ASME BPVC VIII Example E E4.4.5 PTB

Similar documents
ASME BPVC VIII Example E E4.3.5 PTB

ASME BPVC VIII Example E E PTB

(Name and address of Manufacturer) (Name and address of Purchaser) (Name and address)

Chapter Five Pressure Vessels

Code No: R Set No. 1

CONTENTS. Foreword... xi Statements of Policy... xv Personnel... xvii Summary of Changes... xxvii

ANSYS CALCULATIONS REPORT Outer Vessel Ansys outer vessel Sylvain ANTOINE Amaury PORHIEL - Rev C

The interference in the assemblies varies between the limits of a maximum of 0.048mm and a minimum of 0.014mm.

SANDVIK 3RE60 TUBE AND PIPE, SEAMLESS

Comparative Design and Cost Analysis of Cylindrical Storage Tanks with Different Head Types by Using COMPRESS


Question Paper Code : 11410

DIN EN : (E)

Lecture No.4 Pressure Vessels

Heat Exchanger: Conical shell and Nozzle Reinforcement Effectiveness: Case Study

High Temperature Effects on Vessel Integrity. Marc Levin, Ayman Cheta Mary Kay O Connor Process Safety Center 2009 International Symposium

GUIDEBOOK FOR THE DESIGN OF ASME SECTION VIII PRESSURE VESSELS Fourth Edition

R13. II B. Tech I Semester Regular/Supplementary Examinations, Dec MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours PART-A

Design and thermal analysis of cryogenic Fluid storage vessel

DESIGN AND VALIDATION OF SPHERICAL PRESSURE VESSEL AGAINST BUCKLING FAILURE AS PER ASME AND VALIDATION WITH FEA RESULTS

EQUIPMENT DESIGN LECTURE TANKS, VESSELS & DRUMS - MECHANICAL DESIGN

Design of Spherical Pressure Vessel against Buckling Failure as Per ASME and Validation with FEA Results Lokesh N 1 Manu S S 2

Modelling of Pressure Vessels with different End Connections using Pro Mechanica

ETAM Performance Research on Large Diameter P91 produced by Hot expanding process

SANDVIK SAF 2304 TUBE AND PIPE, SEAMLESS

Oil tempered SiCrVMo-alloyed ultra-high tensile valve spring wire for surface nitriding

Standard Specification for Seamless and Welded Ferritic/Austenitic Stainless Steel Tubing for General Service 1

PROBAD. Code-based Strength Calculations of Pressure Parts. SIGMA Ingenieurgesellschaft mbh

Input example for the modules acc. to DIN EN Lauterbach Verfahrenstechnik GmbH

Stress calculation at tube-to-tubesheet joint using spring model and its comparison with beam model

Standard Specification for Seamless and Welded Ferritic/Austenitic Stainless Steel Tubing for General Service 1

DIN ELECTRICALLY RESITANCE OR INDUCTION WELDED STEEL TUBES FOR ELEVATED TEMPERATURE

Design and Analysis of Pressure Vessel Skirt Considering Seismic Load as Per Uniform Building Code

DIN SEAMLESS CIRCULAR STEEL TUBES FOR STRUCTURAL STEEL WORK

Copper & Copper Alloys CuZn31Si1 (OF 2270)

SANDVIK 254 SMO TUBE AND PIPE, SEAMLESS

SECT. VIII CHANGES

BS EN Hollow bars for machining Technical delivery conditions Non alloy and alloy steels

Oil tempered SiCrVNi-alloyed ultra-high tensile valve spring wire for surface nitriding

CHAPTER 3 CODAL PROVISIONS AND DESIGN METHODS

ESSHETE 1250 TUBE AND PIPE, SEAMLESS

Design Development and Analysis of Cadbury/Chocolate Pulp Melting Tank : A Review

Design and Analysis of Horizontal Pressure Vessel and Thickness optimisation

Fabrication of Components. Fabrication of Components. at Dillinger Hütte Heavy Fabrication Division

Ovality Correction Methods for Pipes

Design Analysis of Pressure Vessels at high stress zones using Pro/E v4.0

ASTM A500 Cold Formed Welded Rectangular Tubes

SANDVIK 253 MA TUBE AND PIPE, SEAMLESS

SPECIFICATION FOR STAINLESS STEEL BARS AND SHAPES FOR USE IN BOILERS AND OTHER PRESSURE VESSELS

STAINLESS STEEL SHEETS

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

DIN WELDED CIRCULAR UNALLOYED STEEL TUBES NOT SUBJECT TO SPECIAL REQUIREMENT

ANALYSIS OF THE REPLACEMENT NEED FOR THE CONTAINMENT ANCHORING BOLTS OF THE LOVIISA NPP ESTIMATED BY THE STRENGTH ASSESSMENT

Born from fire, made to endure NICKEL ALLOYS

ASTM Standards for Pipe & Fittings

DIN EN : (E)

Technical Inquiries for API Standard 620, Design & Construction of Large, Welded, Low-Pressure Storage Tanks Last updated February 2014

30ChGSA Included in 13 standards (CIS Countries)

Centricast CL-2030 Product Data

Part catalogue. 1. Welding consumables for welding of structural and constructional steels

PRELIMINARY DESIGN OF REACTOR PRESSURE VESSEL FOR RDE

Structural design criteria

For ASME Committee use only.

