olive Stones, OS 0.8 83.8 15.4 51.6 6.1 0.1 0 41.4 20.3 Olive Pulp, OP 7.6 71.9 20.5 50.2 6.1 1.8 0.1 34.2 19.9 Almond Shells, AS 1.2 79.3 19.5 49.2 6.0 0.2 0 43.4 19.7 Eucalyptus, EB 0.7 83.6 15.7 50.3 6.3 0.1 0 42.6 19.4 Pine Sawdust, PS 1.5 86.5 12.1 49.1 6.5 0.2 0 42.7 19.9 *Fixed Carbon and Oxygen determined by difference Experimental

Fuels BINARY BLENDS Coal PT - PC (40, 50, %) Coal PT - BIOMASS (5 and 10 % Biomass) TERNARY BLENDS Coal PT - PC - BIOMASS (45-45 10 %) Experimental

Gasification System Main Characteristics: Temperature: 1000 ºC Pressure: 20 bar Continuous feeding system Gas analysis (micro GC) Flow diagram Hot Box Experimental

INTRODUCTION OBJECTIVES EXPERIMENTAL RESULTS CONCLUSIONS

Gas Production (mol gas/kg sample, daf) Conversion, X (%) = (C gas/c raw fuel) daf Gas Yield, Y (Nm 3 kg -1 ) = dry gas flow rate / dry fuel flow rate HHV (kj Nm 3 ) = gross calorific value of dry gas Cold Gas Efficiency, η (%) = HHV GAS (kj Nm 3 ) Y (Nm 3 kg -1 ) / HHV FUEL (kj kg -1 ) Fuel: Coal, PT: Mass flow rate: 5 g/h Sample size: 75-150 micron Reactive Gas: N 2 -O 2 - O: 200 ml min -1 daf: dry ash free basis

40 20 0 2.5 5 7.5 10 12.5 15 17.5 Gasification Effect of oxygen, steam, temperature Coal PT, Dp: 75-150 micron, Feed flow rate: 5 g/h, Pressure: 15 bar (mol kg -1 sample, daf) 50 40 30 20 1000 C 900 C O 10 25%H2O-900ºC 40%H2O-900ºC 55%H2O-900ºC 25%H2O-1000ºC 40%H2O-1000ºC 55%H2O-1000ºC 0 0.50 0.65 0.80 0.95 1.10 1.25 1.40 O/C (g/g) C+ O 2 CO 2 C+ ½O 2 CO + ½ O 2 O C+ CO 2 2 CO C+ O CO + CO + O CO 2 + CO + 2 O CO 2 + 2 C+ 2 CH 4 Results

Gasification Effect of oxygen, steam, temperature Coal PT, Dp: 75-150 micron, Feed flow rate: 5 g/h, Pressure: 15 bar (mol kg -1 sample, daf) 50 40 30 20 O 2 1000 C 900 C 10 5%O2_900ºC 7%O2_900ºC 10%O2_900ºC 15%O2_900ºC 5%O2_1000ºC 7%O2_1000ºC 10%O2_1000ºC 15%O2_1000ºC 0 1.00 1.25 1.50 1.75 2.00 2.25 2.50 O/C (g/g) C+ O 2 CO 2 C+ ½O 2 CO + ½ O 2 O C+ CO 2 2 CO C+ O CO + CO + O CO 2 + CO + 2 O CO 2 + 2 C+ 2 CH 4 Results

Gasification Effect of oxygen, steam, temperature Coal PT, Dp: 75-150 micron, Feed flow rate: 5 g/h, Pressure: 15 bar 40 35 CO (mol kg -1 sample, daf) 30 25 20 15 10 O 2 1000 C 900 C 5 5%O2_900ºC 7%O2_900ºC 10%O2_900ºC 15%O2_900ºC 5%O2_1000ºC 7%O2_1000ºC 10%O2_1000ºC 15%O2_1000ºC 0 1.00 1.25 1.50 1.75 2.00 2.25 2.50 O/C (g/g) C+ O 2 CO 2 C+ ½O 2 CO + ½ O 2 O C+ CO 2 2 CO C+ O CO + CO + O CO 2 + CO + 2 O CO 2 + 2 C+ 2 CH 4 Results

