Modification of Green Calcium Oxide and Characteristics for Clean Energy Catalysts

Similar documents
The Combination of Calcium Oxide and Cu/ZrO 2 Catalyst and their Selective Products for CO 2 Hydrogenation

Available online at ScienceDirect. Procedia Chemistry 9 (2014 ) 53 61

Catalytic Combustion of Methane over MnO x /ZrO 2 -Al 2 O 3 Catalysts

SHAPE EFFECT OF CERIA ON THE ACTIVITY OF Au/CeO 2 FOR PREFERENTIAL CO OXIDATION

Influence of preparation method on the performance of Mn Ce O catalysts

Effect of zinc oxide on the properties and Fischer-Tropsch synthesis activities of the Co/ZrO 2 catalyst prepared by flame spray pyrolysis

ScienceDirect. Synthesis of Co 3 O 4 micro-needles on the cell walls and their effect on the sound absorption behavior of open cell Al foam

Catalytic gasification of biomass for hydrogen production with in-situ CO 2 absorption using novel bi-functional Ni-Mg-Al-CaO catalyst

Effect of Preparation Conditions on the Performance of CO Preferential Methanation Catalyst

Hydrotreating of Free Fatty Acid and Bio-Oil Model Compounds: Effect of Catalyst Support

The effect of temperature and initial methane concentration on carbon dioxide methanation on Ni based catalysts

Sustainable Development and Eco-friendly Waste Disposal Technology for the Local Community

The investigation of Ru based Fischer Tropsch catalyst for the production of synthetic liquid fuels derived from bio-syngas

Oxygen Formula: O 2 Bonding: covalent Appearance: colourless gas. Oxygen is one of the two main gases in our atmosphere, the other being nitrogen.

Reforming of model gasification tar compounds

Technology, China 3 SCG Chemicals Co.,Ltd., Bangkok, Thailand

Investigation of oil palm wastes pyrolysis by thermogravimetric analyzer for potential biofuel production

Promoter Effect on the Physico-Chemical Properties of Cobalt Based Catalyst for CO Hydrogenation

ScienceDirect. Characterization of sugarcane bagasse ash waste for Its Use in Ceramic Floor Tile

Supporting Information

Performance of A Membrane-Less Air-Cathode Single Chamber Microbial Fuel Cell in Electricity Generation from Distillery Wastewater

Summary Chapter Chapter Chapter

STUDY OF CuO-BASED MATERIALS FOR Ca/Cu REFORMING PROCESS

Dry Methane Reforming Performance of Ni-based Catalyst Coated onto Stainless Steel Substrate

Hydrogen Production by Steam Reforming of Glycerol using Magnesium Promoted Nickel, Cobalt Alumina Catalysts

Part 1: study on coating materials

Aspen plus simulation of CO 2 removal from coal and gas fired power plants

Effect of templates on catalytic activity of ordered mesoporous ceria for CO oxidation

REDUCTION OF CO 2 EMISSION TO METHANE USING HYDROGENATION WITH NICKEL (110) SURFACE CATALYST

Thermogravimetric Studies of Oil Palm Empty Fruit Bunch and Palm Kernel Shell: TG/DTG Analysis and Modeling

Effect of Nano-Sized Fe 2 O 3 on Microstructure and Hydration Resistance of MgO-CaO Refractories

The Study on Flocculation Treating Wastewater from Domestic Animals and Poultry Breeding

Enhancing Biogas Production from Padauk Angsana Leave and Wastewater Feedstock through Alkaline and Enzyme Pretreatment

Influence of TiC on the Viscosity of CaO MgO Al 2 O 3 SiO 2 TiC Suspension System

Approach of using Corn Residue as Alternative Energy Source for Power Production: A Case Study of the Northern Plain Area of Thailand

Comparison Thermal and Hardness of CaO-MgO-Al2O3-SiO2-B2O5 Glass from Different Sources of Kaolin Minerals as Main Raw Mineral

Our country, our future S2 CHEMISTRY DURATION: 2 HOUR

Synthesis and Characterization of Bioi/TiO2 Photocatalysts for Waste Water Treatment

Au nanoparticles embedded into the inner wall of TiO 2 hollow spheres as nanoreactor with superb thermal stability

Study of a Ru-La/ZrO 2 Catalyst Prepared by Precipitation Method for Selective Hydrogenation of Benzene to Cyclohexene

Ambient Temperature Aqueous Synthesis of Ultrasmall Copper Doped Ceria. Nanocrystals for the Water Gas Shift and Carbon Monoxide Oxidation Reactions

PREPARATION OF NEODYMIUM HYDROXIDE NANORODS AND NEODYMIUM OXIDE NANORODS BY A HYDROTHERMAL METHOD

A new 3D mesoporous carbon replicated from commercial silica. as a catalyst support for direct conversion of cellulose into.