RECOMMENDATIONS FOR OBTAINING SAMPLES OF CASTING PARTS MECHANICAL CHARACTERISTICS FUNDICIONES FUMBARRI-DURANGO. 15/04/2013 Rev.

HIGH TECHNOLOGY PRODUCTS AND SERVICES FOR YOUR MOST DEMANDING CORROSIVE CHEMICAL ENVIRONMENTS

SANDVIK NANOFLEX STRIP STEEL

Stainless Steel 310/310S (UNS S31000/ UNS S31008)

Study of Steel Silo Used for Material Storage

Reinforced Thermoset Plastic Corrosion-Resistant Equipment

PRESSURFECT CNG TUBE AND PIPE, SEAMLESS

DIN WELDABLE NORMALIZED FINE GRAIN STRUCTURAL STEELS

Oil tempered SiCr-alloyed valve spring wire Only manufactured in China

SEAMLESS STEEL PIPE FLOW CHART

Pressure Vessel Engineering Ltd 120 Randall Drive, Suite B Waterloo, Ontario, Canada N2V 1C6

Copper & Copper Alloys CuZn40Pb2 (OF 2357)

MANDATORY APPENDIX 2 RULES FOR BOLTED FLANGE CONNECTIONS WITH RING TYPE GASKETS

PV Newsletter Monthly Publication from CoDesign Engineering Skills Academy

For ASME Committee use only.

Fatigue and fracture of high-hardenability steels for thick-walled hydrogen pressure vessels

Sample Vessel Calculations

SANICRO 30 TUBE AND PIPE, SEAMLESS

Increased resistance to buckling of piston rods through induction hardening

SANDVIK 11R51 STRIP STEEL

NEOTISS TM HPT finned TubES

Sandvik SAF 2205 (Tube and pipe, seamless)

DIRECTIVE Use of ASME Code Case 2596 in Alberta

ISO INTERNATIONAL STANDARD. Steel for the reinforcement and prestressing of concrete Test methods Part 3: Prestressing steel

Calculation of Heater-tube Thickness in Petroleum Refineries API STANDARD 530 SEVENTH EDITION, APRIL 2015

Code No: RR Set No. 1

Specification Stainless spring steel

ERTALON Extruded Products

TMR 4195 DESIGN OF OFFSHORE STRUCTURES. Problem 1. In the ULS control it is necessary to consider the load cases given in Table 1.

Cover Page 2 DESIGN CALCULATION. In Accordance with ASME Section VIII Division 1. ASME Code Version : 2007

CYLINDRICAL VESSEL LIMIT LOAD ESTIMATION FOR OBLIQUE NOZZLE BY USING ANSYS AS ANALYSIS TOOL

A REVIEW ON DESIGN AND ANALYSIS OF PRESSURE VESSEL

Copper & Copper Alloys CuZn33Pb1.5AlAs (OF 2279)

JIS G4904 Seamless nickel-chromium-iron alloy heat exchanger tubes

Stress Analysis of Reactor with composite material by FEA

XI'AN LINKUN STEEL PIPE CO., LTD

Standard Specification for Seamless and Welded Carbon and Alloy-Steel Tubes for Low-Temperature Service 1

Transcription:

Table of contents Comparison - Form for equations... 2 Example E4.4.1 - Cyldrical Shell... 3 E4.4.1 - Thickness of shells and tubes under external pressure ASME BPVC VIII UG-28 and Appendix I, 217 Edition... 4 Example E4.4.2 - Conical Shell... 5 E4.4.2 with B taken by ASME - Formed heads pressure on convex side ASME BPVC VIII UG-33 and APP. 1, 217 Edition... 6 E4.4.2 with B taken by LV - Formed heads pressure on convex side ASME BPVC VIII UG-33 and APP. 1, 217 Edition... 8 Example E4.4.3 - Spherical Shell and Hemispherical Head... 11 E4.4.3 with B taken by LV - Thickness of shells and tubes under external pressure ASME BPVC VIII UG-28 and Appendix I, 217 Edition... 12 E4.4.3 with B taken by ASME - Thickness of shells and tubes under external pressure ASME BPVC VIII UG-28 and Appendix I, 217 Edition... 13 Example E4.4.4- Torispherical Head... 15 E4.4.4 with B taken by LV - Formed heads pressure on convex side ASME BPVC VIII UG-33 and APP. 1, 217 Edition... 16 Example E4.4.5 - Elliptical Head... 17 E4.4.5 - Formed heads pressure on convex side ASME BPVC VIII UG-33 and APP. 1, 217 Edition... 18 Appendix: Material documentation... 18 Layout Input values: 1.234 or 1.234 Calculated values: 1.234 or 1.234 Critical values: 1.234 or 1.234 Estimated values: 1.234 or 1.234 Lauterbach Verfahrenstechnik GmbH 1 13.12.217

