Direct observation of surface plasmon-polariton dispersion

Similar documents
Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount

Surface plasmon-polariton mediated light emission through thin metal films

ECE280: Nano-Plasmonics and Its Applications. Week5. Extraordinary Optical Transmission (EOT)

Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture

Role of surface profiles in surface plasmon-polariton-mediated emission of light through a thin metal film

Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio

How grooves reflect and confine surface plasmon polaritons

Wide-field extended-resolution fluorescence microscopy with standing surface plasmon resonance waves

Lecture 13 Nanophotonics in plasmonics. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

micromachines ISSN X

Surface plasmons on zig-zag gratings

Enhanced and suppressed transmission through metal gratings at the plasmonic band edges

Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator

Nanoscale Plasmonic Interferometers for Multi-Spectral, High-Throughput Biochemical Sensing

CONCURRENT DUAL BAND FILTERS USING PLASMONIC MIM WAVEGUIDE RING RESONATOR

Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays

Diffraction grating revisited: a high-resolution plasmonic dispersive element

Directional Surface Plasmon Coupled Emission

Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution

Surface plasmon enhanced emission from dye doped polymer layers

Vertical plasmonic nanowires for 3D nanoparticle trapping

Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy

Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 9. Chapter 3 CHEM Fall, L. Ma

arxiv: v1 [physics.optics] 3 Feb 2010

IMMERSION HOLOGRAPHIC RECORDING OF SUBWAVELENGTH GRATINGS IN AMORPHOUS CHALCOGENIDE THIN FILMS

Surface Plasmon Effects in Nano-Optics. Greg Gbur Department of Physics and Optical Science, UNC Charlotte, Charlotte, North Carolina 28227

Fundamentals of X-ray diffraction and scattering

Structured Surface on Subwavelength Controllable Surface Plasmon

REAGENTLESS SENSORS WAVEGUIDE GRATING COUPLING SENSORS MACH-ZEHNDER INTERFEROMETER SENSORS SURFACE PLASMON RESONANCE SENSORS

Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures

Resonant and non-resonant generation and focusing of surface plasmons with circular gratings

Far-Field Focusing of Spiral Plasmonic Lens

Enhanced Stability in Surface Plasmon Resonance Sensor Using Prism Coupler Based on Au/Bi2O3 Bilayer Film

Light Trapping Enhancement in Thin Film Silicon Solar Cell with Different Back Reflector

Plasmonic Nanostructures II

THz and microwave surface plasmon polaritons on ultrathin corrugated metallic strips

Side-coupled cavity model for surface plasmonpolariton transmission across a groove

Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1

Basics of Plasmonics

An Easy Introduction to Plasmonics

Direct Evidence for Surface Plasmon-Mediated Enhanced Light Transmission through Metallic Nanohole Arrays

Supplementary Figure S1. Scheme for the fabrication of Au nanohole array pattern and

Nanorice Chain Waveguides Based on Low and High Order Mode Coupling

Efficient directional beaming from small apertures using surface-plasmon diffraction gratings

Plasmonics: Application-oriented fabrication. Part 1. Introduction

Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination

Absorption Enhancement of MSM Photodetector Structure with a Plasmonic Double Grating Structure

Excitation of surface plasmon polaritons guided mode by. Rhodamine B molecules doped in PMMA stripe

Universal optical transmission features in periodic and quasiperiodic hole arrays

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments

7-2E. Photonic crystals

Surface plasmon dielectric waveguides

SUPPLEMENTARY INFORMATION

Finite difference time domain study of light transmission through multihole nanostructures in metallic film

Phil Saunders, spacechannel.org

Supplementary Figure 1 Scanning electron micrograph (SEM) of a groove-structured silicon substrate. The micropillars are ca. 10 μm wide, 20 μm high

Efficient and directional excitation of surface plasmon polaritons by oblique incidence on metallic ridges

PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION

Nanostructured Plasmonic Interferometers for Ultrasensitive Label-Free Biosensing. Fil Bartoli Lehigh University 4/9/2014

Surface plasmon polariton mediated emission of light from top-emitting organic light-emitting diode type structures

Stimulated emission of surface plasmon polaritons

Direct observation of plasmonic index ellipsoids on a deep-subwavelength metallic grating

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Diffraction Basics. The qualitative basics:

