THE BALTIC SEA REGION STORAGE, GRID EXCHANGE AND FLEXIBLE ELECTRICITY GENERATION FOR THE TRANSITION TO A 100% RENEWABLE ENERGY SYSTEM

Similar documents
Transcription:

THE BALTIC SEA REGION STORAGE, GRID EXCHANGE AND FLEXIBLE ELECTRICITY GENERATION FOR THE TRANSITION TO A 100% RENEWABLE ENERGY SYSTEM Michael Child, Dmitrii Bogdanov and Christian Breyer Lappeenranta University of Technology (LUT), Finland Neo-Carbon Energy Researchers Seminar, Decemeber 11-13, 2017, Lappeenranta, Finland

Highlights A 100% renewable energy system with energy storage solutions can provide reliable, sustainable energy services before 2050 A 100% renewable energy system is lower in cost than the current system based on nuclear and fossil fuels Interconnections between Baltic Sea Region countries can result in further cost savings A well-designed 100% renewable energy system with energy storage solutions can provide power system stability in all 8760 hours of the year 2

Agenda Motivation Methodology and Data Results Summary 3

Motivation In 2015, the European Commission established the European Energy Union, which highlighted the need for cooperation among member states to create climate friendly energy Several natural regional groupings were identified, including the Baltic Sea Region (BSR) Total estimated installed capacities (net) in 2015 (Area scenario) in the BSR The BSR already shows high shares of RE and high further resource potential The BSR could be amongst the first regions in Europe to achieve 100% RE What could the transition pathway to a 100% RE power system by 2050 look like for the BSR? Total projected installed capacities (net) in 2050 (Area scenario) in the BSR based on 100% RE. 4

Agenda Motivation Methodology and Data Results Summary 5

Methodology Overview Energy transition pathway from 2015 nuclear and fossil based system to 100% RE by 2050 Transition in 5-year time steps No more than 20% growth in absolute RE installed capacity shares compared to total power generation No new nuclear or fossil based thermal power plants installed after 2015 Least cost RE power plant mix replaces phased out nuclear and fossil power plants Energy system modelled to meet increasing electricity demand for each time step Research Objective: Find the least cost energy transition pathway for the BSR. Left: Aggregated load profile for BSR Right: Estimated electricity demand of BSR from 2015 to 2050 Capacity factor Total Electricity Demand (TWh) 2015 418 2020 433 2025 457 2030 481 2035 505 2040 528 2045 559 2050 587 6

Methodology Modelling Objective Definition of an optimally structured energy system based on 100% RE supply optimal set of technologies, best adapted to the availability of the regions resources, optimal mix of capacities for all technologies, optimal operation modes for every element of the energy system, least cost energy supply for the given constraints. Input data historical weather data for: solar irradiation, wind speed and hydro precipitation available sustainable resources for biomass and geothermal energy synthesized power load data gas and water desalination demand efficiency/ yield characteristics of RE plants efficiency of energy conversion processes capex, opex, lifetime for all energy resources min and max capacity limits for all RE resources nodes and interconnections configuration LUT Energy model, key features linear optimization model hourly temporal resolution 0.45 x 0.45 spatial resolution multi-node approach flexibility and expandability 7

Methodology Block diagram of the LUT Energy System Model 8

Methodology Scenario assumptions Regions scenario no interconnections between regions Area scenario regions are connected by HVDC 9

Methodology - Renewable Resource Potentials Resource Units Norway Denmark Sweden Finland Estonia Latvia Lithuania Total Solar PV GW 1457 194 2026 1522 204 290 294 5987 Onshore wind GW 109 14 151 114 15 22 22 447 Hydro dams GW 30 0 17 0 0 0 0 47 Hydro RoR GW 14 0 8 5 0 1 1 29 Waste TWh 1 2 2 3 0.5 0.7 0.8 10 Biomass waste TWh 2 1 70 58 6 4 11 152 Biomass residues TWh 8 15 48 37 4 8 13 133 Biogas TWh 1 28 7 13 0.5 0.5 4 54 Biomass total TWh 12 46 127 111 11 13 29 349 Comment on biomass potential: in a full energy system consideration the total biomass potential is also used for heating purposes and for biofuels in the transport sector 10

Agenda Motivation Methodology and Data Results Summary 11

Results Capacities and generation Regions scenario Area scenario Key insights: RE generation already 60% in 2015 Increasing relevance of electricity Phase out of coal by 2025 and nuclear plants by 2030 Increasing levels of solar PV prosumers and onshore wind Fossil natural gas replaced over time by sustainable biogas, biomethane and SNG Bioenergy to be used in all energy sectors 12