Comparison - Form for equations Equation form Comment Results for example E4.4.1-5 acc. ASME and Lauterbach Verfahrenstechnik GmbH (LV) The LV-program uses formulas for thick cylders acc.asme VIII Div.1 UG28/33 and App.1. Equations Conversion factor mm2 =.3937. MPa2 = 145.37 'Results Ex. E4.4.1 LV and ASME Max.allowable Pressure P acc. LV P1 = MPa2*#21(1) Max.allowable Pressure Pa acc. ASME P1Asme = 39 Difference % Diff1 = (P1-P1Asme)/P1Asme*1 'Results Ex. E4.4.2 LV and ASME Max.allowable Pressure Pa acc. LV P2 = MPa2*#29(9) Max.allowable Pressure Pa acc. ASME P2Asme = 249.6 Difference % Diff2 = (P2-P2Asme)/P2Asme*1 'Results Ex. E4.4.3 LV and ASME with B taken by LV Max.allowable Pressure P acc. LV P3a = MPa2*#36(2)/1 Max.allowable Pressure Pa acc. ASME P3aAsme = 571.1 Difference % Diff3 = (P3a-P3aAsme)/P3aAsme*1 'Results Ex. E4.4.3 LV and ASME with B =157 (taken by ASME) Max.allowable Pressure P acc. LV P3b = MPa2*#36(3)/1 Max.allowable Pressure Pa acc. ASME P3bAsme = 571.1 Difference % Diff4 = (P3b-P3bAsme)/P3bAsme*1 'Results Ex. E4.4.4 LV and ASME with B taken by LV Max.allowable Pressure P acc. LV P4 = MPa2*#29(5) Max.allowable Pressure Pa acc.asme P4Asme = 55.8 Difference % Diff5 = (P4-P4Asme)/P4Asme*1 'Results Ex. E4.4.5 LV and ASME Max.allowable Pressure P acc. LV P5 = MPa2*#116(4)/1 Max.allowable Pressure Pa acc.asme P5Asme = 166.2 Difference % Diff6 = (P5-P5Asme)/P5Asme*1 'Maximum difference between LV and ASME Dmax = Max( Diff1 ; Diff2 ; Diff3 ; Diff4 ; Diff5 ; Diff6 ) Value.3937 145 39.3 39.6913 247.9 249.6 -.6637 582.5 571.1 1.99 571.2 571.1.2329 55.72 55.8 -.151 166.2 166.2 -.2726 1.99 Lauterbach Verfahrenstechnik GmbH 2 13.12.217

Example E4.4.1 - Cyldrical Shell Determe the maximum allowable external pressure (MAEP) for a cyldrical shell considerg the followg design conditions. Vessel Data: Material = SA-516, Grade 7, Norm. Design Temperature = 3 F Inside Diameter = 9. Thickness = 1.125 Corrosion Allowance =.125 Unsupported Length = 636. Modulus of Elasticity at Design Temperature = 28.3E +6 Yield Strength = 336 Lauterbach Verfahrenstechnik GmbH 3 13.12.217

E4.4.1 - Thickness of shells and tubes under external pressure ASME BPVC VIII UG-28 and Appendix I, 217 Edition Cyldrical shells under external pressure External design pressure Hydrostatic head External calculation pressure Calculation temperature p D D p p T 14.5 14.5 3 F Outside diameter Design wall thickness Wall thickness allowance Allowance (corrosion) Bucklg length D t e c 1 c 2 L 92.25 1.125.125 636 Lauterbach Verfahrenstechnik GmbH 4 13.12.217

Material K27-SA-516-7-Class:-Size: Spec. M. Yield Allowable stress Applicable material chart Modulus of elasticity S y S Fig E 336 215 CS-2 2.829e+7 Results Effective thickness Ratio Ratio t L/D D /t 1 6.894 92.25 Factor accordg to ASME-IID\Table G Factor (see material chart) Factor 2*M(S;.9*B) Required thickness Required thickness cl. allowances Allowable excess pressure Allowable pressure without hydrostatic head Remark Equations A B S t t+c 1 +c 2 P MAWP 1.884e-4 27 486.6718.7968 38.51 38.51 UG-28 c) (1) Step 6 Step 7 UG-28 c) (2) Step 2 Step 3 Lauterbach Verfahrenstechnik GmbH 4 13.12.217

