Training Ion Exchanger for demineralizing. Hans-Jürgen Wedemeyer Technical Manager Liquid Purification Technologies

Similar documents
Technical Data. Typical Chemical & Physical Characteristics

It is especially suitable for use in:

) > Lead > Copper > Zinc > Nickel > Cadmium > Cobalt >> Calcium > Magnesium > Strontium > Barium >>> Sodium.

containing waste water out of PCB production» removal of iron (II), nickel and zinc from 5 % gluconate containing metal working liquid

Lewatit MonoPlus M 500 OH is especially applicable for:

DOWEX Ion Exchange Resins

PRODUCT INFORMATION LEWATIT MonoPlus MP 800

PRODUCT INFORMATION LEWATIT MonoPlus MP 600

For the demineralization of water in the production of ultrapure water.

Lewatit MonoPlus SM 1000 KR is particularly suitable for the:

WTP Design by Computer. David Hayhurst, Purolite International

) > Lead > Nickel > Zinc > Cadmium > Iron(II) > Beryllium > Manganese > Calcium > Magnesium > Strontium > Barium >>> Sodium.

LEWATIT S 7468 PRODUCT INFORMATION

Lewatit VP OC 1073 is especially suitable for the following applications:

Lewatit A 8072 is particularly suitable for the following applications:

This document contains important information and must be read in its entirety. 1/4. Edition: Previous Edition:

Lewatit C 249 is supplied in the sodium form. Lewatit C 249 is also available in the hydrogen form, designated as Lewatit C 267.

is not required. This document contains important information and must be read in its entirety. Edition: Previous Edition: /4

C-100H Strong Acid Cation Exchange Resin in Hydrogen Form (For use in water demineralization)

BOILER FEED WATER AND ITS TREATMENTS

Membrane Protection Resins Ion Exchange Resins and Reverse Osmosis in Partnership

Process water quality factors

Lewatit S 6268 (in hydroxide form) is especially suitable for :

» cartridges for household filter systems in combination with activated carbon.

Water supplied by Marafiq does not meet the process requirements.

PRODUCT INFORMATION LEWATIT S 1467

Acid conductivity basics and some experiences

REMOVAL OF HARDNESS BY PRECIPITATION

Lenntech. Ion Exchange Resin Analysis Kit. DOW Ion Exchange Resins DIRECTOR SM Service

Treatment Technologies

Lecture 1: Introduction

DOWEX UPCORE Ion Exchange Resins Retrofit of Demineralizer with UPCORE System Cuts Chemical Costs by 50%

5.B Generation of pharmaceutical water Author: Michael Gronwald Co-Author: Dr. Ralph Gomez / Up06

Presented by: Jeff Freitag, The Water Guy Jon Tiegs, General Manager

By C.F. Chubb Michaud, CWS-VI

C-100E Strong Acid Cation Exchange Resin (For use in water softening applications)

For the production of ultrapure water (> 18 MOhm*cm at 25 C).

Boiler Water Chemistry: Getting From the Source to the Boiler Colleen M. Layman, PE

A-300, A-300E Strong Base Type II Anion Exchange Resin

For the production of high-purity water (> 18 MOhm*cm at 25 C) as non-regenerable mixed bed.

MEASUREMENT OF SODIUM IN WATER/STEAM CIRCUITS

SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY COIMBATORE First Year BE/B.TECH ( ) Engineering Chemistry- I

TEAMS Competition 2017 Scenario # 2. Water Treatment. From Potentially Poisonous to Potable through Purification

» acid removal and simultaneous decoloriation of solutions of organic products such as sugar, gelatin, glycerin, grape must, fruit concentrates, etc.

Portfolio of Lewatit ion exchange resins

Evaporative Condenser Passivation. Cameron Klein Strand Associates, Inc.

Lewatit TP 272 is designed primarily for the following application: » Cobalt electrolyte purification (Cobalt extraction from Nickel solution)

MANUAL DUAL MEDIA FILTER (MILD STEEL)

For the production of ultrapure water (> 18 MOhm*cm at 25 C).

Revolution. NON-Chemical Treatment. Technology. for Scale Control. 500 different Applications NON TOXIC FOR POLLUTION PREVENTION AND GREEN TECHNOLOGY

1. Scaling. H.O.: H-5/21, KRISHNA NAGAR, DELHI Tel.: , Fax:

UNIT-I WATER TECHNOLOGY

CHLOR-ALKALI INDUSTRY

Kirill Ukhanov, GE Water & Process Technologies, Russia, describes how advanced membrane technology is helping a Russian refinery to meet stringent

0UltraClean. Ion Exchange Resins for Ultra-pure Water in the Electronics and Semiconductor Industry

WATER CONDITIONING & ENVIRONMENTAL PROTECTION

Description. Characteristics

Understanding Pretreatment. WesTech Engineering, Inc. Salt Lake City, Utah, USA

ADVANCED SOFTENING MATERIAL FOR PROBLEM WATER

Sustainability in commercial laundering processes. Module 1 Usage of water. Chapter 3b. Water softening

PRESENTATION OF CONDENSATE TREATMENT

BOILER WATER TREATMENT FOR KILN DRY OPERATIONS Mike Wieland. Technical Presentation

Dow Liquid Separations. DOWEX MARATHON 11 Ion Exchange Resin. Engineering Information. March 2006

The evolution of high purity water production

Lenntech. Tel Fax

ION EXCHANGE SYSTEMS

GS 300. Description. Applications. Characteristics

TSK-GEL BioAssist Series Ion Exchange Columns

LANXESS Technical Training & Seminar. Reverse Osmosis & Ion Exchange Resin Applications

Boiler/Cooling Water Processes and Parameters

SHORT BED ION EXCHANGE TECHNOLOGY PRODUCES ULTRAPURE WATER WITHOUT USING A MIXED BED

Local Water Contaminants

METALS AND THEIR COMPOUNDS

using EDI to meet the needs of pure water production

Lewatit GF 505 is a medium basic macroporous anion exchange resin with beads of uniform size and high mechanical and osmotic stability.

WATER TREATMENT COMPONENTS. Ion exchange resins and filtering media

WATER TREATMENT COMPONENTS. Ion exchange resins and filtering media

Lenntech Tel Fax

This paper was presented at IEX 96 in Cambridge,UK on July 15 th 1996 and is the copyright of the SCI

Toward Cleaner Production technologies in surface treatment of metals

This document contains important information and must be read in its entirety. Edition: Previous Edition: /4

ENGINEERING BULLETIN Supergel SGA550OH

WATER TREATMENT COMPONENTS. Ion exchange resins and filtering media

Western BLRBAC Review/Refresher of Tappi Water Quality Guidelines and Contamination Procedures for mill boilers operating on high purity water

Lecture 6: Softening

MAVEA Professional. Basics on water

Optimizing Steam and Cooling Systems for Reliability and Sustainability. Presented By: Kevin Emery

AD26 Systems for Iron, Manganese, Sulfide and Arsenic Removal

Lenntech. Dow Liquid Separations. DOWEX Ion Exchange Resins. The Advantages of Uniform Particle Sized Ion Exchange Resins.