Digital resolution enhancement in surface plasmon microscopy

NANOPHOTONICS. Surface Plasmonic Fields in

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

Optical Control of Surface Plasmon Coupling in Organic Light Emitting Devices with Nanosized Multi-cathode Structure

Supplementary Materials for

Introduction. (b) (a)

Plasmonic Photovoltaics

Enhancement of photoluminescence from excitons in silicon nanocrystals via coupling to surface plasmon polaritons

Plasmonic switch based on composite interference in metallic strip waveguides

Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration

Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Hollow Glass Waveguides (HGWs) for Infrared Spectroscopy and Laser Delivery

Light beaming from a single subwavelength metal slit

Geometries and materials for subwavelength surface plasmon modes

NEAR-FIELD INVESTIGATION OF SURFACE PLASMON POLARITONS

Photonic Crystals Quantum Cascade Lasers in THz regime

Fabrication of photonic band-gap crystals

SPP waveguides. Introduction Size Mismatch between Scaled CMOS Electronics and Planar Photonics. dielectric waveguide ~ 10.

The object of this experiment is to test the de Broglie relationship for matter waves,

Effect of dipole location on profile properties of symmetric surface plasmon polariton mode in Au/Al 2 O 3 /Au waveguide

Imaging of terahertz surface plasmon waves excited on a gold surface by a focused beam

Electric Field Distribution of Nanohole Thin Gold Film for Plasmonic Biosensor: Finite Element Method

High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers

SUPPLEMENTARY INFORMATION. Efficient unidirectional polarization-controlled excitation of. surface plasmon polaritons

Plasmonic Lens with Multiple-Turn Spiral Nano-Structures

Near-field electrospinning of dielectric-loaded surface plasmon polariton waveguides Biagi, Giulio; Stær, Tobias Holmgaard; Skovsen, Esben

Nanoplasmonics Enhancement of optical processes is severely limited by the metal loss

Sensitive biosensor array using surface plasmon resonance on metallic nanoslits

Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging

An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor

Efficiency of local surface plasmon polariton excitation on ridges

Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Influence of film thickness on the optical transmission through subwavelength single slits in metallic thin films

Title: Localized surface plasmon resonance of metal nanodot and nanowire arrays studied by far-field and near-field optical microscopy

Plasmonic Demultiplexer and Guiding

Transcription:

Direct observation of surface plasmon-polariton dispersion Armando Giannattasio and William L. Barnes School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom a.giannattasio@exeter.ac.uk Abstract: We describe a method to observe the directional emission of electromagnetic radiation produced by the radiative decay of surface plasmon-polaritons (SPPs) that allows the dispersion of the modes in k-space to be directly visualized. The method presented here opens up the possibility of characterizing the effect of a wide range of surface morphologies on SPP dispersion. As an example we show the formation of a stop-band for SPPs when the metal surface is modulated in the form of a diffraction grating. 2005 Optical Society of America OCIS codes: (240.6680) Surface plasmons; (260.3910) Optics of metals; (240.0310) Thin films. References and links 1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, Berlin, 1988). 2. E. Devaux, T. W. Ebbesen, J. Weeber and A. Dereux, Launching and decoupling surface plasmons via micro-gratings, Appl. Phys. Lett. 83, 4936-4938 (2003). 3. W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles, Photonic surfaces for surface-plasmon polaritons, J. Opt. Soc. Am. A 14, 1654-1661 (1997). 4. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Mimicking surface plasmons with structured surfaces, Science 305, 847-848 (2004). 5. W. A. Murray, S. Astilean, and W. L. Barnes, Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array, Phys. Rev. B 69, 165047 (2004). 6. R. A. Depine, S. Ledesma, Direct visualization of surface-plasmon bandgaps in the diffuse background of metallic gratings, Opt. Lett. 29, 2216-2218 (2004). 7. J. Moreland, A. Adams, and P. K. Hansma, Efficiency of light-emission from surface-plasmons, Phys. Rev. B 25, 2297-2300 (1982). 8. H. J. Simon and J. K. Guha, Directional surface plasmon scattering from silver films, Optics Communications 18, 391-394 (1976). 9. P. R. Auvil, J. B. Ketterson, Y. Kim, and A. Kryukov, Simple model for the observed plasmon conical radiation interference patterns in a Kretschmann configuration, Applied Optics 37, 8448-8452 (1998). 10. Z. Liu, N. Fang, T. J. Yen, X. Zhang, Rapid growth of evanescent wave by a silver superlens, Appl. Phys. Lett. 83, 5184-5186 (2003). 11. N. Fang, Z. W. Liu, T. J. Yen, X. Zhang, Regenerating evanescent waves from a silver superlens, Opt. Express 11, 682-687 (2003), http://www.opticsexpress.org/abstract.cfm?uri=opex-11-7-682 12. A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Transmission of light through thin silver films via surface plasmon-polaritons," Opt. Express 12, 5881-5886 (2004), http://www.opticsexpress.org/abstract.cfm?uri=opex-12-24-5881 13. S. Wedge, I. R. Hooper, I. Sage, W. L. Barnes, Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons, Phys. Rev. B. 69, 245418 (2004). 14. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission, Anal. Biochem. 324, 170-182 (2004). 15. S. C. Kitson, W. L. Barnes, and J. R. Sambles, Full photonic band gap for surface modes in the visible, Phys. Rev. Lett. 77, 2670-2673 (1996). 16. D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination (Chelsea, New York, 1999). 1. Introduction The nature of surface plasmon-polaritons (SPPs) [1] is strongly dependent on the morphology of the interface on which they propagate [2]. Perhaps most dramatically the formation of energy band gaps for SPP modes supported by periodic metallic structures has been (C) 2005 OSA 24 January 2005 / Vol. 13, No. 2 / OPTICS EXPRESS 428