Synthesis of Nanostructured Silicon Carbide Spheres from Mesoporous C-SiO 2 Nanocomposites

Available online at ScienceDirect. Procedia Engineering 79 (2014 )

Development of Ceria-Zirconia Solid Solutions and Future Trends

Topic: Gases in the Atmosphere

Study on catalytic pyrolysis and efficient gasification of cellulose as biomass samples

Investigators: R. E. Mitchell, Associate Professor, Mechanical Engineering Department; P. A. Campbell and L. Ma, Graduate Researchers

Theoretical Investigation on the Partial Load Feedwater Heating System with Thermal Vapor Compressor in a Coal-fired Power Unit

Opportunities of Power-to-Gas technology

SYNTHESIS OF NITROGEN-CONTAINING CARBON NANOFIBERS BY ETHYLENE/AMMONIA DECOMPOSITION. Introduction

Cu- and Ag-Modified Cerium Oxide Catalysts for Methane Oxidation

CO 2 adsorption using CaO and its potential integration with hydrogen production from biomass gasification

Topic Reacting masses Level GCSE Outcomes 1. To calculate reacting masses 2. To set out mole calculations in a grid format

Supporting Information (SI)

Supporting Information

Supporting information

Hydrogen Storage Characteristics using Redox of M/Fe 2 O 3 (M=Rh, Ce and Zr) mixed oxides

Effect of nanocrystallite size of TiO 2 in Co/TiO 2 and Co/TiO 2 -Ru catalysts on methanation

Preparation, Characterization and Optimization of High Surface Area Ce-La-Cu Ternary Oxide Nanoparticles

Zirconia Modification on Nanocrystalline Titania- Supported Cobalt Catalysts for Methanation

An application of Nanoparticles. Application of ZrO 2 as a Catalyst and a Catalyst Support

Stability of Gold-Ceria Catalysts in the Water-gas Shift and Selective CO Oxidation Reactions

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12

Comparison between the article and script of thesis

A general and facile strategy for precisely controlling the crystal size. of monodispersed metal-organic frameworks via separating the

Biomethane production via anaerobic digestion and biomass gasification

Gasification of bamboo carbon with molten alkali carbonates

Available online at ScienceDirect. Energy Procedia 69 (2015 )

THE CATALYTIC INFLUENCE OF THE REACTOR MATERIAL ON THE REFORMING OF METHANOL IN SUPERCRITICAL WATER

CuO-based Al 2 O 3 -, MgAl 2 O 4 - or CeO 2 -supported oxygen carriers for chemical looping with oxygen uncoupling: synthesis and performance

Electronic Supplementary Information

MASTER'S THESIS. Synthesis of rare-earth oxide mesoporous structures by combustion synthesis

Performance Improvement of Nano-Catalysts by Promoter-Induced Defects in the Support Material: Methanol Synthesis over Cu/ZnO:Al

Pyrometallurgy of iron is still the most important pyrometallurgical process economically.

Supporting Information. Fabricating carbon catalysts via a thermal. method

Synthesis of DME via Catalytic Conversion of Biomass

Dielectric properties of LCTO ceramics with various sintering temperature. Chompoonuch Warangkanagool *

Energy consumption and GHG emission for regional aluminum industry: A case study of Henan province, China

Supporting Information

Supplementary Information

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas

Thermal-chemical treatment of solid waste mixtures

Study of Calcination-Carbonation of Calcium Carbonate in Different Fluidizing Mediums for Chemical Looping Gasification in Circulating Fluidized Beds

Supporting Online Material for

GENERATION OF H 2 GAS FROM SOLID BASED POLYMER WASTES MECHANICALLY MILLED WITH Ni AND Ca

LEACHING OF ILMENITE AND PRE-OXIDIZED ILMENITE IN HYDROCHLORIC ACID TO OBTAIN HIGH GRADE TITANIUM DIOXIDE R. Vásquez, A. Molina