Water for Instrument Processing

We have softening plant for boiler so water treatment chemicals is not require. We used 90 % condensate water so no need of any chemicals treatment

Making feed water for you! Advantage. Protecting any Water Treatment System against. Scaling. a Water Company WAT C H WAT E R

ENVIRONMENTAL ENGINEERING LECTURE 3: WATER TREATMENT MISS NOR AIDA YUSOFF

Water Treatment Solutions A - Z

BOILER WATER TREATMENT TECHNOLOGY. DSS HEAD OFFICE - SERPONG May 2008

PERFORMANCE ANALYSIS OF BENCHMARK PLANT FOR SELECTIVE LITHIUM RECOVERY FROM SEAWATER

performance of the ultrapure make-up system at Turkey Point Nuclear Power Plant

PURE RESIN PMB Typical Physical & Chemical Characteristics R-SO 3 - H + R 4 -N-OH - Particle Size Range +1,2 mm < 5%, - 0,3 mm < 1%

Membrane Technology: From Manufacture to. May Production

SST-60 Salt Saving Technology Softening Resin

Transcription:

Training Ion Exchanger for demineralizing Hans-Jürgen Wedemeyer Technical Manager Liquid Purification Technologies

Main industries for water treatment with IX Fossil Power plants Nuclear Power plants Paper industry Fertilizer industry Galvanic industry Household softening Waste water treatment Chemical production Mining Sugar industry Semiconductor 2 Lewatit Training Hans Jürgen Wedemeyer

Water treatment with ion exchangers in power plants Fossil applications Turbine condensates Process condensates (working steam) Long distance heating condensates Make up water NPP applications Primary loop CVCS (chemical and volume control system) Secondary loop (turbine condensate) Steam generator (blow down) Spent fuel treatment Stator cooling Rad waste water Make up water 3 Lewatit Training Hans Jürgen Wedemeyer

Optimized design of make up water and condensate polishing units is crucial for a safe and economic operation of a power plant Scheme of a typical fossil condensate plant LewaPlus software Feed water tank Feed water pump HP Super heater Turbine s MP LP Calculation program containing several modules able to design an optimized solution to treat these process flows High pressure pre heater Boiler Condenser Raw water Make up water Low pressure pre heater Condenser pump Condensate treatment www.lpt.lanxess.com 4

Alkalization concepts for protection of the CP-cycle against corrosion AVT (all volatile treatment alkalization up to ph >9 ) NH 3 (Main alkalization in Europe) Hydrazine N 2 H 4 (Remove O 2 and results in CP application to NH 3 ) Morpholine C 4 H 9 NO Cyclohexamine C 6 H 11 NH 2 and others OT (oxygenated treatment; alkalization up to ph 8-9 + 150 ppb O 2 ) NH 3 and O 2 NT (neutral ph 7) Only NH 3 neutralization to achieve ph 7 CT /PT (treatment with alkali hydroxide or phosphate ph 7 up to 10) CT (NaOH for food applications ) PT (Tri sodium phosphate) 5 Lewatit Training Hans Jürgen Wedemeyer

Different Boiler types (High or Low pressure and temperature) Necessary make water quality is depending on system ) Once-through boiler type: Sulzer boiler 1 SPW-pump 2 SPW-heater 3 Evaporator 6 superheater 7 to the turbine 9 Water Separator Possible to remove salt from the CP cycle Benson boiler Sulzer boiler Natural circulation boiler Forced circulation boiler 1 SPW-pump 2 SPW-heater 3 Evaporator 6 super heater 7 to the turbine Highest water quality is needed 1 SPW-pump 2 SPW-heater 3 Evaporator 6 super heater 7 to the turbine 9 Water Separator Possible to remove salt from the CP cycle 1 SPW-pump 2 SPW-heater 3 Evaporator 4 downpipes 5 drum 6 superheater 7 to the turbine 1 SPW-pump 2 SPW-heater 3 Evaporator 4 downpipes 5 drum 6 superheater 7 to the turbine 8 pump 6 Lewatit Training Hans Jürgen Wedemeyer

Without or a bad demineralization water feeds in process problems Example: Carbonate precipitation in piping and turbine damages 7 Lewatit Training Hans Jürgen Wedemeyer

Ion removal from water is necessary For capacity calculation the conversion from mol/l in meq/l is necessary Anode Cathode + - Common salt: ( NaCl ) Cl - Na + Cation Anion Na + Cl - K + NO - 3 NH + 4 SO 2-4 Ca 2+ HCO - 3 Mg 2+ SiO 2 Al 3+ PO 3-4 1 mol Na + = 23g/mol = 1eq/l 1 mol Cl - = 35g/mol = 1eq/l 1 mol Ca 2+ = 40g/mol = 2eq/l 1 mol SO 4 2- = 96g/mol = 2eq/l Total capacity : 1 Liter Cation exchanger M+ S108 = 2,2eq/l 1 Liter Anion exchanger M+ M500 = 1,3eq/l 8 Lewatit Training Hans Jürgen Wedemeyer

Specific conductivity of different solved salts Demineralisation / Recirculation of Rinse Water Conductivity of various Solutions vs Concentration 50 45 40 HCI H 2 SO 4 NaOH MgCl 2 CaCl 2 µs/cm Raw water ( river or well water) 150-1500 Demineralized water 0,1-2 Ultra pure water <0,060 Theoretical zero point 0,055 35 NaCl Conductivity [µs/cm] Conductivity 30 Sulfate salts 25 NH 3 Substance Conductivity Constant [µs/cm/(mg/l)] 20 HCI 10 H 2 SO 4 7,3 NaOH 5,4 15 MgCl 2 CaCl 2 2,4 2,13 10 NaCl MgSO 4 1,94 1,84 5 CO 2 CaSO 4 Na 2 SO 4 1,73 1,65 0 0 2 4 6 8 10 12 14 16 18 20 Concentration [mg/l] 9 Lewatit Training Hans Jürgen Wedemeyer

Datasheet Lewatit M+ S108H S 108H 10 Lewatit Training Hans Jürgen Wedemeyer

Composition of natural water Salt content and impurities ( e.q.toc) are strong depending on location Cation Anion Pretreatment of raw water Total hardness (TH) Ca 2+ Mg 2+ Na + HCO3 - Cl - Temporary hardness Total alkalinity ( possibly OH- and CO 3 2- ) This referred to m-value ( alkalinity to methyl-orange ) Permanent hardness Typical water analysis (LewaPlus) - Flocculation: - Lime dealkalization - Fe/Al salts - Mechanical filtration: - Hydroanthracite - Gravel - Scavenger: - Activated carbon - Adsorber resin K + NO3 - NH4 + SO4 2- SiO2 possibly free CO2 Organics Solids 11 Lewatit Training Hans Jürgen Wedemeyer LewaPlus is able to calculate existing and new demineralization plants

Demineralisation with a strong acid cation exchanger Decationisation: one step Ca 2+ HCO 3 2- Ca 2+ HCO 3 2- S 108H Mg 2+ Na + Na + K + NH + NH + SO 2-4 4 SiO2 Cl - NO 3 - SAC H + M+ S108 H Mg 2+ H Na + SiO2 Cl - K + NO - 3 NH + 4 SO 2-4 Free bases water (Mineral acid) 500µS/cm Organics 1000µS/cm 12 Lewatit Training Hans Jürgen Wedemeyer

Demineralisation - removal of all anions with SBA - one step Water coming from cation exchanger Ca 2+ HCO 3 2- SBA Mg 2+ H + Na + Cl - OH - H + OH - K + NH 4 + NO 3 - SO 4 2- M+M500 M 500OH SiO2 1000µS/cm SiO2 Organics <1,0 µs/cm 13 Lewatit Training Hans Jürgen Wedemeyer

Production of Ion exchangers 14 Lewatit Training Hans Jürgen Wedemeyer

Gel / Macroporous Gel type Gel type Surface Macroporous type Macroporous type Surface 15 Lewatit Training Hans Jürgen Wedemeyer

Production of Ion Exchange Resins Monomere SAC ( Lewatit MonoPlus S 108 ) [ ] n + Starter n Functionalization SO 3 H styrene DVB SBA Tpye I ( Lewatit MonoPlus M 500 ) Crosslinking agent (+ Porogen gives a macroporoes structure) Crosslinked polystyrene CH 3 N + Cl - H 3 C CH 3 Base for most IX-Materials: Crosslinked Polystyrene 16 Lewatit Training Hans Jürgen Wedemeyer