Results Interconnections Regions scenario Area scenario Key insights: Current interconnections are approximately 12 GW Simulation results do not show significant need for expansion (+1 GW between Finland and Estonia) 15% of total generation of 587 TWh is traded to other Baltic regions and not consumed in the region of origin Strengthening of interconnections between Estonia, Latvia and Lithuania may also be needed 13

Results Storage Regions scenario Area scenario Key insights: Storage becomes increasingly relevant over the transition Output from batteries is most significant PHS maintains a minor role Storage in hydro dams will also maintain its highly relevant role Output from TES, A-CAES and PtG is insignificant in Area scenario Cost of storage higher in Regions scenario 14

Results Storage Area scenario Key insights: Batteries and PHS used for short term and diurnal storage Hydro dams and gas storage are used for longer term and seasonal storage PtG, A-CAES and TES play very minor roles in the Area scenario, but are more important in the Regions scenario 15 Michael Child Michael.Child@lut.fi

Results Investments and cost Regions scenario Area scenario Key insights: Decreasing LCOE over time from 60 /MWh in 2015 to 45 /MWh in Area scenario and 48 /MWh for Regions scenario in 2050 Decreasing fuel and CO costs over time Lower LCOE in the Area scenario due to lower generation, storage and curtailment costs which compensate for higher transmission cost Other low carbon technologies (nuclear and fossil CCS) are substantially more expensive and risky 16

Results CO Regions scenario Area scenario Key insights: Decarbonisation can be rapid in the BSR Faster decarbonisation in Area scenario (by 2030) than Regions scenario (by 2045) Lower CO costs in the Area scenario over the transition 17

Agenda Motivation Methodology and Data Results Summary 18

Summary The BSR can achieve 100% RE by 2050, with average LCOE of 49 /MWh over the transition By 2050 LCOE is 45 /MWh, and continuously declining from today onwards The BSR can become the first region in the EU to achieve 100% RE almost complete decarbonisation of power sector by 2035 this can serve as a showcase for other member states Battery storage (possibly in the form of vehicle-to-grid connections of electric vehicles) becomes an important source of system flexibility, especially for prosumers Gas infrastructure maintains a strong position in the energy system Imported NG is gradually replaced by domestic biogas, biomethane and SNG Diverse RE generation and interconnections also contribute to system flexibility and lower overall costs Nuclear and fossil fuel plants can be allowed to live out their expected lifetimes No risk of stranded investments unless societal goals change The results present a least cost transition path for the BSR to meet future power demands through a 100% RE system 19

@NeoCarbonEnergy www.neocarbonenergy.fi Thank you for your attention! NEO-CARBON Energy project is one of the Tekes strategy research openings and the project is carried out in cooperation with Technical Research Centre of Finland VTT Ltd, Lappeenranta University of Technology (LUT) and University of Turku, Finland Futures Research Centre.

FURTHER INFORMATION

Results 100% RES is possible 2015 Main insights High losses of the current system dimish for 100% RES Fossil-nuclear substituted mainly by wind, solar PV, bioenergy 2050 Regions scenario 22

Barriers and Solutions to 100% RES Barriers Technological barriers: Lack of energy storage solutions Inefficiency Possible solutions Lessons to be learned from solutions available in Germany, R&D allocated to storage solutions, electrification of transport and use of EV batteries may offer significant potential for storage Reduce transmission and distribution losses, improve access for small-scale producers, reduce inefficiencies in production as RE generation replaces older nuclear and fossil plants Economical barriers: Competitiveness A need for new kinds of electricity markets and rules Inefficient markets for storage systems Support and high subsidies for conventional energy system Current dominance by large monopolies and oligopolies Solar PV has already reached grid parity in some market segments and will become more competitive on in the future Storage solutions are available at least in Germany a need to import solutions Ideally there should be no support systems in the long run distorting markets Subsidies for harmful emissions of conventional energy production need to be eliminated Feed-in tariff, net metering and privileged grid access in the begining for renewables Creating a fair, low risk investment landscape is essential to ensure future growth 23

