Ambi-Valence Taken Literally: Ru vs. Fe Oxidation in 1,1'- Diphosphinoferroceneruthenium(II) Hydride and Chloride Complexes as

Similar documents
Transcription:

1 Ambi-Valence Taken Literally: Ru vs. Fe Oxidation in 1,1'- Diphosphinoferroceneruthenium(II) Hydride and Chloride Complexes as Deduced from Spectroelectrochemistry of the Heterodimetallic Mixed-Valent Intermediates Torsten Sixt, Monika Sieger, Michael J. Krafft, Denis Bubrin, Jan Fiedler and Wolfgang Kaim * Supporting Information

2 Table S1. Selected 1 H-NMR Data a of Ligands and Heterobimetallic Complexes compound solvent b δ CH (Fc) CH (Cym) CH 3 Dppf A 4.03 4.14 dippf A 4.14 4.24 depf A 4.16 4.24 (Me / i Pr) [(C 5 Me 5 )RuH(dppf)] (1) c B 3.70 3.82 4.03 4.65 1.40/ [(C 5 Me 5 )RuH(dippf)] (2) d B 4.15 4.22 4.22 4.43 1.92/ [(Cym)RuCl(dppf)](PF 6 ) (3) C 4.20 4.39 4.48 5.05 5.75/5.52 1.04/0.87 [(Cym)RuCl(depf)](PF 6 ) (5) C 4.33 4.48 4.68 4.81 6.06/6.59 2.28/1.33 [(Cym)RuCl(dippf)](PF 6 ) (4) C 4.30 4.48 4.60 4.86 6.01/6.99 2.43/1.19 [(Cym)RuH(dppf)](PF 6 ) (6) e D 4.21 4.27 4.28 4.30 4.53/4.98 2.21/1.12 {(µ-dppf)[(cym)rucl 2 ] 2 } (7) C 4.10 3.83 5.00 1.65/0.95 {(µ-depf)[(cym)rucl 2 ] 2 } (8) C 4.64 4.56 5.09/4.99 1.84/1.04 {(µ-dippf)[(cym)rucl 2 ] 2 } (9) C 4.73 4.63 5.02/5.08 1.87/1.12 a Chemical shifts δ. b A = CDCl3, B = C 6 D 6, C = acetone-d 6, D = CD 3 CN. c Hydride triplet at - 12.31 ( 2 J HP = 25.8 Hz). d Hydride triplet at -14.11 ( 2 J HP = 38.6 Hz). e Hydride triplet at -10.27 (²J HP = 39.0 Hz).

3 Table S2. 31 P-NMR Data of Ligands and Complexes a compound solvent δ( 31 P) b δ = δ C - δ L dppf CDCl 3-16.6 dippf CDCl 3 0.9 depf CDCl 3-26.0 [(C 5 Me 5 )RuH(dppf)] (1) C 6 D 6 64.8 81.4 [(C 5 Me 5 )RuH(dippf)] (2) C 6 D 6 70.7 69.8 [(Cym)RuCl(dppf)](PF 6 ) (3) (CD 3 ) 2 CO 37.1 53.7 [(Cym)RuCl(dippf)](PF 6 ) (4) (CD 3 ) 2 CO 47.6 46.7 [(Cym)RuCl(depf)](PF 6) (5) (CD 3 ) 2 CO 35.5 61.5 [(Cym)RuH(dppf)](PF 6 ) (6) e CD 3 CN 51.3 67.9 {(µ-dppf)[(cym)rucl 2 ] 2 } (7) (CD 3 ) 2 CO 18.3 34.9 {(µ-depf)[(cym)rucl 2 ] 2 } (8) (CD 3 ) 2 CO 15.2 41.2 {(µ-dippf)[(cym)rucl 2 ] 2 } (9) (CD 3 ) 2 CO 25.3 24.4 a Chemical shifts δ vs. H 3 PO 4. b Coordination induced shift.