Structure of different polymers for Ion Exchanger Resins Stryrene/Divinylbenzene Acrylates (based on Acrylnitril and Acrylate, Carbons in red) "Amidate" (weak basic, A8072) SBA ( A8071, A8074) 17 Lewatit Training Hans Jürgen Wedemeyer

Production Lewatit resin Polystyrene Polyacrylate 18 Lewatit Training Hans Jürgen Wedemeyer

Common types of Ion Exchange Resins for make up water weakly-basic-resin (WBA) CH 2 - N(CH 3 ) 2 H Cl SO 3 Na + Strongly-acidic-Resin (SAC) CH 2 N + (CH 3 ) 3 Cl - CO 2 Na + strongly-basic-resin-type 1 (SBA1) weakly-acidic-resin (WAC) Ethanol CH 2 CH 2 OH CH 2 - N(CH 3 ) 2 H Cl CH 2 N + CH 2 N + CH Cl - 3 (CH 3 ) 3 Cl - CH 3 middle-basic-resin (MBA) strongly-basic-resin-type 2 (SBA2) 19 Lewatit Training Hans Jürgen Wedemeyer

Capacity of different Ion exchanger Examples: Total capacity Operating capacity with a typical regeneration amount* - Gel strongly acidic (SAC) 2 eq/l 1,2 eq/l - weakly acidic (WAC) 4 eq/l 2,0 eq/l - gel strongly basic (SBA Type1) 1 eq/l 0,5 eq/l - weakly basic (WBA) 2 eq/l 1,0 eq/l Operating capacity is depending on: Water analysis; ph; temperature specific and metric flow rate resin type and quality regeneration amount and kind of chemical break through point (specified water quality) Kind of 20 Lewatit Training Hans Jürgen Wedemeyer

Production of Anion Exchanger ( WBA/SBA ) Different ways CH 2 CH CH 2 H N H ZII-Stufe Polyvinyl Benzylamine Primary Amine Chloromethylation Leuckart Wallach Reaction. CH 2 CH CH 2 Quaternary Amine Lewatit MonoPlus M500 Type I-Resin CH 3 N+ Cl - CH 3 CH 2 CH CH 2 3 DMEA CH CH 2 N CH 2 CH 3 3 N+ CH 3 CH 3 CH CH 2 CH CH 2 ZIII - Stufe Tertiäres Amin Lewatit MP62 8/60, 0,8 bas. Gr./Aromat Quaternary Amine Lewatit MonoPlus M600 Typ II-Resin OH Cl- Teilquarterniert Lewatit MP64 (6/64) Substitution: 1,15 basische Gr./aromat. Kern (DVB/Styrol) 21 Lewatit Training Hans Jürgen Wedemeyer

Further commercially available resin types C H 2 - N ID A -R e s in (L e w a tit T P 2 0 7 X L ) C H 2 -C O -O N a C H 2 -C O -O N a A M P A -R e s in (L e w a tit T P 2 6 0 ) C H 2 - N C H 2 -P -O N a O N a H S H C = N H _ O = T h iu re a -R e s in (L e w a tit T P 2 1 4 ) C H 2 - N H... m a c ro p o ru s a d s o rb e r re s in (L e w a tit O C 1 0 6 4 ) T rip ro p y la m in e -R e s in (IO N A C S R 7 ) C H 2 - N (C H 2 -C H 2 -C H 3 ) 3 C l C H 2 - N B is -P ic o ly l-a m in -H a rz (L e w a tit T P 2 2 0 ) C H 2 C H 2 N N T h io le -R e s in (IO N A C S R 4 ) C H 2 - S H m ic ro p o u ru s c a rb o n iz e d re s in (L e w a tit A F 5 ) C H 3 O H H O H O H C H 2 -N -C H 2 -C - C - C - C -C H 2 O H H O H H H M e th y l-g lu c a m in e -R e s in (L e w a tit M K 5 1 ) C H 3 -C H 2 C H 3 -C H 2 -C H 2 -C H 2 -C H 2 -C H 2 - O C H 3 -C H 2 -C H 2 -C H 2 -C H 2 -C H 2 - O C H 3 -C H 2 L e v e x tre l H a rz D 2 E H P A -d o p e d (L e w a tit O C 1 0 2 6 ) P O O H C H 2 - N (C H 3 ) 2 iro n d o p e d w e a k ly b a s ic re s in (L e w a tit F O 3 6 ) F e O (O H ) 22 Lewatit Training Hans Jürgen Wedemeyer

Two technologies for production of Lewatit polymer Heterodisperse Monodisperse 23 Lewatit Training Hans Jürgen Wedemeyer

Production flow Lewatit standard resins Suspension-Polymerisation 100 % Bead size distribution (Schema) Styrene + DVB 50 Organic and aqueous phase Polymerisation Heterodisperses Copolymerisat 0,30 0,55 1,20 Bead size ( mm ) Functionlalization cation exchange resin Functionalization anion exchange resin ( Lewapol ) 24 Lewatit Training Hans Jürgen Wedemeyer Bead size distribution between 0,3 1,2 mm

Production flow Lewatit MonoPlus Polymerisation 100 % Bead size distribuion (Schema) 50 Aqueos phase Vibration plate Organic phase 0,40 0,50 0,60 0,55 Bead size ( mm ) Functionalization cation exchange resin Styrene-DVB Monodispers Copolymerisat ( Lewapol ) Functionalization anion exchange resin 25 Lewatit Training Hans Jürgen Wedemeyer

Lewatit Monodispersed Resins Better monodispersity results in advantages Through State-of-the-Art Most Modern Production Technology 100 50 % 100 50 0,30 0,55 1,20 0,40 0,50 0,60 Size (mm) Size (mm) Particle Size Distribution Heterodispersed Monodispersed % Higher Operating Capacity Faster Kinetics Less Fine and Less Coarse Beads Low Pressure Drop Higher Mechanical Stability Higher Osmotic Shock Stability 26 Lewatit Training Hans Jürgen Wedemeyer

Lewatit Monodispersed Resins Better operation issues Outlet Water Outlet Water Regenerated Regenerated Wide Ion Exchange Zone Narrow Ion Exchange Zone Exhausted Exhausted Inlet Water Inlet Water Heterodispersed Monodispersed 27 Lewatit Training Hans Jürgen Wedemeyer

The spectrum of particle sizes 750 µm 590µm 350µm 160 µm 37 µm 28 Lewatit Training Hans Jürgen Wedemeyer

Production Bitterfeld 29 Lewatit Training Hans Jürgen Wedemeyer

30 Lewatit Training Hans Jürgen Wedemeyer Quality

Fines and broken beads are a important quality parameter 0,2-0,3 mm 31 Lewatit Training Hans Jürgen Wedemeyer

Stability tests Osmotic shock Roller Test Piston test Rolled 10 times over 40 Cycles 1 cycles = 4 steps 1 step 750 ml NaOH 2 step 5000 ml Demineralisation water 3 step 750 ml HCl 4 step 5000 ml Demineralisation water 1000 times Presses and relax with water. Simulation of a working filter. 32 Lewatit Training Hans Jürgen Wedemeyer Each Lewatit production lot is be proofed for stability quality!