Barriers and Solutions to 100% RES Barriers Institutional and political barriers: Fossil fuels lobbying Vested interests Path dependency and technological lock-in Incumbent electricity companies Lack of support policy Lack of powerful advocacy coalitions Failure to overcome existing subsidies Misleading energy scenarios (e.g. Nordic Energy Technology Perspectives 2016) Behavioral barriers: General attitudes Psychological resistance Political will Possible solutions No new investments in nuclear or fossil plants Maintain and expand gas infrastructure Only need to switch fuel from NG to biogas A possibility to build a more distributed energy regime New business models arising, but more needed Incentives for wide range of efficiency improvements Some support policy for renewables and storage seems to be needed in the beginning (to balance subsidies for fossil-nuclear) Feed-in tariff law should be based on German model and nontendering models (more players and lower cost of capital) Promote more solar, wind and bioenergy energy advocacy Develop more sustainable and resilient energy scenarios Promote greater public awareness of renewable energy and energy efficiency Provide more information and practical examples of successful installations Maintain strong political will for change, fairness, sustainability and energy independence Further develop education and training programs at universities and vocational schools 24

Data Power Plant Capacities Technical and Financial Assumptions Capex variation based on learning curves Least cost power plant capacities based on Cost Efficiency of generation and storage Power to energy ratio of storage Available resource Wind onshore has up to 3691 full load hours (FLH) PV single-axis has up to 1288 FLH WACC is set to 7% for all years Variation in capex from 2015 2050 for all power plant components utilised by model. Detailed capex, fixed opex, efficiency and power to energy ratio numbers are presented at end of slide set 25

Data Area information Technology 2015 2020 2025 2030 2035 2040 2045 2050 Area (km²) 1 330 453 Population (Millions) 32.324 32.984 33.598 34.124 34.540 34.903 35.279 35.687 Electricity demand (TWh) 418.9 432.7 456.6 480.5 505.1 527.9 558.7 587.3 Residential electricity price ( /kwh) Norway 0.159 0.184 0.214 0.248 0.266 0.280 0.280 0.293 Denmark 0.264 0.278 0.292 0.306 0.322 0.339 0.339 0.356 Sweden 0.167 0.194 0.224 0.260 0.273 0.287 0.287 0.302 Finland 0.129 0.150 0.174 0.202 0.234 0.261 0.261 0.274 Baltics 0.108 0.134 0.159 0.187 0.218 0.251 0.251 0.270 Commercial electricity price ( /kwh) Norway 0.118 0.141 0.170 0.198 0.219 0.239 0.262 0.285 Denmark 0.189 0.208 0.226 0.246 0.269 0.295 0.312 0.328 Sweden 0.118 0.140 0.168 0.198 0.216 0.235 0.257 0.282 Finland 0.092 0.110 0.131 0.157 0.186 0.210 0.230 0.252 Baltics 0.089 0.113 0.138 0.166 0.194 0.225 0.250 0.269 Industrial electricity price ( /kwh) Norway 0.077 0.098 0.125 0.148 0.172 0.199 0.231 0.262 Denmark 0.113 0.139 0.161 0.186 0.216 0.251 0.269 0.282 Sweden 0.068 0.087 0.111 0.136 0.158 0.183 0.212 0.246 Finland 0.054 0.069 0.088 0.113 0.138 0.160 0.186 0.215 Baltics 0.070 0.091 0.117 0.145 0.170 0.199 0.231 0.253 26

Data Lower and Upper Capacity Limits Upper and Lower Capacity Limits - Renewables (inflexible) PV optimal tilt PV 1-axis tracking Wind Onshore Wind Offshore Run-of- River Hydro Hydro Dam CSP Region / Unit MW MW MW MW MW MW MW Norway 13-1457109 0-1457109 1280-108797 2-100000 9191-13787 20116-30174 0-2914218 Denmark 655-193923 0-193923 3993-14480 1271-100000 9-13 0-0 0-387846 Sweden 72-2026327 0-2026327 7651-151299 212-100000 5336-8004 11496-17244 0-4052655 Finland 19-1521652 0-1521652 1151-113617 226-100000 3434-5152 0-0 0-3043305 Baltic 76-788026 0-788026 613-58839 0-100000 1119-1678 70-105 0-1576053 Upper and Lower Capacity Limits - Renewables (flexible) Biogas Biomass Waste Geothermal Ocean Region / Unit MW MW MW MW MW Norway 15-NL 151-NL 67-NL 0-NL 0-NL* Denmark 83-NL 1395-NL 249-NL 0-NL 0-NL* Sweden 46-NL 3788-NL 1440-NL 0-NL 0-NL* Finland 84-NL 2578-NL 1104-NL 0-NL 0-NL* Baltic 7-NL 157-NL 37-NL 0-NL 0-NL* NL No upper limit specified for technologies, but resource availability will limit capacity development * Not utilized for BSR 27