Example E4.4.2 - Conical Shell Determe the maximum allowable external pressure (MAEP) for a conical shell considerg the followg design conditions. Vessel Data: Material = SA -516, Grade 7, Norm Design Temperature = 3 F Inside Diameter (Large End) = 15. Thickness (Large End) = 1.8125 Inside Diameter (Small End) = 9. Thickness (Small End) = 1.125 Thickness (Conical Section) = 1.9375 Axial Cone Length = 78. One-Half Apex Angle = 21.375 deg Corrosion Allowance =.125 Modulus of Elasticity at Design Temperature = 28.3E +6 Yield Strength = 336 Lauterbach Verfahrenstechnik GmbH 5 13.12.217

E4.4.2 with B taken by ASME - Formed heads pressure on convex side ASME BPVC VIII UG-33 and APP. 1, 217 Edition Conical shells under external pressure acc. UG-33(f) External design pressure Hydrostatic head Calculation pressure Calculation temperature p D D p p T 249 249 3 F Material K27-SA-516-7-Class:-Size: Spec. M. Yield Allowable stress Applicable material chart E-Modulus S y S Fig E 336 215 CS-2 2.9e+7 Cone wall thickness with allowances Wall thickness allowance Allowance (corrosion) Cone wall thickness without allowances t c 1 c 2 t 1.938.125 1.813 Is a cylder connected, which does not act as le of support? N (Y/N) Outside diameter Knuckle radius Outside diameter Knuckle radius ( wide end ) ( wide end ) ( small end ) ( small end ) D Ls r 1 D Ss r 2 153.6 93.62 Half apex angle ( 6 ) α 21.4 Proof for cross-section area accordg to App. 1-8 required for cone-connection without knuckle Lauterbach Verfahrenstechnik GmbH 6 13.12.217

Results Effective thickness Axial length of the cone Design length Ratio Ratio t e = t cos(α) t e L L e L e /D L D L /t e 1.692 78 62.77.486 9.81 Factor accordg to fig. 5-UGO-28. Factor (see material chart) Factor 2 M(S ;.9 B) A B S.4132 17 31589 Allowable external pressure ( for t ) Allowable pressure without hydrostatic head Required thickness ( for P ) Required thickness cl. allowances P MEP t t+c 1 +c 2 249.6 249.6 1.819 1.944 Remark Thickness not sufficient Equations 1) for D L /t 1 UG-33 f-a) Step 6 UG-33 f-a) Step 7 2) for D L /t < 1 Lauterbach Verfahrenstechnik GmbH 6 13.12.217

UG-33 f-b) Step 2 UG-33 f-b) Step 3 Lauterbach Verfahrenstechnik GmbH 7 13.12.217

E4.4.2 with B taken by LV - Formed heads pressure on convex side ASME BPVC VIII UG-33 and APP. 1, 217 Edition Conical shells under external pressure acc. UG-33(f) External design pressure Hydrostatic head Calculation pressure Calculation temperature p D D p p T 249 249 3 F Material K27-SA-516-7-Class:-Size: Spec. M. Yield Allowable stress Applicable material chart E-Modulus S y S Fig E 336 215 CS-2 2.9e+7 Cone wall thickness with allowances Wall thickness allowance Allowance (corrosion) Cone wall thickness without allowances t c 1 c 2 t 1.938.125 1.813 Is a cylder connected, which does not act as le of support? N (Y/N) Outside diameter Knuckle radius Outside diameter Knuckle radius ( wide end ) ( wide end ) ( small end ) ( small end ) D Ls r 1 D Ss r 2 153.6 93.62 Half apex angle ( 6 ) α 21.4 Proof for cross-section area accordg to App. 1-8 required for cone-connection without knuckle Lauterbach Verfahrenstechnik GmbH 8 13.12.217

Results Effective thickness Axial length of the cone Design length Ratio Ratio t e = t cos(α) t e L L e L e /D L D L /t e 1.692 78 62.77.486 9.81 Factor accordg to fig. 5-UGO-28. Factor (see material chart) Factor 2 M(S ;.9 B) A B S.4132 16887 31589 Allowable external pressure ( for t ) Allowable pressure without hydrostatic head Required thickness ( for P ) Required thickness cl. allowances P MEP t t+c 1 +c 2 247.9 247.9 1.819 1.944 Remark Pressure not allowable Equations 1) for D L /t 1 UG-33 f-a) Step 6 UG-33 f-a) Step 7 2) for D L /t < 1 Lauterbach Verfahrenstechnik GmbH 9 13.12.217

UG-33 f-b) Step 2 UG-33 f-b) Step 3 Lauterbach Verfahrenstechnik GmbH 1 13.12.217