Lewatit Monodispersed Resins Higher osmotic shock stability Ion exchange resins swell/shrink due to ionic form change during operation Heterodispersed Resistance to the internal force within resin bead is critical to avoid bead breakage Accelerating evaluation alternately with caustic and acid (2) DI Water (3) 6% HCl Monodispersed 40 Cycles (1) 4% NaOH (4) DI Water Higher Osmotic Shock Stability 33 Lewatit Training Hans Jürgen Wedemeyer

Possible reasons for resin stability decreasing Oxidation attacks (Radicals) High flow rates (Exhaustion) High pressure loss (Blocked nozzles; fines) Mechanical stress (External regeneration) Osmotic shock (Regeneration; Exhaustion) Resin swelling (Regeneration; Exhaustion) M+ S108 Na + to H + form max. 10% CNP 80 H + to Na + form max. 60% / H + to Ca 2+ form max 2% M+ M500 Cl - to OH - form max. 20% M+ MP64 Free base to Cl - max. 24% % 200 150 100 50 0 160% swelling M+ S108 Na M+ S108 H CNP 80 H CNP 80 Na CNP 80 Ca M+ MP 68 M+ MP M+ MP M+ M 500 Cl M+ M500 OH free base/ Cl 68 free 68 Cl/Cl base/ OH 34 Lewatit Training Hans Jürgen Wedemeyer

High stability leads to a long shelf life Higher life time Less operating cost No operational problems % WPB* * Whole perfect beads 35 Lewatit Training Hans Jürgen Wedemeyer

SAC Oxidation stability Volume increasing after treatment with H 2 O 2 Radical attack Competitor SAC 50 ml to 86 ml M+ S108 50 ml to 65 ml 36 Lewatit Training Hans Jürgen Wedemeyer

High stability (Original and Osmotic shock) Why is that so important? Heterodispers material after 300 cycles Broken beads build a lot of finest particle Problems : Capacity loss through lost material Low throughput with less production capacity High pressure loss through clog nozzles. Arising resin damage Further resin damage through high pressures Monodisperse resin Antwerpen street 2 after 900 cycles Transfer from SAC material into the anion vessel. High conductivity behind Anion filters High salt loading to the following mixed bed Sodium leakage High TOC leakage through oxidize finest resin particle 37 Lewatit Training Hans Jürgen Wedemeyer

Demineralization plant Antwerpen Monodispers shows higher life time 120 100 Whole perfect beads % 80 60 40 20 Whole Perfect Beads (M+ S 108) 0 1 32 47 69 112 150 207 255 309 400 450 503 560 605 706 776 997 1100 Whole perfect beads (Standard SAC) Cycles 38 Lewatit Training Hans Jürgen Wedemeyer

Building of Polystyrene Sulfuric acid (PSS) Leaching Leaching SAC 39 Lewatit Training Hans Jürgen Wedemeyer

PSS leaching measured at 225 nm S108H/sample1/sample2 S108H/sample1/sample2 S108H/sample1/sample2 S108H/sample1/sample2 S108H/sample1/sample2 Red-color-test 40 Lewatit Training Hans Jürgen Wedemeyer

PSS leaching SAC Resin from some producers showed a bad quality Storage trial (Leaching) SAC IX H Form 4 3,5 3 Competitor 1 DVB 8% Competitor 1 DVB 10% Competitor 2 DVB 8% Competitor 2 DVB 10% M+ S 108 H DV B 8% M+ S 200 KR DVB 10% Competitor 3 DVB 8% Extinktion 225 nm 2,5 2 1,5 1 0,5 0 0 2 4 6 8 10 12 14 Storage time in weeks 41 Lewatit Training Hans Jürgen Wedemeyer

SBA Fouling possibility Bad resin quality Iron + temperature attack the SAC and results to high molecular Polystyrene sulfuric acid SAC leaching 42 Lewatit Training Hans Jürgen Wedemeyer

SBA capacity for PSS is limited - Removing the PSS from the SBA is very difficult 12 Influence PSS leakage SAC Coductivity [µs/cm] 10 8 6 4 2 PSS peaks after SBA resin PSS peaks after Mixed bed resin 0 0 5 10 15 20 25 30 35 40 45 Exhaustion [min] 43 Lewatit Training Hans Jürgen Wedemeyer

Quality Every produced resin batch will be checked Test catalog 44 Lewatit Training Hans Jürgen Wedemeyer

45 Lewatit Training Hans Jürgen Wedemeyer Different Applications

Composition of natural water Cation Anion Pretreatment of raw water Total hardness (TH) Ca 2+ Mg 2+ Na + HCO3 - Cl - Temporary hardness Total alkalinity ( possibly OH- and CO32- ) This referred to m-value ( alkalinity to methyl-orange ) Permanent hardness Typical water analysis (LewaPlus) - Flocculation: - Lime dealkalization - Fe/Al salts - Mechanical filtration: - Hydroanthracite - Gravel - Scavenger: - Activated carbon - Adsorber resin K + NO3 - NH4 + SO4 2- SiO2 possibly free CO2 Organics Solids 46 Lewatit Training Hans Jürgen Wedemeyer LewaPlus is able to calculate existing and new demineralization plants

Softening Removing of total hardness Ca 2+ HCO 3 2- S 1567 Ca 2+ HCO 3 2- Mg Mg 2+ 2+ Na + Na + Cl - Na + Mg 2+ Na + Na + Cl - K + NO 3 - K + NO 3 - NH + NH 4 + SO 4 2- NH 4 + SO 4 2- SiO2 Organics SiO2 Organics 47 Lewatit Training Hans Jürgen Wedemeyer

Softening Removing of total hardness 48 Lewatit Training Hans Jürgen Wedemeyer

Dealkalisation with a weak acid cation exchanger alkalinity CO 2 Exchange of alkaline earth against H + Total hardness Ca 2+ Mg 2+ HCO 3 2- Permanent hardness H + 2 CO 3 -> H HCO + 2 O + 2 3 Ca2+ Mg2+ HCO 3 2- Na + K + NH 4 + Cl - NO 3 - SO 4 2- WAC H + Na + K + NH 4 + Cl - NO 3 - SO 4 2- SiO2 Organics CNP80 SiO2 Organics 49 Lewatit Training Hans Jürgen Wedemeyer

Decarbonisation with a pitcher for drinking water Removing of temporary hardness and some organics WAC 50 Lewatit Training Hans Jürgen Wedemeyer

Demineralisation with a strong acid cation exchanger Decationisation: one step Ca 2+ HCO 3 2- Ca 2+ HCO 3 2- Mg 2+ Na + Na + K + Cl - NO 3 - SAC H + Mg 2+ H Na + K + Cl - NO 3 - Free bases water NH + NH + SO 2-4 4 SiO2 Organics M+ S108 H SO 2- NH + 4 4 SiO2 Organics 51 Lewatit Training Hans Jürgen Wedemeyer

Demineralisation with a weak and a strong acid cation exchanger Decationisation: two steps CO 2 Ca 2+ HCO 3 2- H +H + 2CO 3 -> H 2 O + CO 2 HCO 3 2- H 2 CO 3 -> H 2 O + CO 2 Mg 2+ Na + K + NH + 4 Cl - NO 3 - SO 4 2- WAC Ca 2+ Mg 2+ H + Na + Cl - H + K + NO - 3 NH + 4 SO 2-4 SAC H + Cl - NO 3 - SO 4 2- SiO2 Organics CNP80 WS SiO2 Organics M+ S108 H SiO2 Organics Suspended Solids Suspended Solids Suspended Solids 52 Lewatit Training Hans Jürgen Wedemeyer

Demineralisation - removal of strong anions - one step WBA HCO 3 2- free base H + Cl - NO 3 - SiO2 Organics SO 4 2- M+MP68 HCO 3 2- SiO2 Organics 53 Lewatit Training Hans Jürgen Wedemeyer

Demineralisation - removal of all anions with SBA - one step HCO 2-3 3 - SBA H + Cl Cl - - NO - 3 OH - <50 ppb SiO2 SO 2-4 2- SiO2 2 Organics M+M500 1 ppm NaOH results in 5µS/cm <1,0 µs/cm SiO2 Organics 54 Lewatit Training Hans Jürgen Wedemeyer