4 Table S3. X-ray Diffraction Data Collection Parameters [(C 5 Me 5 )RuH(dippf)] (2) [(Cym)RuCl(dippf)](PF 6 ) (4) [(Cym)RuCl(depf)](PF 6 ) (5) empirical formula C 32 H 52 FeP 2 Ru C 32 H 50 ClF 6 FeP 3 Ru C 28 H 42 ClF 6 FeP 3 Ru fw 655.60 834.00 777.90 cryst size (mm) 0.05 0.1 0.1 0.2 0. 15 0.3 0.50 0.40 0.20 temp (K) 173(2) 173(2) 173(2) space group P2 1 /n Pc P-1 cell constants a (Å) 11.286(2) 14.326 (1) 9.8697(11) b (Å) 17.747(4) 11.959 (1) 11.571(13) c (Å) 15.738(3) 20.702(2) 15.490(2) α ( ) 90 90 68.224(10) β ( ) 95.47(3) 105.778(7) 77.690(10) γ ( ) 90 90 72.681(9) V (Å 3 ) 3138.0(11) 3413.0(6) 1557.7(3) Z 4 4 2 d calcd (g/ml) 1.388 1.623 1.659 2θ range (deg) 4.30 to 51.90 3.98 to 58.02 3.90 to 60.04 index ranges -13 h 13, -21 k 21, -2 h 19, -1 k 16, 0 h 13, -15 k 16,

5-18 1 19-28 1 27-21 1 21 rflns collected 17146 11027 9580 no of indep rflns 6046 10115 9088 R(merge) [R(int) = 0.1238] R(int) = 0.0447 R(int) = 0.0267 GOF(F 2 ) a 0.619 1.009 1.121 data / restraints / params 6046/68/482 10115/8/793 9088/6/384 final R indices Rl = 0.0402 R1 = 0.0730 Rl = 0.0466 wr2 = 0.0617 wr2 = 0.1750 wr2 = 0.1037 R indices (all data) b,c R1 = 0.0782 R1 = 0.0994 R1 = 0.0664 wr2 = 0.1431 wr2 = 0.1943 wr2 = 0.1134 a GOF ={Σw( F o 2 - F c 2 ) 2 /(n-m) } 1/2 ; n = number of data; m = number of variables. b R = (Σ F o - F c )/Σ F o. c R w = {Σ[w( Fo 2 F - F c 2 ) 2 ]/Σ[w(F 4 o )] } 1/2.

6 Table S4. Selected Distances (pm) and Angles ( ) of Complexes [(C 5 Me 5 )RuH(dpf)] [(C 5 Me 5 )RuH(dippf)] (2) [(C 5 Me 5 )RuH(dppf)] (1) a distances Ru-H 159(2) 143(4) Ru-P 229.6(2) 227.1(1) 230.7(2) 225.9(1) Ru-Cp* b 194.8 191.0 Fe H 404 409 Fe Ru 446.3(1) 438 c angles P-Ru-P 98.33(6) 97.9(1) torsion Cp-Cp d 27 33 dihedral angle Cp-Cp 5.1 e a From ref. 10a. b Distance to center of (C 5 Me 5 ) ring. c No esd given. d Torsion of the Cp(ferrocene) rings relative to the eclipsed conformation. e Not reported.

7 Table S5. Selected Bond Lengths (pm) and Angles ( ) of Complexes [(Cym)RuCl(dpf)](PF 6 ) [(Cym)RuCl(dppf)](PF 6 ) (3) 16a [(Cym)RuCl(dippf)](PF 6 ) (4) [(Cym)RuCl(depf)](PF 6 ) (5) molecule 1 molecule 2 distances d(ru-p) 235.3(3) 239.7(3) 239.8(2) 233.86(9) 238.1(3) 243.8(3) 244.3(2) 235.06(9) d(ru-cl) 238.7(3) 239.5(3) 238.7(2) 238.66(9) d(ru-cym) a 178.4(9) 179.1 178.4 177.0 d(fe M) 447.0 447.2(2) 443.6(2) 445.6(1) d(p--p) 346.0 357.7 357.6 343.4 d(fe-cp) b 162.7 163.1 164.2 163.7 163.2 164.0 angles Cl-Ru-P 84.06(10) 87.30(7) 88.70(6) 86.39(7) 88.35(9) 81.53(6) 82.15(6) 84.17(7) P-Ru-P 93.70(9) 95.43(6) 95.24(6) 94.18(8) Cp-Cp c 1.82 1.33 (0.8) 0.58(0.49) 2.05(0.11)

8 Cp torsion d b 3.16(1.22) 3.76(0.80) 2.19(0.47) a Distance to center of cymene ligand. b Not reported. c Dihedral angle between ferrocene-cp ligands. d Deviation from the synperiplanar conformation.