Example E4.4.3 - Spherical Shell and Hemispherical Head Determe the maximum allowable external pressure (MAEP) for a hemispherical head considerg the followg design conditions. Vessel Data: Material = SA-542, Type D, Class 4a Design Temperature = 35 F Inside Diameter = 149. Thickness = 2.8125 Corrosion Allowance =. Modulus of Elasticity at Design Temperature = 29.1E +6 Yield Strength = 58 Lauterbach Verfahrenstechnik GmbH 11 13.12.217

E4.4.3 with B taken by LV - Thickness of shells and tubes under external pressure ASME BPVC VIII UG-28 and Appendix I, 217 Edition Spherical shells under external pressure External design pressure Hydrostatic head External calculation pressure Calculation temperature p D D p p T 572 572 35 F Outside diameter Design wall thickness Wall thickness allowance Allowance (corrosion) D t e c 1 c 2 154.6 2.813 Material K31835-SA-542-D-Class:4a-Size: Spec. M. Yield Allowable stress Applicable material chart Modulus of elasticity Results Effective thickness Tip radius Ratio S y S Fig E t R R /t 619 24366 CS-2 2.852e+7 2.813 77.3 27.48 Factor.125/(R /t ) Factor (see material chart) A B.4548 169 Required thickness Required thickness cl. allowances Allowable excess pressure Allowable pressure without hydrostatic head Remark t t+c 1 +c 2 P MAWP 2.767 2.767 582.5 582.5 Lauterbach Verfahrenstechnik GmbH 12 13.12.217

Equations UG-28 d) Step 4 UG-28 d) Step 5 Lauterbach Verfahrenstechnik GmbH 12 13.12.217

E4.4.3 with B taken by ASME - Thickness of shells and tubes under external pressure ASME BPVC VIII UG-28 and Appendix I, 217 Edition Spherical shells under external pressure External design pressure Hydrostatic head External calculation pressure Calculation temperature p D D p p T 571.1 571.1 35 F Outside diameter Design wall thickness Wall thickness allowance Allowance (corrosion) D t e c 1 c 2 154.6 2.813 Material K31835-SA-542-D-Class:4a-Size: Spec. M. Yield Allowable stress Applicable material chart Modulus of elasticity Results Effective thickness Tip radius Ratio S y S Fig E t R R /t 619 24366 CS-2 2.852e+7 2.813 77.3 27.48 Factor.125/(R /t ) Factor (see material chart) A B.4548 157 Required thickness Required thickness cl. allowances Allowable excess pressure Allowable pressure without hydrostatic head Remark t t+c 1 +c 2 P MAWP 2.763 2.763 571.2 571.2 Lauterbach Verfahrenstechnik GmbH 13 13.12.217

Equations UG-28 d) Step 4 UG-28 d) Step 5 Lauterbach Verfahrenstechnik GmbH 14 13.12.217

Example E4.4.4- Torispherical Head Determe the maximum allowable external pressure (MAEP) for a torispherical head considerg the followg design conditions. Vessel Data: Material = SA-387, Grade 11, Class 1 Design Temperature = 65 F Inside Diameter = 72. Crown Radius = 72. Knuckle Radius = 4.375 Thickness =.625 Corrosion Allowance =.125 Modulus of Elasticity at Design Temperature = 26.55E +6 Yield Strength at Design Temperature = 269 Lauterbach Verfahrenstechnik GmbH 15 13.12.217

E4.4.4 with B taken by LV - Formed heads pressure on convex side ASME BPVC VIII UG-33 and APP. 1, 217 Edition Torispherical heads External design pressure Hydrostatic head Calculation pressure Calculation temperature p D D p p T 55.6 55.6 65 F Design wall thickness Wall thickness allowance Allowance (corrosion) Effective thickness t e c 1 c 2 t.625.125.5 Outside diameter of the head skirt Type of head (1=Kloepperboden-type, 2=Korbbogen 3=torispherical, 4=hemispherical ) Torispherical head Outside calotte radius Knuckle radius D R r 145.3 3 72.63 5 Material K11789-SA-387-11-Class:1-Size: Spec. M. Yield Allowable stress Applicable material chart Modulus of elasticity Results Ratio S y S Fig E R /t 3489 17114 CS-2 2.512e+7 145.3 Factor (see material chart) B 893 Allowable external pressure Allowable pressure without hydrostatic head Required thickness Required thickness cl. allowances Remark P MEP t t+c 1 +c 2 55.72 55.72.499.624 Lauterbach Verfahrenstechnik GmbH 16 13.12.217

Equations UG-28 d) Step 4 UG-28 d) Step 5 Lauterbach Verfahrenstechnik GmbH 16 13.12.217

Example E4.4.5 - Elliptical Head Determe the maximum allowable external pressure (MAEP) for a 2:1 elliptical head considerg the followg design conditions. Vessel Data: Material = SA-516, Grade 7, Norm. Design Temperature = 3 F Inside Diameter = 9. Thickness = 1.125 Corrosion Allowance =.125 Modulus of Elasticity at Design Temperature = 28.3E+6 Yield Strength = 336 Lauterbach Verfahrenstechnik GmbH 17 13.12.217