demonstrated [3]. Exploring the underlying physics that relates SPP properties with surface morphology continues to throw up new developments, most recently the idea that subwavelength structure can lead to the creation of spoof SPPs [4]. The interaction between SPPs and the morphology of the surfaces on which they propagate is often most easily understood with the aid of dispersion diagrams, however, these are difficult to obtain experimentally, usually being acquired point by point and thus time consuming to construct [5]. Thus, there is a need to develop techniques that allow the direct visualization of SPP dispersion. One such technique is based on the diffuse background emission of SPPs produced by surface roughness [6]. Here we report the use of an alternative technique by which the effect of surface/interface structure on SPP propagation can be determined and readily visualized. Moreover, the technique offers the possibility of rapid acquisition of dispersion data and may thus be of use in exploring the interaction between surface morphology and SPP properties. Although SPPs are in general non-radiative in nature, SPP modes can under appropriate circumstances be converted to light [7]. In the past, several papers have been written on the directional emission of radiation that is observed when SPPs supported by a silver film are converted back to freely propagating light using a form of inverse prism coupling [8,9,10]. Such emitted radiation consists of a hollow cone of directionally scattered light, the axis of the cone being normal to the silver surface. The opening angle 2θ of the cone is regulated by the following equation (in-plane momentum conservation) nk 0 sinθ = k spp (1) where n is the index of refraction of the material through which the light propagates, k 0 is magnitude of the wavevector of the emitted light and k spp is the magnitude of the wavevector of the SPPs. A simple method to observe this directional SPP-mediated radiation is described in this paper. Here we use this technique to show the marked change in dispersion of SPP modes when the surface is modulated in form of a diffracting grating. In particular, the formation and the shape of stop-bands for SPPs propagating along corrugated silver films are observed straightforwardly. 2. Experiment The system investigated in this work consisted of an air/silver/silica interface (Fig. 1). Two structures were studied, one consisting of a planar metal film (Fig. 1(a)) and the other consisting of a metal film corrugated in the form of a diffraction grating (Fig. 1(b)). For both structures incident light is coupled to the SPP mode by scattering from surface roughness present at the silver/air interface [11]. After excitation, the SPPs can in turn be scattered by the periodic profile of the grating. Since previous studies have demonstrated that 50 nm is approximately the optimal film thickness for SPP-mediated transmission of light through thin silver films [10,12], a silver layer of 50 nm thickness was thermally evaporated onto two 25 mm 25 mm silica substrates (1 mm thick), one nominally flat (roughness 1 nm) and the other having a periodic surface profile. Such periodic modulation (pitch = 380±1 nm, amplitude = 11±1 nm) was produced at the silica surface by using laser interferometry and reactive ion etching techniques [13]. Light from a He-Ne laser (λ 0 = 612 nm) was focussed directly onto the silver film, at normal incidence from the air side, by a microscope objective lens (50 ) and was then scattered randomly by the natural roughness of the silver surface. Some of these scattered components had a wavevector equal to that of SPPs of the same frequency and thus allowed incident light to couple to SPP modes propagating along the metallic surface in all azimuthal directions. It is well known that the evanescent wave associated with a SPP mode decays exponentially within the metal due to absorption [1]. However, because the silver film considered in this experiment was rather thin (50 nm), the evanescent field associated with the silver/air interface was sufficiently strong at the silver/silica interface such that the SPPs had a significant probability to radiate into the silica substrate. Radiation was emitted through the (C) 2005 OSA 24 January 2005 / Vol. 13, No. 2 / OPTICS EXPRESS 429