9 Table S6. Electrochemical Data a of Complexes [(Cym)MX(dpf)]PF 6, M = Ru or Os and X = Cl or H complex ion E 1/2 (E1/E2) E3 E4 E5 E6 [(C 5 Me 5 )RuH(dppf)] (1) -0.51 0.23(i) [(C 5 Me 5 )RuH(dippf)] (2) -0.78 0.07(i) [(Cym)RuCl(dppf)] + (3) 0.38 1.25-1.74-1.11 0.44 [(Cym)RuCl(dippf)] + (4) 0.27 b -1.62-1.30-0.18 [(Cym)RuCl(depf)] + (5) 0.43 1.47-1.66-0.84-0.11 [(Cym)OsCl(dppf)] + (10) 11b 0.37 1.27-1.91-1.08-0.03 [(Cym)RuH(dppf)] + (6) 0.44 1.19 c c c {(µ-dppf)[(cym)rucl 2 ] 2 } (7) 0.15 0.77 b {(µ-depf)[(cym)rucl 2 ] 2 } (8) 0.26 0.66-2.00 {(µ-dippf)[(cym)rucl 2 ] 2 } (9) 0.24 0.79 b a All potentials in V vs. Cp2 Fe 0/+, v = 100 mv/s, 0.1 M Bu 4 NPF 6 /THF. b Poorly resolved wave. c Not observed.

10 Table S7. EPR Data a of Oxidized Complexes g 1 g 2 g 3 g av b g c [(C 5 Me 5 )RuH(dppf)] + (1 + ) 2.187 2.088 1.990 2.090 0.197 [(C 5 Me 5 )RuH(dippf)] + (2 + ) 2.205 2.091 1.991 2.097 0.214 [(Cym)RuCl(dppf)] 2+ (3 + ) 3.612 1.765 1.765 2.535 1.847 [(Cym)RuCl(dippf)] 2+ (4 + ) 3.682 1.733 1.733 2.554 1.942 [(Cym)OsCl(dppf)] 2+ (10 + ) 11b 3.667 1.730 1.730 2.545 1.937 a From electrochemical oxidation in 0.1 M Bu 4 NPF 6 /THF, measurements at 4 K. b Average g factor g av = [1/3(g 2 2 1 + g 2 + g 2 3 )] 1/2. c g =g 1 - g 3.

11 Table S8. Ru-H Vibrational Frequencies ν (Ru-H) (cm -1 ) from Spectroelectrochemistry a complex ν (Ru II -H) ν (Ru lll -H) [(C 5 Me 5 )RuH(dppf)] o/+ (1 o/+ ) 1944 2000 [(C 5 Me 5 )RuH(dippf)] o/+ (2 o/+ ) 1968 2016 [(Cym)RuH(dppf)] +/2+ (6 o/+ ) 1950 1975 a From solution spectra in 0.1 M Bu 4 NPF 6 /THF.

12 Table S9. Absorption Maxima of Oxidized Forms a complex Solvent λ max b (ε c ) [(C 5 Me 5 )RuH(dppf)] + (1 + ) d THF 895 470sh [(C 5 Me 5 )RuH(dppf)] + (1 + ) e CH 2 Cl 2 912 (486) [(C 5 Me 5 )RuH(dippf)] + (2 + ) d THF 945 450sh 345 [(Cym)RuCl(dppf)] 2+ (3 + ) CH 2 Cl 2 640 (360) 420sh 295 (11000) [(Cym)RuH(dppf)] 2+ (6 + ) CH 2 Cl 2 621 (750) 400sh 298 (21000) a From spectroelectrochemistry in 0.1 M Bu 4 NPF 6 solution. b In nm. c In M -1 cm -1. d Molar extinction not available with sufficient accuracy. e From ref. 10a.

Figure S1. Space-filling model of molecule 2 in the crystal. 13

14 Figure S2. Molecular structure of 4 in the crystal.

15 Figure S3. UV-vis spectroelectrochemical oxidation of 2 at 298 K in 0.1 M Bu 4 NPF 6 /THF. Spectra collected during the potential scan at the first oxidation peak.

16 Scheme S1 Cl Cl Cl Cl Fe PR 2 [(Cym)RuCl 2 ] 2 MeOH RT Ru PR 2 PR 2 Ru PR 2 Fe R = Ph, i Pr, Et R = Ph, i Pr, Et [(Cym)MCl 2 ] 2 M = Ru, Os <AN/MeOH> AgPF 6 /TlNO 3 Fe PR 2 Ru Cl Li[BEt 3 H] <THF> Fe PR 2 Ru H PR 2 PR 2 R = Ph, i Pr, Et R = Ph