Development of Tar Removal Technologies for Biomass Gasification using the By-products

Simultaneously boosting the mass and fixed-carbon yields of charcoal from forest residue via atmospheric carbonization

Flue Gas Desulfurization by Limestone and Hydrated Lime Slurries

Fabrication and characterization of photocatalyst coatings by heat treatment in carbon powder for TiC coatings

Analysis of the Promoter-Catalyst interaction between Mn and Rh by Transmission Electron Microscopy

Hydrogen Generation From Coal Using Novel Chemical Looping Process with CuO and CaO as Solid Carrier

1. How many moles of calcium chloride are there in a sample containing x particles? l

C1 The Essential Questions

Novel concept of rechargeable battery using iron oxide nanorods. anode and nickel hydroxide cathode in aqueous electrolyte

CHAPTER 8 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

Supporting Information. Methanol Microreformer

Structural, Optical, Morphological and Elemental Analysis on Sol-gel Synthesis of Ni Doped TiO2 Nanocrystallites

Transcription:

Available online at www.sciencedirect.com ScienceDirect Energy Procedia 79 (2015 ) 685 690 2015 International Conference on Alternative Energy in Developing Countries and Emerging Economies Modification of Green Calcium Oxide and Characteristics for Clean Energy Catalysts Wilasinee Wisaijorn a, Piyasan Praserthdam b, Suttichai Assabumrungrat b, Soipatta Soisuwan a,* a Department of Chemical Engineering, Faculty of Engineering, Burapha University 169 Long-Hard Bangsean Road, Seansuk Sub-District, Muang District, Chonburi Province, 20131, Thailand b Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan District, Bangkok,10330, Thailand Abstract The additional calcium oxide was designated at 10% by wt in copper-based catalysts. Prior to the catalyst preparation, calcium oxide was prepared by firing natural calcium carbonate (calcite structure) at 850 o C according to the decomposition temperature obtained from thermogravimetric analysis. The modification of basic strength was accomplished by additional Ti(OC 2 H 5 ) 4 or KMnO 4 at 1% by wt to obtain CaO_Ti and CaO_KMn, and then they were calcinated at same temperature (850 o C). CO 2 Temperature Programmed Desorption (CO 2 -TPD) was carried out to investigate the ability to adsorb CO 2 molecules representing the number of basic sites for all calcium oxide. The copper-based catalysts were prepared with 10% weight CaO or modified CaO. The H 2 temperature programmed reduction (H 2 -TPR) was carried out by thermogravimetric analysis under inert gas atmosphere in comparison with the result obtained under 5% H 2 in inert. Addition of calcium oxide into copper-based catalyst gave significant effect on the reduction behaviour. 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 2015 The Authors. Published by Elsevier Ltd. (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review Peer-review under under responsibility responsibility of the of Organizing the Organizing Committee Committee of 2015 AEDCEE of 2015 AEDCEE. Keywords: methanol synthesis, modified CaO, copper-based catalysts, CO 2-TPD and H 2-TPR * Corresponding author. Tel.: +6-682-256-5522; fax: + 6-638-745-806. E-mail address:soipatta@buu.ac.th. 1876-6102 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the Organizing Committee of 2015 AEDCEE doi:10.1016/j.egypro.2015.11.557