silica with a polar angle θ such that Eq. (1) was fulfilled. Since the SPPs were randomly generated in all directions in the plane of the metal, the emitted radiation propagating through the silica substrate consisted of a hollow cone of light with cone angle 2θ. A schematic representation of this process in k-space is shown in Fig. 1(a) for the case of a flat silver surface modulated only by natural roughness (no grating). The situation where SPPs are in turn scattered by a grating is illustrated in Fig. 1(b) where the scattering events are also represented in k-space. silver film silica substrates CCD k a) laser SPPs silver film grating k k-g k k+g b) laser k+g k-g G G matching fluid matching glue Fig. 1. Schematic of the geometry used for the experiment. a) Planar silver surface: a single cone of light is emitted into the silica substrate. b) Corrugated silver surface: the central cone (zero order scattering) is now intersected by the other cones of light due to SPPs scattered by the grating with Bragg vector G. We observed the radiation emitted into the silica substrate using a charge-coupled device (CCD). The active area of a CCD (approximately 3.4 mm 4.5 mm, 640 480 pixels), taken from a commercially available webcam, was index matched to a second silica substrate identical to that used to support the silver film. The two silica substrates were in turn index matched together, as shown in Fig. 1. With this geometry, the directional radiation that propagates in the form of a hollow cone of light through the two index-matched silica substrates is detected by the CCD which in turn is connected to a computer; the cone can thus be visualized in two-dimensions on a computer screen. The CCD used in this work was too small to detect the full circle of emitted light, as it appears schematically in Fig. 1, therefore only about a quarter ( 90 arc) could be detected (the observation of a circle of emitted light was not the aim of this work since many images of this characteristic circle can be found in the literature [8,11,14]). As illustrated in Fig. 1b, it is more interesting to see whether stopbands can be generated as a consequence of the interaction between SPPs with wavevector k (not-scattered by the grating) and other SPPs having wavevectors k±g (subjected to a scattering process), with G being the Bragg vector of the grating. In fact, under certain (C) 2005 OSA 24 January 2005 / Vol. 13, No. 2 / OPTICS EXPRESS 430

conditions, SPPs with different wavevectors can be subjected to scattering processes leading to the formation of energy band gaps [15] directly observable at the positions where the circles of Fig. 1(b) intersect each other (Fig. 2). For example, if k 1 =k and k 2 =k-g are respectively the wavevectors of the non-scattered and scattered (by the grating) SPP modes, then k 1 -k 2 =G (2) which is the usual Bragg diffraction condition, with k 1 = k 2. This implies that when the projection of the SPP wavevector along the x-axis,, is such that G π = ± m = ± m (3) 2 a where m is an integer and a is the grating pitch, the SPP modes become standing waves and thus do not propagate; this produce an energy gap for SPPs. It should be possible to observe such stop-bands in k-space, as shown in Fig. 2. Stop-bands -G -G/2 G/2 G Fig. 2. Representation of the stop-bands in k-space. The stop-bands form at =G/2 where the circles intersect each other. 3. Results Figure 3 shows two images of k-space obtained with the experimental geometry shown in Fig. 1. These images were produced by using the CCD to detect the radiation emitted through the silica substrate via SPP-coupling in the two cases shown in Fig. 1(a) and Fig. 1(b) (in the absence (a) and in the presence (b) of a grating). The bright arc that appears in Fig. 3(a) is part of the conical radiation emitted following the decay of those SPPs which were scattered by the rough surface of the silver. This cone of light is schematically represented by the circle centred on the k-space origin shown in Fig. 1(a). Results for the case of the sample with periodic surface modulation are shown in Fig. 3(b). In this figure, the brighter arc again represents the zero-order emitted radiation (the same as in Fig. 3(a) observed in the absence of a grating), which corresponds to the central circle in Fig. 2. Part of the circle formed by light emitted by those SPPs excited at the silver/silica interface and subjected to a first order scattering is also visible in Fig. 3(b), although this is a less efficient process than the zero order. The stop-band arising at =G/2 due to the interaction of the scattered and non-scattered SPPs is clearly visible in Fig. 3(b), where the two circles generated by the (scattered and nonscattered) SPPs intersect each other. However, since k-space is projected into the plane of the CCD and not into a hemispherical screen (see Fig. 4), the circle generated by the first order scattered radiation is deformed, as this is given by the intersection of a cone with a plane and originates either an elliptic or a parabolic curve [16]. The equation of such curve in the xy plane of the screen is of the form: (C) 2005 OSA 24 January 2005 / Vol. 13, No. 2 / OPTICS EXPRESS 431