E4.4.5 - Formed heads pressure on convex side ASME BPVC VIII UG-33 and APP. 1, 217 Edition Ellipsoidal heads under external pressure External design pressure Hydrostatic head Calculation pressure Calculation temperature p D D p p T 166.1 166.1 3 F Fal wall thickness Wall thickness allowance Allowance (corrosion) Effective thickness t e c 1 c 2 t 1.125.125 1 Outside diameter of the head skirt Outer height of crown (short semiaxis) D h 92.25 23.6 Material K27-SA-516-7-Class:-Size: Spec. M. Yield Allowable stress Applicable material chart E-Modulus S y S Fig E 3771 215 CS-2 2.9e+7 Results Ratio Factor (accordg to chart UG-33.1) Design radius of crown Ratio (= K D ) D /2h K R R /t 2.9 83.2 83.2 Factor Factor (see material chart).125/(r /t ) A B.156 13795 Allowable external pressure Allowable pressure without hydrostatic head Required thickness without allowance Required thickness cl. allowances Remark P MEP t t+c 1 +c 2 166.2 166.2.9999 1.125 Lauterbach Verfahrenstechnik GmbH 18 13.12.217

Equations UG-28 d) Step 4 UG-28 d) Step 5 Lauterbach Verfahrenstechnik GmbH 19 13.12.217

Appendix: Material documentation Section 2: Schale/UG28 Section 3: Boden/UG33 Section 4: Boden/UG33 Material specification: Regulation: ASMET1A:215Spec. No.: SA-516 Product: Plate Material code: K27-SA-516-7-Class:-Size: Short name: Carbon steel Design conditions and dimensions: Temperature [ C]: 148,8889 Pressure [bar]: 1 Thickness [mm]: 28,575 Outside diameter [mm]: 2343,15 Material values for test and design conditions: Test condition Operatg condition ---------------------------------------- Nomal design strength [N/mm²]: 138, 138, Safety factor: 1, 1, Allowable stress [N/mm²]: 138, 138, Modulus of elasticity [kn/mm²]: 22 195,667 Notes: G1 General Requirements Upon prolonged exposure to temperatures above 425 C, the carbide phase of carbon steel may be converted to graphite. See Nonmandatory Appendix A, A 21 and A 22. S1 Size Requirements For Section I applications, stress values at temperatures of 45 C and above are permissible but, except for tubular products 75 mm O.D. or less enclosed with the boiler settg, use of these materials at these temperatures is not current practice. T2 Time-Dependent Properties Allowable stresses for temperatures of 4 C and above are values obtaed from time dependent properties. -- Creep rupture strength for 1 h [MPa]: Tensile strength and yield stress at ambient temperature: Diam./ Tensile str. ReH Rupture Rupture Thick. Rm m Rm max elong. elong <= mm MPa MPa MPa längs % quer % ---------------+---------------+---------------+---------------+---------------+--------------- K-values as function of the temperature Diam./ Thickn. 5 C 1 C 15 C 2 C 25 C 3 C 35 C 4 C <= mm MPa MPa MPa MPa MPa MPa MPa MPa ---------+---------+---------+---------+---------+---------+---------+---------+--------- 138 138 138 138 136 128 11 K-values as function of the temperature Diam./ Thickn. 45 C 5 C 55 C 6 C 65 C 7 C 8 C <= mm MPa MPa MPa MPa MPa MPa MPa -----------+-----------+-----------+-----------+-----------+-----------+-----------+----------- 67.1 33.6 12.9 Lauterbach Verfahrenstechnik GmbH 18 13.12.217