686 Wilasinee Wisaijorn et al. / Energy Procedia 79 ( 2015 ) 685 690 1. Introduction Carbon dioxide is the most well known green house gas effecting on global environment more seriously. The increment of carbon dioxide was mostly from fossil fuel combustion in transportations, electrical power plants and industries which are essentially important for human demand. Although so many energy policies have been launched, the elimination of energy consumption seems ineffective due to highly increasing population. The utilization of carbon dioxide has been recently emerged as interesting topics as it is a chemical source of carbon which can turn to beneficial chemicals via catalytic reactions. The carbon dioxide can directly change to methanol and then dimethylether (DME) or dimethylcarbonate (DMC) which is a starting material for chemical industries. The catalytic material which has been widely used to synthesize methanol is CuO-ZnO catalyst. Up to date, effective condition to produce 98% methanol conversion in industries is operated at high pressure (>atmospheric pressure) and low temperature. Several researches revealed basic surface of the catalyst favoring methanol selection, however methanol synthesis carried out over the catalysts modified by lanthanum [1], fluorine [2], zirconium [3] to obtain different basic species was clearly dependent on basic strength [4]. To insist these results, calcium oxide was thus chosen as additive to copper based catalysts in our experiment since it possesses high basic strength. The carbon dioxide temperature programmed desorption and H 2 - temperature programmed reduction of copper-based catalyst were carried out to forecast catalytic activity of CO 2 hydrogenation or methanol synthesis. 2. Experiment 2.1. Materials Preparation Calcite calcium carbonate (CaCO 3 ) of oyster shells was employed as starting material to produce calcium oxide and modified calcium oxide. The starting material was mechanically crushed and sieved to equivalent less than 350 mesh size, and then calcination under flowing oxygen 30 ml/min ramping to 850 o C for 2 hours. The ramping rate was 5 o C/min. Two precursors, i.e. potassium permanganate (KMnO 4 ) or titanium ethoxide (Ti(OC 2 H 5 ) 4 ), were designated to obtain 1% by weight content of Ti or KMn in the resulting calcium oxide. The KMn precursor was dissolved in distilled water, whereas Ti precursor was sonicated randomly in ethanol to attain suspension of Ti-based fine particles. The resulting solution/suspension was slightly impregnated into calcium carbonate and then dried at 100 o C and calcination at 850 o C for 2 hours. The names of these resulting materials are CaO, CaO_KMn and CaO_Ti, respectively. Additional CaO or modified CaO to copper-based catalyst support (zirconium dioxide, Tosoh ZrO 2 ) was at 10% by weight in physically mixing support of Tosoh ZrO 2 and as-prepared calcium oxide. The copper-based catalysts were prepared by incipient wetness impregnation at designated 10% copper content in the catalysts. The nomenclatures of these catalysts are Cu/ZrO 2 /CaO, Cu/ZrO 2 /CaO_KMn and Cu/ZrO 2 /CaO_Ti. 2.2. Materials Characterization The as-prepared calcium oxide materials were characterized by means of CO 2 -Temperature Programmed Desorption (CO 2 -TPD). We aim to test the catalysts for CO 2 hydrogenation, thus the copper-based catalysts were characterized by means of H 2 Temperature Programmed Reduction (H 2 - TPR) to describe the reduction behavior. The H 2 -TPR profiles were obtained by Thermogravimetric Analysis (TGA). 10 mg of the catalysts was placed on alumina crucible in the TGA furnace. Testing 10 mg catalyst was carried out under N 2 atmosphere and the equivalent testing was carried out under mixture