Demineralisation - removal of anions - two steps HCO 3 2- WBA SBA HCO 3 2- Cl H + - NO - 3 SO 2-4 SiO2 Organics free base OH - M+MP68 HCO 3 2- SiO2 Organics M+M500 <50 ppb SiO2 H + H + H 2 O SiO2 Organics Cl - NO 3 - SO 4 2- <1,0 µs/cm HCO 3 2-55 Lewatit Training Hans Jürgen Wedemeyer

Overview Make up watertreatment ph 7-8 ph 4-5 approx. 800-1200µS/cm approx. 1,0 µs/cm < 1,0µS/cm ph 2-3 ph > 4 ph 6-8 < 0,1 µs/cm ph 7-8 approx. 500µS/cm Raw water Na Form H Form H Form Freie Base OH- Form OH H HCO 3 - CO 2 CO 2 CO 2 S1567 CNP80 M+ S108 M+ MP68 M+ M500 Na+ NO 3 - Ca 2+ Mg 2+ Na+ NO 3 - H+ Cl- Cl- Cl- NO 3 - SiO 2 < 50 ppb* TOC < 100 ppb* M+ M500 MB M+S108 H MB MB SiO 2 < 10 ppb* TOC < 100 ppb* SO 4 2- SO 4 2- SO 4 2- SiO 2 Organic Softening 56 Lewatit Training Hans Jürgen Wedemeyer SiO 2 Organic Decarbonisation > 40% HCO3 SiO 2 Organic Decationisation SiO 2 Organic Degasser Demineralisation * Depending from feed concentration and train performance Polishing

Condition of carbon acid depending on the ph value 100 90 80 70 % 60 50 H 2 CO 3 / H 2 O+ CO 2 HCO3 - CO3 2-40 30 20 10 0 4 5 6 7 8 9 10 11 12 ph Methy lorange = 4,3 ph Phenolphtalein =8,2 57 Lewatit Training Hans Jürgen Wedemeyer

Different Applications Selective ion removal 58 Lewatit Training Hans Jürgen Wedemeyer

IX in Direct Waste Water Filtration (Examples) pollutant origin resin type NH 4+ /NO 3 - fertilizer production Lewatit K2629/S4428 Cu printed circuit board production Lewatit TP207 Cu mining waste waters Lewatit TP207 Co, Mn Phtalic Acid Production Lewatit TP207 Cu, Zn cooling water blow-downs Lewatit TP207 Hg chloro alkali electrolysis Lewatit MP64/TP214 Pb battery manufacturing shops Lewatit TP207 Au, Pd, Pt gold smith-/jeweler work shops waste water. Lewatit MP64/TP 214 heavy metals, chlorinated Lewatit OC1064 hydrocarbons, pump and treat groundwater Lewatit AF5 MTBE, treatment. Lewatit K6362 cyanides, chromates discharge limits safely held raw materials recovered 59 Lewatit Training Hans Jürgen Wedemeyer

Functional Group: Selective (Chelating) Lewatit Resins TP 207/ TP 208 TP 260 TP 220 TP 214 Iminodiacetic acid (IDA) Aminomethylphosphonic acid (AMPA) Bispicolylamine (BiPic) Thiourea H 2 C N H 2 C H 2 C C(O)O C(O)O Na Na H 2 C N H H 2 C P O O O Na Na H H 2 2 C C N N H C H 2 N 2 SO 4 H 2 C N H NH SH Copper removal from Ni/Co concentrates Copper recovery Waste water treatement Lithium concentrate softening Calcium and magnesium removal from lithium chloride/hydroxide Antimony/bismuth removal from copper electrolytes Nickel removal from cobalt concentrates Copper recovery at low ph Cadmium removal from nickel/cobalt electrolytes Palladium recovery from waste water 60 Lewatit Training Hans Jürgen Wedemeyer

Functional Group: Selective Lewatit Resins Solvent impregnated Resins (SIR) Functional group is not attached to the polymer by chemical bonding Extractant is entrained in the polymer matrix during polymerization VP OC 1026 TP 272 D2EHPA (SIR) Cyanex 272* (SIR) O O P O OH O P OH Zinc removal from cobalt concentrates Cobalt removal from nickel sulpahte solutions * Product of Cytec Industries Inc., Woodland Park, NJ (USA) 61 Lewatit Training Hans Jürgen Wedemeyer

Different Operation Systems 62 Lewatit Training Hans Jürgen Wedemeyer

Best chemical utilization with low water demand and highest performance only possible with a WS system Co flow Upcore Floating bed(ws) 63 Lewatit Training Hans Jürgen Wedemeyer

Co flow System Ineffective way for demineralization 64 Lewatit Training Hans Jürgen Wedemeyer

Fluidized-Process ( WS-Process ) Low budget Flow rate 10 cbm/h Low space SiO2 and TOC remove Normal temperature 65 Lewatit Training Hans Jürgen Wedemeyer

Fluidized-Process ( WS-Process ) Counter-Current Downflow Regeneration Settling/Decompaction Loading Regeneration/Rinse 66 Lewatit Training Hans Jürgen Wedemeyer

Leakage compare Co flow (GLS) against Counter current (CC) µs/cm 67 Lewatit Training Hans Jürgen Wedemeyer

Make up water production Compound WS-Process ( VWS-Process ) Target ( VGB The German EPRI) The Fluidized Bed system was the first system developed by Bayer using the upflow technique. Several of thousand units with diameter ranging from 400 mm to 4000mm are in operation throughout the world. Conductivity < 0,08 µs/cm Silica < 10 ppb Sodium < 5 ppb DOC < 100 ppb ( 200 ppb) 68 Lewatit Training Hans Jürgen Wedemeyer

High conductivity behind SBA from Sodium leakage Free board is too wide: min. 20 mm max. 50 mm Turbulences in final polisher layer Loading speed does not produce a fixed bed Regeneration speed is too low (channeling ) Regeneration contact time is wrong (20-30 min) Chemical or Feed water distribution is not sufficient Not optimized resin bed depth (optim. 800 mm) Use of too high chemical concentrations 69 Lewatit Training Hans Jürgen Wedemeyer

Demineralization plants 70 Lewatit Training Hans Jürgen Wedemeyer

UP.CO.RE. (Reverse WS) Waste water Waste water 71 Lewatit Training Hans Jürgen Wedemeyer

Best chemical utilization with low water demand and highest performance only possible with a WS system Disadvantages of Co flow Systems: High specific regenerate consumption High service water consumption High ion leakage Lower operating capacity (depending breakthrough point) Extended regeneration cycle Low efficiency of vessel volume Backwash: destruction of polishing zone Disadvantages of UP.CO.RE Process: Increased waste volume Risk of reclassification during regeneration (freeboard!) Insufficient regeneration Higher water demand for rinsing/displacement Higher regenerate consumption Water quality not comparable with up flow service Advantages of Fluidized Bed Process ( WS-System ): Narrower and thus cheaper units, smaller footprint Max. chemical capacity because of high filling level Lower service water consumption No channeling Reduced specific chemical demand and therefore less waste water production Less valves in comparison to down flow systems Low leakage, low conductivity Co flow Upcore Counter current (WS) 72 Lewatit Training Hans Jürgen Wedemeyer