Modulus of elasticity dependence of the temperature: Static modulus of elasticity [kn/mm²] at the temperature of -75-2 -125 25 1 15 2 25 3 35 4 45 5 55 ------+------+------+------+------+------+------+------+------+------+------+------+------+------ 29 216 212 22 198 195 192 189 185 179 171 162 151 137 Coefficient of lear expansion: Thermal coefficient of expansion between 2 C and Density 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C Heat Heat (2 C) cond. capac. kg/dm³ 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K W/Km J/kgK -------+-------+-------+-------+-------+-------+-------+-------+-------+-------+------- 7,85 12,1 12,7 13,3 13,8 14,4 - - - Section 5: Schale/UG28 Material specification: Regulation: ASMET1A:215Spec. No.: SA-542 Product: Plate Material code: K31835-SA-542-D-Class:4a-Size: Short name: 2.25Cr-1Mo-V Design conditions and dimensions: Temperature [ C]: 176,67 Pressure [bar]: 39,44 Thickness [mm]: 71,44 Outside diameter [mm]: 3926,84 Material values for test and design conditions: Test condition Operatg condition ---------------------------------------- Nomal design strength [N/mm²]: 168, 168, Safety factor: 1, 1, Allowable stress [N/mm²]: 168, 168, Modulus of elasticity [kn/mm²]: 2 196,656 Notes: -- Creep rupture strength for 1 h [MPa]: Tensile strength and yield stress at ambient temperature: Diam./ Tensile str. ReH Rupture Rupture Thick. Rm m Rm max elong. elong <= mm MPa MPa MPa längs % quer % ---------------+---------------+---------------+---------------+---------------+--------------- K-values as function of the temperature Diam./ Thickn. 5 C 1 C 15 C 2 C 25 C 3 C 35 C 4 C <= mm MPa MPa MPa MPa MPa MPa MPa MPa ---------+---------+---------+---------+---------+---------+---------+---------+--------- 168 168 168 168 165 159 153 K-values as function of the temperature Diam./ Thickn. 45 C 5 C 55 C 6 C 65 C 7 C 8 C <= mm MPa MPa MPa MPa MPa MPa MPa -----------+-----------+-----------+-----------+-----------+-----------+-----------+----------- 145 137 Lauterbach Verfahrenstechnik GmbH 19 13.12.217

Modulus of elasticity dependence of the temperature: Static modulus of elasticity [kn/mm²] at the temperature of 26 37 48 425 2 15 ---------------+---------------+---------------+---------------+---------------+--------------- 186 169 143 157 2 2 Coefficient of lear expansion: Thermal coefficient of expansion between 2 C and Density 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C Heat Heat (2 C) cond. capac. kg/dm³ 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K W/Km J/kgK -------+-------+-------+-------+-------+-------+-------+-------+-------+-------+------- 12,1 12,7 13,3 13,8 14,4 - - - Section 6: Schale/UG28 Material specification: Regulation: ASMET1A:215Spec. No.: SA-542 Product: Plate Material code: K31835-SA-542-D-Class:4a-Size: Short name: 2.25Cr-1Mo-V Design conditions and dimensions: Temperature [ C]: 176,6667 Pressure [bar]: 39,38 Thickness [mm]: 71,4375 Outside diameter [mm]: 3926,84 Material values for test and design conditions: Test condition Operatg condition ---------------------------------------- Nomal design strength [N/mm²]: 168, 168, Safety factor: 1, 1, Allowable stress [N/mm²]: 168, 168, Modulus of elasticity [kn/mm²]: 2 196,66 Notes: -- Creep rupture strength for 1 h [MPa]: Tensile strength and yield stress at ambient temperature: Diam./ Tensile str. ReH Rupture Rupture Thick. Rm m Rm max elong. elong <= mm MPa MPa MPa längs % quer % ---------------+---------------+---------------+---------------+---------------+--------------- K-values as function of the temperature Diam./ Thickn. 5 C 1 C 15 C 2 C 25 C 3 C 35 C 4 C <= mm MPa MPa MPa MPa MPa MPa MPa MPa ---------+---------+---------+---------+---------+---------+---------+---------+--------- 168 168 168 168 165 159 153 K-values as function of the temperature Diam./ Thickn. 45 C 5 C 55 C 6 C 65 C 7 C 8 C <= mm MPa MPa MPa MPa MPa MPa MPa -----------+-----------+-----------+-----------+-----------+-----------+-----------+----------- 145 137 Lauterbach Verfahrenstechnik GmbH 2 13.12.217

Modulus of elasticity dependence of the temperature: Static modulus of elasticity [kn/mm²] at the temperature of 26 37 48 425 2 15 ---------------+---------------+---------------+---------------+---------------+--------------- 186 169 143 157 2 2 Coefficient of lear expansion: Thermal coefficient of expansion between 2 C and Density 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C Heat Heat (2 C) cond. capac. kg/dm³ 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K W/Km J/kgK -------+-------+-------+-------+-------+-------+-------+-------+-------+-------+------- 12,1 12,7 13,3 13,8 14,4 - - - Section 7: Boden/UG33 Material specification: Regulation: ASMET1A:215Spec. No.: SA-387 Product: Plate Material code: K11789-SA-387-11-Class:1-Size: Short name: 1.25Cr-.5Mo-Si Design conditions and dimensions: Temperature [ C]: 343,33 Pressure [bar]: 3,83 Thickness [mm]: 15,88 Outside diameter [mm]: 369,62 Material values for test and design conditions: Test condition Operatg condition ---------------------------------------- Nomal design strength [N/mm²]: 118, 118, Safety factor: 1, 1, Allowable stress [N/mm²]: 118, 118, Modulus of elasticity [kn/mm²]: 24 183,42 Notes: S4 Size Requirements For Section I applications, stress values at temperatures of 625 C and above are permissible but, except for tubular products 75 mm O.D. or less enclosed with the boiler settg, use of these materials at these temperatures is not current practice. T4 Time-Dependent Properties Allowable stresses for temperatures of 48 C and above are values obtaed from time dependent properties. -- Creep rupture strength for 1 h [MPa]: Tensile strength and yield stress at ambient temperature: Diam./ Tensile str. ReH Rupture Rupture Thick. Rm m Rm max elong. elong <= mm MPa MPa MPa längs % quer % ---------------+---------------+---------------+---------------+---------------+--------------- K-values as function of the temperature Diam./ Thickn. 5 C 1 C 15 C 2 C 25 C 3 C 35 C 4 C <= mm MPa MPa MPa MPa MPa MPa MPa MPa ---------+---------+---------+---------+---------+---------+---------+---------+--------- 118 118 118 118 118 118 118 Lauterbach Verfahrenstechnik GmbH 21 13.12.217