Data Lower and Upper Capacity Limits Upper and Lower Capacity Limits Non-renewables Coal Oil Natural gas Nuclear Region MW MW MW MW Norway 0-NL 0-NL 1235-NL 0-NL Denmark 3615-NL 818-NL 2626-NL 0-NL Sweden 492-NL 3229-NL 1183-NL 9470-NL Finland 3497-NL 1652-NL 1789-NL 2752-NL Baltic 0-NL 2899-NL 4361-NL 0-NL Upper and Lower Capacity Limits Storage Pumped hydro storage Adiabatic Compressed Air Energy Storage Batteries Region MWh MWh MWh Norway 10754-21509 0-3832901 0-NL Denmark 0-0 0-495137 0-NL Sweden 668-1336 0-7970045 0-NL Finland 0-0 0-5472468 0-NL Baltic 9000-18000 0-136228 0-NL NL No upper limit specified 28

Cost assumptions Technology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050 Steam turbine (CSP) 95 % Capex /kwe 760 740 720 700 670 640 615 600 Opex fixed /kwe 15.2 14.8 14.4 14 13.4 12.8 12.3 12 Lifetime Years 25 25 25 25 30 30 30 30 Efficiency % 42 % 42 % 42 % 43 % 44 % 44 % 45 % 45 % Water electrolysis Capex /kw_h 800 685 500 363 325 296 267 248 Opex fixed /kw_h 32 27 20 12.7 11.4 10.4 9.4 8.7 Opex variable /kwh_h 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 Lifetime Years 30 30 30 30 30 30 30 30 Efficiency % 84% 84% 84% 84% 84% 84% 84% 84% Hot Heat Burner Capex /kwe 100 100 100 100 100 100 100 100 Opex fixed /kwe 2 2 2 2 2 2 2 2 Lifetime Years 30 30 30 30 30 30 30 30 Efficiency % 95 % 95 % 95 % 95 % 95 % 95 % 95 % 95 % 29

Cost assumptions Technology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050 CAES Capex /kwe 900 900 900 900 900 900 900 900 Opex fixed /kwe 18 18 18 18 18 18 18 18 Lifetime Years 25 25 25 25 25 25 25 25 Efficiency % 70 % 70 % 70 % 70 % 70 % 70 % 70 % 70 % CCGT PP Capex /kwe 775 775 775 775 775 775 775 775 Opex fixed /kwe 19.375 19.375 19.375 19.375 19.375 19.375 19.375 19.375 Opex variable /kwhe 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 Lifetime Years 35 35 35 35 35 35 35 35 Efficiency % 58 % 58 % 58 % 58 % 59 % 60 % 60 % 60 % OCGT PP Capex /kwe 475 475 475 475 475 475 475 475 Opex fixed /kwe 9.5 9.5 9.5 14.25 14.25 14.25 14.25 14.25 Opex variable /kwhe 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 Lifetime Years 35 35 35 35 35 35 35 35 Efficiency % 43 % 43 % 43 % 43 % 43 % 43 % 43 % 43 % 30

Cost assumptions Technology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050 Oil PP Capex /kwe 1500 1500 1500 1500 1500 1500 1500 1500 Opex fixed /kwe 30 30 30 30 30 30 30 30 Lifetime Years 30 30 30 30 30 30 30 30 Efficiency % 38 % 38 % 38 % 38 % 38 % 38 % 38 % 38 % Coal PP Capex /kwe 1500 1500 1500 1500 1500 1500 1500 1500 Opex fixed /kwe 20 20 20 20 20 20 20 20 Opex variable /kwhe 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Lifetime Years 40 40 40 40 40 40 40 40 Efficiency % 39 % 39 % 39 % 39 % 39 % 39 % 39 % 39 % Nuclear PP Capex /kwe 6210 6003 6003 5658 5658 5244 5244 5175 Opex fixed /kwe 162 157 157 137 137 116 116 109 Opex variable /kwhe 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 Lifetime Years 40 40 40 40 40 40 40 40 Efficiency % 37 % 37 % 37 % 38 % 38 % 38 % 38 % 38 % MSW PP Capex /kwe 5940 5630 5440 5240 5030 4870 4690 4540 Opex fixed /kwe 267.3 253.35 244.8 235.8 226.35 219.15 211.05 204.3 Opex variable /kwhe 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 Lifetime Years 30 30 30 30 30 30 30 30 Efficiency % 34 % 34 % 34 % 34 % 34 % 34 % 34 % 34 % 31