Chemical and water demand from different processes Chemical and water demand for a production of 1000 m³ demineralized water with different systems Calculated conditions Flow rate: 50 cbm/h Cycle Time: 20h Salt content: 5,0 meq/l (incl. 5 ppm SiO2) Using degasser (after degasser 0,2 meq/l) Co Flow Co Flow WS WS Upcore Upcore Single Compound Single Compound Single Compound HCl kg 345 kg 200 kg 265 kg 200 kg 291 kg 200 kg HCl eq 9.583 eq 5.556 eq 7.361 eq 5.556 eq 8.083 eq 5.556 eq % theory 192% 111% 147% 111% 162% 111% Waste water 30,17 m³ 33,26 m³ 24,48 m³ 16,42 m³ 28,84 m³ 21,70 m³ NaOH kg 586 kg 156 kg 320 kg 128 kg 350 kg 130 kg NaOH eq 14.650 eq 3.900 eq 8.000 eq 3.200 eq 8.750 eq 3.250 eq % theory 543%* 144%* 296%* 119%* 324%* 120%* Waste water 66,30 m³ 37,66 m³ 48,71 m³ 26,03 m³ 55,22 m³ 33,44 m³ Total waste water 96,47 m³ 70,92 m³ 73,19 m³ 42,45 m³ 84,06 m³ 55,14 m³ Upcore needs approx. 30% more water demand as WS because of packed bed building 73 Lewatit Training Hans Jürgen Wedemeyer

Liftbed-Process Counter current process with the possibility for backwashing Exhaustion mode Regeneration mode Regenerant / Rinse water Treated water Regenerant / Rinse water Treated water Upper strainer plate 60-80 nozzles/m² Upper strainer plate 60-80 nozzles/m² Inert resin Sight glasses Inert resin Sight glasses Lewatit S108 67% Backwash out MonoPlus S108 67% Backwash out Lewatit S108 33% 2000 mm Lift valve Backwash out Lower strainer plate 60-80 nozzles/m² MonoPlus S108 33% 2000 mm Lift valve Backwash out Lower strainer plate 60-80 nozzles/m² Raw water Waste water Raw water Waste water 74 Lewatit Training Hans Jürgen Wedemeyer

Lewatit IN 42, IN 50 (Inert Material) Lewatit IN 42 with 1,5 mm edge lengh Density: 0,8 g/ml Kaltabschlag PP IN42 is the fourth generation fo specialised inert filtration Buffer aid for all Lanxess-Upstream-Sysrtems Material elasticity, mechanical and temperature stability Lewatit IN 50 with 2,5-5,0 mm edge lengh Density: 0,9 g/ml Warmabschlag ( like with Dow and Purolite imprecise! ) PE Less temperature and mechanical stability Buffer for UPCORE systems 75 Lewatit Training Hans Jürgen Wedemeyer

76 Lewatit Training Hans Jürgen Wedemeyer Mixed bed application

Make up water production Compound WS-Process ( VWS-Process ) Target ( VGB The German EPRI) The Fluidized Bed system was the first system developed by Bayer using the upflow technique. Several of thousand units with diameter ranging from 400 mm to 4000mm are in operation throughout the world. Conductivity < 0,08 µs/cm Silica < 10 ppb Sodium < 5 ppb DOC < 100 ppb ( 200 ppb) 77 Lewatit Training Hans Jürgen Wedemeyer

Mixbed Separation / Regeneration / Mixing 78 Lewatit Training Hans Jürgen Wedemeyer

Lewatit monodispersed Resins Clear separation for regenerable mixed beds For regenerable mixed beds, it is necessary to separate cation and anion resins clearly Clearly different terminal settling velocity for cation and anion resin, respectively Differntial Volume, Vol.%/µm 2,5% 2,0% 1,5% 1,0% 0,5% 0,0% Lewatit Lewatit M+ M500 OH M+ S108H 0 1 2 3 4 5 6 Terminal Settling Velocity, cm 2 /s 79 Lewatit Training Hans Jürgen Wedemeyer

Lewatit heterodispersed resins in a mixed bed Due the particle distribution and true density, some of cation and anion beads settle together 0,4% Differntial Volume, Vol.%/µm 0,3% 0,2% 0,1% 0,0% Cation & Anion Beads Settling Together 0 3 6 9 12 Terminal Settling Velocity, cm 2 /s Heterodisperse mixed bed 80 Lewatit Training Hans Jürgen Wedemeyer

Mixed bed which includes monodisperse Lewatit resins High quality and best performance through perfect separation ( Less cross regeneration SAC!) M+ S 108 H 81 Lewatit Training Hans Jürgen Wedemeyer

Mixbed of MonoPlus SP112 KR and MP800 KR High visibility of separation Separation zone No need for a third component in the mixed bed with Lewatit 82 Lewatit Training Hans Jürgen Wedemeyer

Case 2: Bad performance Mixed Bed resin Worse separated mixed bed Perfect separated mixed bed Bad separation because of too many fine beads No sufficient colour difference between SAC und SBA SAC resin volume is calculated wrong (Drainage) SAC is loaded with NaOH PSS is fouling the SBA resin (bad SAC quality) Mechanical stress because of too strong mixing Too low backwash flow rate 83 Lewatit Training Hans Jürgen Wedemeyer

Good performance during complete exhaustion time is only possible with the right ratio of SAC and SBA in the mixed bed 20 18 16 r MOhm Silica ppb - SiO 2 = 50 ppb has nearly the same breakthrough time as R =1M Ωcm + 60 50 resistivity [MOhm*cm] 14 12 10 8 6 4 2 0 0 0 50 100 150 200 time [min] + 40 30 20 10 Silica [ppb] 84 Lewatit Training Hans Jürgen Wedemeyer

Mixed bed with higher SAC content or CO 2 contamination 10 8 Salt content = 5,3 meq/l Carbonat hardness = 2,5 meq/l Conductivity = ca. 500µS/cm 100 90 80 70 ph value 6 4 CO 2 and acid building 60 50 40 30 LF [µs/cm] 2 20 10 0 0 0,00 20,00 40,00 60,00 80,00 100,00 120,00 140,00 160,00 180,00 200,00 Exhaustion (BV) 85 Lewatit Training Hans Jürgen Wedemeyer

Multistep fine polishing Alternative for the classic mixed bed process Advantages of Multistep Process No auxiliaries required (air) Low regenerant consumption Strongly acidic cation Lewatit MonoPlus S 200 KR Less waste water Less neutralization chemicals Low capital costs Regenerant /Rinse water Strongly basic anion Lewatit MonoPlus M 500 No sensitive to fluctuations in ionic load Ease to automate Logistic advantages (same resin types used like in demi plant) Exhausted ion exchanger can be regenerated separately Space-saving RAW WATER Strongly acidic cation Lewatit MonoPlus S 108 Weakly acidic cation Lewatit CNP 80 WS DEGASSER Strongly basic anion Lewatit MonoPlus M 500 Weakly basic anion Lewatit MonoPlus MP 68 Strongly acidic cation Lewatit MonoPlus S 108 86 Lewatit Training Hans Jürgen Wedemeyer

Multistep-Process smart polishing posibility 2 x 80 m³/h 87 Lewatit Training Hans Jürgen Wedemeyer

Condensate polishing SAC deep bed / mixed bed Mixed bed 88 Lewatit Training Hans Jürgen Wedemeyer

Mixed bed polisher behind a RO system Multistep-Process Inlet after RO approx. 5-30µS/cm Conductivity < 0,08 µs/cm Silica < 10 ppb Sodium < 5 ppb 89 Lewatit Training Hans Jürgen Wedemeyer

90 Lewatit Training Hans Jürgen Wedemeyer Organic removal

Natural Organic Matter (NOM) a cocktail of different compounds from a variety of sources Humins (Tannins) Humin acids Fulvic acids Building Blocks Low molecular neutral organic compounds Low molecular organic acids Biopolymers Polysaccharides excrement by metabolism of: plants animals human being NOM TOC microorganisms algae fungi Groundwater 0,5 to 1,5 mg/l River water up to 10 mg/l Eutrophic lakes up to 10 mg/l Water from wetlands up to 50 mg/l NOM is not a clearly defined chemical substance It is a cocktail of many different compounds The composition strongly depends on the biologic background of the water NOM can be measured and characterized by classification and measurement of sum-parameters 1 mg/l TOC corresponds to 5,25 mg/l KMNO 4 91 Lewatit Training Hans Jürgen Wedemeyer