Wilasinee Wisaijorn et al. / Energy Procedia 79 ( 2015 ) 685 690 687 of hydrogen in nitrogen (5% H 2 in N 2 ) as mentioned elsewhere [5]. The Furnace temperature was ramped to 800 o C with heating rate 10 o C/min. The decomposition rate under both atmospheres was calculated as following. Where w i is initial weight of the catalyst 10 mg and dw/dt is the change of catalyst weight at an interval. The rate of hydrogen consumption tends to apparently correspond to weight decomposition rate while no significant loss of weight under nitrogen atmosphere. The consumption of hydrogen used to reduce the catalysts can be calculated by a net different area of weight decomposition between inert atmosphere and %5 hydrogen in flowing inert gas related to the area corresponding to amount of hydrogen consumed in reduction of 10-mg copper (II) oxide. 3. Results and Discussion The carbon dioxide temperature programmed desorption profiles were performed in Figure 1. The amount of carbon dioxide adsorbed on calcium dioxide represents the number of basic sites that can chemically bond to form carbonate species. The amount of carbon dioxide desorption increases while compared with our previous results [6]. This is probably due to prolonging the CO 2 saturation for 6 hours. The desorption temperature of carbon dioxide of all as-prepared calcium oxide samples were found at the position higher than 400 o C, suggesting the high strength of carbon dioxide adsorption sites. The calcium oxide possesses two desorption peaks of carbon dioxide locating at 460 o C and 680 o C, similarly Ti- and KMn-modified calcium oxide exhibits two peak of carbon dioxide desorption. However, modification of calcium oxide is likely to diminish the amount of carbon dioxide adsorption sites at high temperature as reported in Table 1, thus modified calcium oxide gives the amount of carbon dioxide adsorption apparently lower than that of pure calcium oxide. The copper-based catalysts for methanol synthesis via carbon dioxide hydrogenation were prepared with calcium oxide additives. The zirconium oxide was employed as the catalyst support because the high chemical stability can cause good dispersion of active metal sites. The amount of carbon dioxide adsorption is 3.6 mmol/g, which is the lowest. The strength of these base sites located in the low-to-medium region. The adsorption of carbon dioxide was carried out over copper-based catalyst surface in comparison with zirconia support as carbon dioxide desorption profiles shown in Figure 2. The all copper-based catalysts are composed of small carbon dioxide desorption peak under 200 o C. This is possibly owing to intrinsic property of zirconia which possessed two carbon dioxide adsorption peaks approximately at 100 and 400 o C, respectively. Third peak of carbon dioxide desorption over Cu/ZrO 2 located around 600 o C was attributed to the ability to absorb carbon dioxide of copper-species sites in good agreement of the increase of carbon dioxide desorption sites of all copper-based catalysts comparing with those of ZrO 2, CaO, CaO_Ti and CaO_KMn as reported in Table 2. Wan Isahak W. N. R. et al revealed the formation of copper carbonate after the adsorption of CO 2 heated up until 573 K over Cu 2 O and CuO [7]. The results clearly emphasize that the catalysts composed of calcium oxide additive gave carbon dioxide desorption at high temperature similarly to the desorption sites consisting in CaO, CaO_Ti and CaO_KMn. The significant effect of calcium oxide on reduction behaviors exhibits in Figure 3. The decomposition of copper-based catalysts composed of calcium oxide was found at 400 o C under nitrogen atmosphere, possibly suggesting the unstable compound of calcium species, whereas the most stable ZrO 2 -supported copper catalyst exhibited under nitrogen atmosphere solely (gray line in Figure 3). The hydrogen reduction of copper species took a place approximately at 300 o C for Cu/ZrO 2. Another copper oxide species can react at higher temperature while consisting in calcium oxide-modified catalysts. The calcium oxide seems to retard the hydrogen reduction plausibly owing to a formation of copper-calcium oxide compound. The positions of reduction temperature can determine an effect of metal-support interaction on the formation of less oxidative copper species (Cu 2+ Cu 1+ Cu 0 ). The higher reduction temperature gives the higher strength of

688 Wilasinee Wisaijorn et al. / Energy Procedia 79 ( 2015 ) 685 690 metal-support interaction or the formation of metal-support compound. The reducibility of all copperbased catalysts and the reduction temperature are shown in Table 2. Fig. 1. CO 2 Temperature Programmed Desorption (CO 2 -TPD) of as-prepared CaO, CaO_Ti and CaO_KMn Table 1 Physical property of as-prepared calcium oxide and copper-based catalysts Desorption Temperature ( o Amount of base sites C) Sample (mmol/g) Low Medium High Low Medium High Total amount of base (< 300) (300-600) (>600) (< 300) (300-600) (>600) sites (mmol/g) CaO - 460 720-7.6 6.6 14.2 CaO_Ti - 430 660-4.9 2.8 7.7 CaO_KMn - 480 680-9.1 0.4 9.5 ZrO 2 100 400-1.4 2.2-3.6 Cu/ZrO 2 ~100 380 600 2.3 1.1 3.3 6.7 Cu/ZrO 2 /CaO 80 410 620 1.1 10.8 12.0 23.9 Cu/ZrO 2 /CaO_Ti 80 430 640 1.4 3.7 5.1 10.2 Cu/ZrO 2 /CaO_KMn 80 430 640 1.2 4.0 5.2 10.4 Table 2 Reducibility of copper-based catalysts and the amount of base sites after reduction Sample Reduction Temperature ( o C) The amount of base sites after % Reducibility reduction Peak 1 Peak 2 Peak 3 (mmol/g) Cu/ZrO 2 305 - - 85 1.2 Cu/ZrO 2 /CaO - 400 464 108 53.2 Cu/ZrO 2 /CaO_Ti 333 400 448 98 40.5 Cu/ZrO 2 /CaO_KMn 352 400 453 89 36.8