Cost assumptions Technology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050 Biomass PP Capex /kwe 2755 2620 2475 2330 2195 2060 1945 1830 Opex fixed /kwe 55.4 47.2 44.6 41.9 39.5 37.1 35 32.9 Opex variable /kwhe 0.0037 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 Lifetime Years 25 25 25 25 25 25 25 25 Efficiency % 36 % 37 % 40 % 43 % 45 % 47 % 48 % 48 % Methanation Capex /kw_sng 492 421 310 278 247 226 204 190 Opex fixed /kw_sng 19.7 16.8 12.4 11.1 9.9 9 8.2 7.6 Opex variable /kwh_sng 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 Lifetime Years 30 30 30 30 30 30 30 30 Efficiency % 77 % 77 % 77 % 77 % 77 % 77 % 77 % 77 % 32

Cost assumptions Technology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050 BHKW Biogas Capex /kwe 503 429 400 370 340 326 311 296 Opex fixed /kwe 20.1 17.2 16.0 14.8 13.6 13.0 12.4 11.8 Opex variable /kwhe 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Lifetime Years 30 30 30 30 30 30 30 30 Efficiency % 33 % 34 % 37 % 40 % 42 % 44 % 44 % 45 % CO direct air capture Concentrated Solar Receiver Capex /t_co*a 480 411 301 228 201 183 165 154 Opex fixed /t_co*a 19.2 16.4 12.0 9.1 8.0 7.3 6.6 6.1 Opex variable /t_co 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 Lifetime Years 30 30 30 30 30 30 30 30 Capex /kwth 547.8 427.8 369.2 326.9 304 283.6 265.4 249.5 Opex fixed /kwth 12.6 9.8 8.5 7.5 7 6.5 6.1 5.7 Lifetime Years 25 25 25 25 25 25 25 25 33

Cost assumptions Technology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050 Biogas Digester Capex /kwe 771 731 706 680 653 632 609 589 Opex fixed /kwe 30.8 29.2 28.2 27.2 26.1 25.3 24.3 23.6 Lifetime Years 20 20 20 20 25 25 25 25 Efficiency % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % Biogas Upgrade Capex /kwe 340 290 270 250 230 220 210 200 Opex fixed /kwe 27.2 23.2 21.6 20 18.4 17.6 16.8 16 Lifetime Years 20 20 20 20 20 20 20 20 Efficiency % 98 % 98 % 98 % 98 % 98 % 98 % 98 % 98 % Geothermal PP Capex /kwe 5250 4970 4720 4470 4245 4020 3815 3610 Opex fixed /kwe 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 Lifetime Years 40 40 40 40 40 40 40 40 Efficiency % 24 % 24 % 24 % 24 % 24 % 24 % 24 % 24 % 34

Cost assumptions Technology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050 Solar PV 0-axis Capex /kwe 1000 580 466 390 337 300 270 246 Opex fixed /kwe 15 13.2 11.8 10.6 9.6 8.8 8.0 7.4 Lifetime Years 30 30 35 35 35 40 40 40 Solar PV 1-axis tracking Solar PV Rooftop - Residential Solar PV Rooftop - Commercial Solar PV Rooftop - Industrial Capex /kwe 1150 638 513 429 371 330 297 271 Opex fixed /kwe 17.3 15.0 13.0 12.0 11.0 10.0 9.0 8.0 Lifetime Years 30 30 35 35 35 40 40 40 Capex /kwe 1360 1169 966 826 725 650 589 537 Opex fixed /kwe 20 17,6 15,7 14,2 12,8 11,7 10,7 9,8 Lifetime Years 30 30 35 35 35 40 40 40 Capex /kwe 1360 907 737 623 542 484 437 397 Opex fixed /kwe 20 17,6 15,7 14,2 12,8 11,7 10,7 9,8 Lifetime Years 30 30 35 35 35 40 40 40 Capex /kwe 1360 682 548 459 397 353 318 289 Opex fixed /kwe 20 17,6 15,7 14,2 12,8 11,7 10,7 9,8 Lifetime Years 30 30 35 35 35 40 40 40 35