Counter current (WS) system feed requirements 92 Lewatit Training Hans Jürgen Wedemeyer

Fouling feeds to TOC release and capacity decreasing 93 Lewatit Training Hans Jürgen Wedemeyer

Macroporous SBA resins for optimizing organic removal For removing of higher organic amounts macroporouse resins are an advantage. In the main the WBA (M+MP68) is responsible for TOC removing, but to increase the performance it is possible to install a styrene macroporouse SBA (M+ MP800) or a acrylic gel Type (A8071) This combination is able to remove approx. 3g TOC per cycle / liter resin (calculated with the installed WBA amount). For this performance higher NaOH amounts for regeneration are necessary Purified water Acrylic-resins give some advantage for aliphatic TOC removal (A8071; A8072; A8073) 94 Lewatit Training Hans Jürgen Wedemeyer

Performance of TOC removal in a WS system measured with online Sievers TOC measurement SBA Regeneration 115 % of theory TOC loading /cycle 0,73 g/liter WBA Feed water Feed water First chamber M+ MP68 Second chamber M+ after M+ MP MP68 800 µs/cm TOC ppm TOC ppb TOC ppb TOC ppb 01.07.2014 521 1,9 253 94 70 09.07.2014 521 1,9 713 265 88 23.07.2014 525 1,9 176 112 98 04.08.2014 542 2,3 383 180 110 19.08.2014 542 2,44 345 113 85 18.11.2014 522 2,11 298 179 105 09.07.2014 521 1,9 713 265 88 08.09.2014 528 2,22 154 106 97 After WBA/ SBA treatment > 95% TOC is removed 95 Lewatit Training Hans Jürgen Wedemeyer

Organic removal optimized anion compound bed < 0,08 µs/cm < 10 ppb SiO2 < 0,2 ppm DOC 96 Lewatit Training Hans Jürgen Wedemeyer

Gel / Macroporous Gel type Gel type Surface Macroporous type Macroporous type Surface 97 Lewatit Training Hans Jürgen Wedemeyer

Approx. IX capacity/tolerance for natural organic matter (NOM) Acrylic resins have normally a higher TOC capacity! Resin type Example Lanxess recommend max. operating temp. *Approx. max. organic load as g KMNO 4 /liter resin *Approx. max. organic load as g TOC/liter resin *Max. fouling index N SBA styrenic type 1 gel M+M500 50 2 0,4 3 SBA styrenic type 2 gel M +M600 30 3 0,6 6 SBA styrenic type 1 macro M+MP800 50 4 0,8 6 SBA styrenic type 2 macro M+MP600 30 5 1,0 8 SBA acrylic type 1 gel A8071 30 8 1,5 15 SBA acrylic type 1 macro A8074 50 15 3,0 20 MBA acrylic A8073 30 10 2,0 16 MBA styrene MP68 30 12 2,2 12 WBA styrene MP62 60 16 3,0 16 WBA acrylic A8072 60 25 5,0 20 * Organic matter (OM) capacity is also depending from TDS concentration of the feed water and from the kind of filter composition. Combination of styrene and acrylic resins can give higher TOC removing values. 98 Lewatit Training Hans Jürgen Wedemeyer

Scavenger in case of to high TOC inlet concentrations Regeneration with alk. NaCl solution. TOC capacity up to 35 kg organic as KMnO 4 /cbm resin Scavenger Requirements Throughput 50 m³/h Organic loading 35,1 g KMnO 4 /m³ Organic loading 0,035 kg KMnO 4 /m³ Specific flow rate 10,0 BV ( l raw water / l resin ) ca.10-20 BV Resin quantity 5,00 m³ Resin type M+ MP68 Specific organic loading 31,59 kg KMnO 4 / m³ resin / cycle max.25-35 kg/m³/cycle Treated water per cycle 4500,00 m³ / cycle Cycle time 90,00 h Specific regenerant 2,00 BV ( m³ regenerant / m³ resin ) quantity Regenerant 10,00 m³ regenerant NaCl (100%) 1000,00 kg ( as 10 % solution ) NaOH (100%) 200,00 kg ( as 2 % solution ) Diluting water (approx.): 35,00 m³ Filter geometry Filter diameter 1800 mm Unit surface area 2,49 m² Linear flow rate 20,06 m/h 20-30 m/h Bed depth 2,01 m Mind. 1000 mm! 99 Lewatit Training Hans Jürgen Wedemeyer

Approx. IX tolerance for natural organic matter (NOM) Resin type Example Lanxess recommend max. operating temp. *Approx. max. organic load as g KMNO 4 /liter resin *Approx. max. organic load as g TOC/liter resin *Max. fouling index N SBA styrenic type 1 gel M+M500 50 2 0,4 3 SBA styrenic type 2 gel M +M600 30 3 0,6 6 SBA styrenic type 1 macro M+MP800 50 4 0,8 6 SBA styrenic type 2 macro M+MP600 30 5 1,0 8 SBA acrylic type 1 gel A8071 30 8 1,5 15 SBA acrylic type 1 macro A8074 50 15 3,0 20 MBA acrylic A8073 30 10 2,0 16 MBA styrene MP68 30 12 2,2 12 WBA styrene MP62 60 16 3,0 16 WBA acrylic A8072 60 25 5,0 20 Organic matter (OM) capacity is also depending from TDS concentration of the feed water and from the kind of filter composition. Combination of styrene and acrylic resins can give higher TOC removing values. 100 Lewatit Training Hans Jürgen Wedemeyer

Regeneration Conversion 101 Lewatit Training Hans Jürgen Wedemeyer

Conversion chemicals and requirements Types of regenerant Typical conz. % Softening WAC SAC WBA SBA NaCl 10 KCl 10 HCl 4-6 H2SO4 0,8-6 NaOH 4-6 KOH 4-6 NaHCO3 5-8 NH3 5-8 102 Lewatit Training Hans Jürgen Wedemeyer

Conversion of different SBA 95 Regeneration level % 85 75 65 55 45 35 MP500 NaOH 4% M500 NaOH 4% M800 NaOH 4% M600 NaOH 4% 25 0 100 200 300 400 500 600 700 g NaOH(100%) / Liter resin 103 Lewatit Training Hans Jürgen Wedemeyer

Demineralization WS Compound bed 104 Lewatit Training Hans Jürgen Wedemeyer

Regeneration of a SBA compound bed filter Regeneration chemical for WBA/SBA compound filter HCl approx. 4-6% H 2 SO 4 0,8-6% progressive regeneration Regeneration speed 3,5 7 m/h Target chemical contact time 20-30 m/h 105 Lewatit Training Hans Jürgen Wedemeyer

Regeneration of a SBA compound bed filter Regeneration chemical for WBA/SBA compound filter NaOH approx. 4% NaOH 2-4% progressive regeneration Regeneration speed 3,5 7 m/h Target chemical contact time 20-30 m/h 106 Lewatit Training Hans Jürgen Wedemeyer

Regeneration M+ M500 SBA Typ 1 % Regeneration NaOH g/ Liter Resin 107 Lewatit Training Hans Jürgen Wedemeyer

Regeneration M+S 108 Conversion M+ S 108 Conversion % 100,0 90,0 80,0 70,0 60,0 50,0 40,0 30,0 20,0 10,0 0,0 2,5 2 1,5 1 0,5 0 0 50 100 150 200 250 300 350 g 100% HCl / l resin Total capacity eq/l 108 Lewatit Training Hans Jürgen Wedemeyer