2 2 2 2 2 2 2 2 2 2 x = y (tan θ sin γ cos γ ) + 2yL(tan θ + 1)sinγ cosγ + L (tan θ cos γ sin γ ) (4) where L is the separation between the silver film and the CCD, θ is the angle given by Equation (1) and γ is the angle between the normal to the sample surface and the axis of the scattered cone. If γ =0, the axis of the emitted cone of light is perpendicular to the metallic surface (zero order) and such radiation appears on the screen like a regular circle of radius Ltan(θ). Scattered SPP (Ag/air interface) Scattered SPP (Ag/SiO 2 interface) Stop-band a) b) Fig. 3. Direct image of the conical radiation in k-space as recorded by the CCD. a) Planar control sample. b) The presence of a grating introduces new scattering events. As a result, a stop-band opens up at the intersection of the two circles, one generated by non-scattered SPPs (much brighter) and the other resulting from scattering processes (faint). The extra line that is noted crossing the circle, at the top-left, is due to SPPs excited at the silver/silica interface, but these do not produce a visible stop-band. If the conical radiation had been collected by using a hemispherical CCD device, then the resulting image would have been very similar to that drawn in Fig. 1(b) which shows a series of regular circles. However, in this work, the coordinates xy used in Eq. (4) to describe the curve observed on the screen can be linked to the actual components and of the wavevector of SPPs by defining the angles (see Fig. 5): y α = arctan ; x such that β = arctan 2 2 x + y L (5) = nk0 sin β cosα ± mg (6) = nk 0 sin β sinα (7) (C) 2005 OSA 24 January 2005 / Vol. 13, No. 2 / OPTICS EXPRESS 432

where m is an integer, n is the index of refraction of silica, G is the Bragg vector of the grating and k 0 is the magnitude of the wavevector of scattered light. image forming on screen y x flat screen Zero order cone 1 st order cone k-space metallic surface Fig. 4. The conical radiation due to the different SPP scattering processes is projected into a flat screen (CCD) and thus the resulting image in k-space is distorted, as shown in this schematic illustration. The image on the screen would have been similar to that drawn in Fig. 1b if the radiation had been projected onto a hemispherical screen. k z β nk 0 α Fig. 5.Geometry and angles chosen to define the wavevector of the scattered light, nk 0, in k- space. (C) 2005 OSA 24 January 2005 / Vol. 13, No. 2 / OPTICS EXPRESS 433

The amplitude and shape of the stop-band for SPP modes shown in Fig. 3 depends primarily on the amplitude of the grating. Figure 6 shows different band gaps obtained using a 50 nm silver film evaporated on silica gratings with different amplitudes (5-40 nm). Fig. 6. SPP band gaps forming in 50 nm thin metallic films deposited on a grating. Picture (a) shows again the case where the grating is not present. The other pictures refer to gratings with amplitude of approximately (b) 5 nm, (c) 10nm, (d) 20 nm, (e) 30 nm and (f) 40 nm. 4. Conclusions The results reported above provide clear evidence that the technique described here can be used as a way to rapidly evaluate the effect of surface morphology on the propagation of surface plasmon-polaritons. It should thus be a valuable tool in the quest for a better understanding of the correlation between surface morphology and SPP properties. Acknowledgments The authors thank Dr. I. R. Hooper and Dr. S. Wedge at the University of Exeter for many valuable discussions and for producing the silica gratings used in this work. The support of the EC through funding the project Surface Plasmon Photonics FP6 NMP4-CT-2003-505699 is gratefully acknowledged. (C) 2005 OSA 24 January 2005 / Vol. 13, No. 2 / OPTICS EXPRESS 434