Cost assumptions Technology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050 Wind Onshore Capex /kwe 1250 1150 1060 1000 965 940 915 900 Opex fixed /kwe 25 23 21 20 19 19 18 18 Lifetime Years 25 25 25 25 25 25 25 25 Wind Offshore Capex /kwe 3220 2880 2700 2580 2460 2380 2320 2280 Opex fixed /kwe 113 92 84 77 71 67 58 52 Lifetime Years 20 25 25 25 25 25 25 25 Hydropower Dam water influx Hydropower run-of-the-river Capex /kwe 1650 1650 1650 1650 1650 1650 1650 1650 Opex fixed /kwe 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 Opex variable /kwhe 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 Lifetime Years 50 50 50 50 50 50 50 50 Efficiency % 90 % 90 % 90 % 90 % 90 % 90 % 90 % 90 % Capex /kwe 2560 2560 2560 2560 2560 2560 2560 2560 Opex fixed /kwe 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 Opex variable /kwhe 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 Lifetime Years 50 50 50 50 50 50 50 50 36

Cost assumptions - Storage Technology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050 Li-ion stationary Capex /kwhe 600 300 200 150 120 100 85 75 batteries Opex fixed /kwhe 24 9 5 3.75 3 2.5 2.125 1.875 Opex variable /kwhe 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 Lifetime Years 15 20 20 20 20 20 20 20 Efficiency in % 96 % 96 % 96 % 96 % 96 % 96 % 96 % 96 % Efficiency out % 96 % 96 % 96 % 96 % 96 % 96 % 96 % 96 % Pumped Hydro storage Adiabatic Compressed Air Energy Storage Energy/Power h 6 6 6 6 6 6 6 6 Capex /kwhe 70 70 70 70 70 70 70 70 Opex fixed /kwhe 11 11 11 11 11 11 11 11 Opex variable /kwhe 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 Lifetime Years 50 50 50 50 50 50 50 50 Efficiency in % 92 % 92 % 92 % 92 % 92 % 92 % 92 % 92 % Efficiency out % 92 % 92 % 92 % 92 % 92 % 92 % 92 % 92 % Energy/Power h 8 8 8 8 8 8 8 8 Capex /kwhe 35.0 35.0 33.0 31.1 30.4 29.8 28.0 26.3 Opex fixed /kwhe 0.46 0.46 0.43 0.40 0.40 0.39 0.36 0.34 Opex variable /kwhe 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 Lifetime Years 40 55 55 55 55 55 55 55 Efficiency in % 84 % 84 % 84 % 84 % 84 % 84 % 84 % 84 % Efficiency out % 84 % 84 % 84 % 84 % 84 % 84 % 84 % 84 % Self-discharge % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % Energy/Power h 100 100 100 100 100 100 100 100 37

Cost assumptions - Storage Technology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050 Compressed Air Storage Capex /kwhe 5 5 5 5 5 5 5 5 Opex fixed /kwhe 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 Lifetime Years 50 50 50 50 50 50 50 50 Energy/Power h 24 24 24 24 24 24 24 24 Gas storage Capex /kwhgas 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Opex fixed /kwhgas 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Lifetime Years 50 50 50 50 50 50 50 50 Technology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050 Methane Storage Capex /kwhgas 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Opex fixed /kwhgas 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Lifetime Years 50 50 50 50 50 50 50 50 Liquid Fuel Storage Capex /kwhth 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Opex fixed /kwhth 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 Lifetime Years 30 30 30 30 30 30 30 30 Solid Fuel Storage Capex /kwhth 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Opex fixed /kwhth 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 Lifetime Years 30 30 30 30 30 30 30 30 38

Cost assumptions - Fuels Fuel Unit 2015 2020 2025 2030 2035 2040 2045 2050 Crude oil USD/bbl 97 77 87 97 96 95 95 95 Crude oil /MWh 52.5 35.2 39.8 44.4 43.9 43.5 43.5 43.5 Natural Gas /MWh 21.8 22.2 30 32.7 36.1 40.2 40.2 40.2 Biomethane /MWh 72 72 72 72 72 72 72 72 Coal - Hard /MWh 7.7 7.7 8.4 9.2 10.2 11.1 11.1 11.1 Coal - Lignite /MWh 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 Uranium /MWh 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 Solid waste - Biomass /MWh 0 0 0 0 0 0 0 0 CO2 /ton 9 28 52 61 68 75 100 150 Fuel Unit 2015 2020 2025 2030 2035 2040 2045 2050 Solid waste - Norway /MWh 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 MSW Denmark /MWh 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 Sweden /MWh 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 Finland /MWh 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 Baltics /MWh 17.5 19.7 20.3 20.3 20.3 20.3 20.3 20.3 Solid residues Norway /MWh 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 Denmark /MWh 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 Sweden /MWh 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 Finland /MWh 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 Baltics /MWh 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 39