Wilasinee Wisaijorn et al. / Energy Procedia 79 ( 2015 ) 685 690 689 Fig. 2. CO 2 Temperature Programmed Desorption of copper-based catalysts and zirconia support (left) and the profiles of copper-based catalysts after reduction at 400 o C for 6 hours (right) Fig. 3. Hydrogen Temperature Programmed Reduction Profiles of copper-based catalysts The reducibility was based on the actual amount of hydrogen consumed to reduce the 10-mg catalyst per the theoretical amount of hydrogen consumed to reduce the 10-mg catalyst. The ability to be reduced of oxide species consisting in calcium oxide modified copper-based catalyst was maximal compared to others. The reducibility of zirconia supported copper catalyst was only 85% as shown in Table 2 and it was apparently increased while adding the modified calcium oxide to copper-based catalysts, however the higher reducibility was possibly ascribed to the reduction of calcium oxide species consuming more hydrogen content. This may not improve the active metal site dispersion. The calcium oxide species was likely to be more chemically stable under KMnO 4 and TiO 2 modification since we can observe the reducibility of Cu/ZrO 2 /CaO_Ti and Cu/ZrO 2 /CaO_KMn less than that of Cu/ZrO 2 /CaO. The copper-based catalysts were mostly reduced at temperature lower than 400 o C as shown in Figure 3, thus

690 Wilasinee Wisaijorn et al. / Energy Procedia 79 ( 2015 ) 685 690 the temperature at 400 o C was chosen to reduce the copper-based catalysts for 6 hour prior to testing CO 2 hydrogenation. The CO 2 -temperature programmed desorption was carried out after hydrogen reduction at 400 o C for 6 hours to measure the number of base sites for all copper-based catalysts as reported in Table 2. The reduction at 400 o C for 6 hours increased the number of base sites for copper-based catalysts modified by calcium oxide as reported in Table 2, whereas lower base content belonged to zirconia supported copper catalyst. These increasing sites deliberated carbon dioxide at high temperature (approximately at 700 o C), suggesting that carbon dioxide chemically bonded to strongly adsorbing sites after the reduction. 4. Conclusion The modification of calcium oxide was accomplished by additional Ti and KMn precursors. The modification differ the amount of base sites and the strength of base sites. The amount of highly strong bases was lower under Ti or KMn modification. The modified calcium oxide was employed as additional oxide in copper-based catalysts being difference in carbon dioxide absorption. The reduction temperature and reducibility of copper-based catalysts were significantly different. The reducibility of Cu/ZrO 2 /CaO was the highest and it gave higher reduction temperature, possibly suggesting the metal-support compound formation or strong interaction of metal and support. The addition of Ti or KMn modified calcium oxide can chemically stabilize the catalysts and lowered the reduction temperature. Acknowledgements The authors would like to give their gratitude for financial support from Faculty of Engineering, Burapha University (Grant No. วจพ 6/2557) and Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Ms. Sutharat Thaongratkeaw. References [1] Guo X., Mao D., Lu G., Wang S., Wu G., The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation, J. Mol. Catal. A: Chem., 2011;345: 60-68 [2] GaO P., Li F., Zhang L., Zhao N., Xiao F., Wei W., Zhong L., Sun Y., Influence of fluorine on the performance of fluorinemodified Cu/Zn/Al catalysts for CO 2 hydrogenation to methanol, J. CO 2 Util., 2013 ; 2 : 16-23 [3] Arena F., Mezzatesta G., Zafarana G., Trunfio G., Frusteri F., Spadaro L., Effect of oxide carriers on surface functionality and process performance of the Cu-ZnO system in the synthesis of methanol via CO 2 hydrogenation, J. Catal., 2013 ; 300 : 141 151 [4] Hilmen A.M., Xu M., J.L. Gines M., Iglesia E., Synthesis of higher alcohol on copper catalysts supported on alkali-promoted basic oxides, Appl. Catal. A : General, 1998 ; 169 : 355-372 [5] Kundakovic Lj., Flytzani-Stephanopoulos M., Reduction Characteristics of copper oxide in cerium and zirconium oxide systems, Appl. Catal. A : General, 1998 ; 171 :13-29 [6] Soisuwan S., Phommachant J., Wisaijorn W., Praserthdam P., The characteristics of green calcium oxide derived from aquatic materials, Procedia Chem., 2014; 9:53-61 [7] Wan Isahak W.N.R., Che Ramli Z.A., Wafiuddin Ismail M., Ismail K., M. Yusop R., Wahab Mohamed Hisham M., Ambar Yarmo M., Adsorption-desorption of CO 2 on different type of copper oxides surface: Physical and Chemical attractions studies, J. CO 2 Util., 2012; 2: 8-15