Gasification Effect of oxygen and steam Coal PT, Dp: 75-150 micron, Feed flow rate: 5 g/h, Pressure: 15 bar 1000 C + CO (mol kg -1 coal, daf) 85 55 H2 + CO (mol kg -1 coal, daf) 80 50 85 80 75 75 65 50 65 75 80 85 45 40 35 O (% vol. ) 30 25 6 8 12 14 10 O 2 (% vol. ) H2O (%vol.) 45 40 35 30 25 80 75 80 75 80 75 65 6 8 10 12 14 O2 (%vol.) C+ O 2 CO 2 C+ ½O 2 CO + ½ O 2 O C+ CO 2 2 CO C+ O CO + CO + O CO 2 + CO + 2 O CO 2 + 2 C+ 2 CH 4 Results

Gasification Effect of temperature and steam on Cold Gas Efficiency Coal PT, Dp: 75-150 micron, Feed flow rate: 5 g/h, Pressure: 15 bar η (%) 84 78 72 66 48 54 66 72 78 84 10% O 2 1000 980 9 75 65 75 η (%) 80 75 80 75 54 48 1000 980 9 940 T (ºC) 920 900 25 30 50 55 45 40 35 O (% vol. ) T (ºC) 65 65 940 65 55 920 55 55 50 900 55 25 30 35 40 45 50 55 H2O (%vol.) C+ O 2 CO 2 C+ ½O 2 CO + ½ O 2 O C+ CO 2 2 CO C+ O CO + CO + O CO 2 + CO + 2 O CO 2 + 2 C+ 2 CH 4 Results

Co-Gasification Binary Blends: coal PT-PC (40, 50, %) GAS PRODUCTION (mol kg -1 sample, daf) 50 40 30 20 10 - T: 1000 ºC -O 2 :5% - O: 55% - P: 15 bar - Dp: 75-150 µm 0 0 10 20 30 40 50 80 90 100 % PT H2 CO CO2 CH4 Results

52 48 44 36 40 32 28 24 16 20 12 8 0 4 AS EB OS OP PS Co-Gasification Binary Blends: coal PT-Biomass (5, 10 %) - T: 1000 ºC -O 2 :5% - O: 55% - P: 15 bar - Dp: 75-150 µm (mol kg -1 sample, daf) 52 48 44 40 36 32 28 24 20 16 12 8 4 0 AS EB OS OP PS Biomass PT 5%BIOMASS 10% BIOMASS Results

Co-Gasification Ternary Blends: Coal PT-PC-Biomass (45, 45, 10 %) - T: 1000 ºC -O 2 :5% - O: 55% - P: 15 bar - Dp: 75-150 µm GAS PRODUCTION (mol kg -1 sample, daf) 65 55 50 45 40 35 30 25 20 15 10 5 0 0% 10% AS 10% RE 10% OS 10% OP 10% SP Biomass 10 15 20 25 30 35 40 45 50 55 65 H2 05 CO CO2 CH4 0 % 1 0 1 0 Results

CONCLUSIONS I. The increase in temperature produced more gases ( +CO), with a concomitant improvement in efficiency. II. The production of gas depended on the O 2 / O ratio. An increase in the ratio decreased the production of and CO due to combustion reactions. Addition of steam increased the production of and CO 2, to the detriment of CO production, with a slower char conversion rate. III. A positive (synergistic) effect was attained for binary blends of coal with petcoke, and coal with different types of biomass. In the case of ternary blends the syngas production did not change appreciably, but cold gas efficiency and carbon conversion increased with regards to those of the bituminous coal-petcoke binary blend. Conclusions

Department of Energy & Pressurised gasification of coal and biomass for the production of -rich gas J. Fermoso, B. Arias, M.G. Plaza, C. Pevida, M.D. Casal, C.F. Martín, F. Rubiera, J.J. Pis Instituto Nacional del Carbón, C.S.I.C. Apartado 73. 33080 Oviedo (Spain) frubiera@incar.csic.es Energy Processes & Emissions Reduction Group - INCAR - CSIC Acknowledgements: - ELCOGAS, S.A. - Project CENIT- PiIBE