K-values as function of the temperature Diam./ Thickn. 45 C 5 C 55 C 6 C 65 C 7 C 8 C <= mm MPa MPa MPa MPa MPa MPa MPa -----------+-----------+-----------+-----------+-----------+-----------+-----------+----------- 114 74.7 36.5 17.6 8.8 Modulus of elasticity dependence of the temperature: Static modulus of elasticity [kn/mm²] at the temperature of 65-75 -2-125 25 1 15 2 25 3 35 4 45 5 55 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+----- 15 21 218 213 24 2 197 193 19 186 183 179 174 169 164 Static modulus of elasticity [kn/mm²] at the temperature of 6 7 ------------------+------------------+------------------+------------------+------------------ 157 142 Coefficient of lear expansion: Thermal coefficient of expansion between 2 C and Density 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C Heat Heat (2 C) cond. capac. kg/dm³ 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K W/Km J/kgK -------+-------+-------+-------+-------+-------+-------+-------+-------+-------+------- 7,85 12,1 12,7 13,3 13,8 14,4 - - - Section 8: Boden/UG33 Material specification: Regulation: ASMET1A:215Spec. No.: SA-516 Product: Plate Material code: K27-SA-516-7-Class:-Size: Short name: Carbon steel Design conditions and dimensions: Temperature [ C]: 148,89 Pressure [bar]: 11,45 Thickness [mm]: 28,58 Outside diameter [mm]: 2343,15 Material values for test and design conditions: Test condition Operatg condition ---------------------------------------- Nomal design strength [N/mm²]: 138, 138, Safety factor: 1, 1, Allowable stress [N/mm²]: 138, 138, Modulus of elasticity [kn/mm²]: 22 195,666 Notes: G1 General Requirements Upon prolonged exposure to temperatures above 425 C, the carbide phase of carbon steel may be converted to graphite. See Nonmandatory Appendix A, A 21 and A 22. S1 Size Requirements For Section I applications, stress values at temperatures of 45 C and above are permissible but, except for tubular products 75 mm O.D. or less enclosed with the boiler settg, use of these materials at these temperatures is not current practice. T2 Time-Dependent Properties Allowable stresses for temperatures of 4 C and above are values obtaed from time dependent properties. Lauterbach Verfahrenstechnik GmbH 22 13.12.217

-- Creep rupture strength for 1 h [MPa]: Tensile strength and yield stress at ambient temperature: Diam./ Tensile str. ReH Rupture Rupture Thick. Rm m Rm max elong. elong <= mm MPa MPa MPa längs % quer % ---------------+---------------+---------------+---------------+---------------+--------------- K-values as function of the temperature Diam./ Thickn. 5 C 1 C 15 C 2 C 25 C 3 C 35 C 4 C <= mm MPa MPa MPa MPa MPa MPa MPa MPa ---------+---------+---------+---------+---------+---------+---------+---------+--------- 138 138 138 138 136 128 11 K-values as function of the temperature Diam./ Thickn. 45 C 5 C 55 C 6 C 65 C 7 C 8 C <= mm MPa MPa MPa MPa MPa MPa MPa -----------+-----------+-----------+-----------+-----------+-----------+-----------+----------- 67.1 33.6 12.9 Modulus of elasticity dependence of the temperature: Static modulus of elasticity [kn/mm²] at the temperature of -75-2 -125 25 1 15 2 25 3 35 4 45 5 55 ------+------+------+------+------+------+------+------+------+------+------+------+------+------ 29 216 212 22 198 195 192 189 185 179 171 162 151 137 Coefficient of lear expansion: Thermal coefficient of expansion between 2 C and Density 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C Heat Heat (2 C) cond. capac. kg/dm³ 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K 1E-6/K W/Km J/kgK -------+-------+-------+-------+-------+-------+-------+-------+-------+-------+------- 7,85 12,1 12,7 13,3 13,8 14,4 - - - Lauterbach Verfahrenstechnik GmbH 23 13.12.217