Lewatit MonoPlus MP 68 Ionic form as shipped: CH 2 N(CH 3 ) 2 + CH 2 N(CH 3 ) 3 [Cl - ] ph < 4 H + + NaOH Conversion CH 2 N(CH 3 ) 2 Cl - CH 2 N(CH 3 ) 2 + CH N(CH 3 ) 3 [OH - 2 ] Exhausted CH 2 + N(CH 3 ) 3 [Cl - ] ph < 8 Regeneration: WBA resins require 115 to 140 % // SBA resins require approx. 300% 109 Lewatit Training Hans Jürgen Wedemeyer

Regeneration amount Single application WAC WBA SAC GLS SAC WS SBA GLS SBA WS SBA Type2 WS SBA Type2 GLS NaOH % theorie 105-115 115-140 250-300 140-220 125-150 140-200 NaHCO 3 % theorie 160-200 HCl % theorie 200-250 125-150 H 2 SO 4 % theorie.250-300 150-200 Compound application WAC / SAC WBA/SBA WBA/SBA NaOH % theorie 110-120 > 120 (high SiO2*) HCl % theorie 105-110 H 2 SO 4 % theorie 130 * If the SiO 2 loading reached 8-15 g/l automatically a progressive additional caustic quantity will be calculate. The calculation is done with 10 times of the equivalent of NaOH. Example: 9 g/l SiO 2 = 0,15 eq/l x 10 = 1,5 eq/l NaOH = 60 g/l NaOH or 6,67 g NaOH 100 % per g SiO 2 /l resin per cycle Max. silica load o f 15g/l = 100 g NaOH 100% per l resin. CH 3 CO HCl H 2 SO 4 HNO 3 H 3 PO 4 OH H 2 CO 3 pk S1-6 -3-1,32 2,13 4,75 6,52 pk S2 1,92 7,2 10,4 pk S3 12,36 S108 CNP80 pk S ca.0,7 4,5-5,0 110 Lewatit Training Hans Jürgen Wedemeyer

Minimum water requirements for different kind of regeneration Softening Cation exchanger Cation exchanger Step Counter Current Co flow Backwashing Feed water Feed water Compaction Soft water Dilution Soft water Feed water Displacement Soft water Feed water Final rinse Feed water Feed water Demineralzation Cation exchanger Anion exchanger Cation exchanger Anion exchanger Step Counter Current Counter Current Co flow Co flow Backwashing Feed water Decationised Feed water Decationised Compaction Demi or decationised water Demi Dilution Demi or decationised water Demi Feed water Demi or decationised water Displacement Demi or decationised water Demi Feed water Demi or decationised water Final rinse Feed water Demi Feed water Decationised 111 New LEWAPLUS TM calculation program - Hans Jürgen Wedemeyer

DEMi plant calculation 112 New LEWAPLUS TM calculation program - Hans Jürgen Wedemeyer

Parameter for resin choice for Make up water Feedwater quality Water analysis Salt content Carbonate Hardness TOC content and kind SiO 2 content Temperature Flow rate Suspended matter Applications Counter current Co Flow Upcore Liftbed Rinse bed Mixed bed Multistep Specifications VGB guideline for water steam cycle 0,2 µs/cm TOC/DOC < 200 ppb < 5 ppb Sodium < 20 ppb SiO 2 Operator Invest volume Space Economy claim Waste water situation Chemicals Water consumption 113 New LEWAPLUS TM calculation program - Hans Jürgen Wedemeyer

LewaPlus calculation program Choose type of new project DEMI Check Feed CP Condensate polishing Purified water Plant parameter OK? 114 New LEWAPLUS TM calculation program - Hans Jürgen Wedemeyer

Overview Lanxess resin types for demineralization Make up water Filter Arrangement WS Application & Polisher Make up WAC Lanxess CNP 80 WS (80 GLS) SAC Make up SAC Lanxess M+ S 107 NS M+ S 108 (H) M+ SP 112 (H) Regenerant /Rinse water RAW WATER SAC WAC DEGASSER SBA WBA Lewatit MonoPlus SBA MB M 800 Lewatit MonoPlus SAC MB S 100 Ø 1600 mm SBA SAC Make up WBA Lanxess M+ MP 68 A 8072 A 8073 MP 62 A 365 Make up SBA Lanxess M+ M 500 (OH) M+ MP800 (OH) A 8071 M+ M 600 Make up MB Lanxess M+ S 108 H M+ SP 112 H M+M 500 MB,OH M+ MP 800, OH 115 New LEWAPLUS TM calculation program - Hans Jürgen Wedemeyer

116 Lewatit Training Hans Jürgen Wedemeyer Softening

Softening Ca 2+ HCO 3 2- S 1567 Ca 2+ HCO 3 2- Mg Mg 2+ 2+ Na + Na + Cl - Na + Mg 2+ Na + Na + Cl - K + NO 3 - K + NO 3 - NH + NH 4 + SO 4 2- NH 4 + SO 4 2- SiO2 Organics SiO2 Organics 117 Lewatit Training Hans Jürgen Wedemeyer

Lewatit MonoPlus S107 NS Ionic form as shipped: SO 3 - Na + Strongly acidic cation exchange resin: Gel Monodisperse Functional group: sulfonic acid Features Low chemical demand High chemical and mechanical stability Low fine and coarse bead content 118 Lewatit Training Hans Jürgen Wedemeyer

Conversion table Units Units of Hardness meq/l dh f e ppm CaCO 3 mmol/l 28 mg CaO or 50 mg CaCO 3 pro 1000 ml Water 10 mg CaO pro 1000 ml Water 10 mg CaCO 3 pro 1000 ml Water 1 grain CaCO 3 per gallon 14,3 mg CaCO 3 pro 1000 ml Water 1 part CaCO 3 per million 1 mg CaCO 3 pro 1000 ml Water 1 meq/l 1,0 2,8 5,0 3,5 50,0 0,50 1 dh 0,357 1,0 1,78 1,25 17,8 0,18 1 f 0,2 0,56 1,0 0,7 10,0 0,10 1 e 0,286 0,8 1,43 1,0 14,3 0,14 1 ppm 0,02 0,056 0,1 0,07 1,0 0,01 1 mmol /l 2,00 5,60 10,00 7,02 100 1,0 100 mg CaCO 3 pro 1000 ml Water 119 Lewatit Training Hans Jürgen Wedemeyer

Without solvent produced SAC resins Lewatit S 1567 Wettbewerber D 120 Lewatit Training Hans Jürgen Wedemeyer Wettbewerber P

Operating capacity softening Co Flow and Counter Flow 20mg Ca 2+ /l Wasser are 1 meq, means 1 liter IX is able treat 1100 Liter water (Regeneration 100g NaCl/ liter resin) 1,9 Breakthrough: 10% of Feedwater conductivity Hardness: 12,8 dh Conversion with 10% NaCl 1,7 1,5 Co Flow Counter flow Operating caopacity eq/l 1,3 1,1 0,9 0,7 0,5 0 50 100 150 200 250 300 NaCl 100% g / Liter resin 121 Lewatit Training Hans Jürgen Wedemeyer

Hardness leakage WS (counter current system) hardeness meq/l 0,5 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0 Hardness leakage WS system Break through point 10 60 110 160 210 260 Leverkusen tap water (12 d) Conversion with reg. 40g/L NaCl 10% reg. 50g/L NaCl 10% reg. 70g/L NaCl 10% reg. 90g/L NaCl 10% reg. 110g/L NaCl 10% reg. 130g/L NaCl 10% reg. 150g/L NaCl 10% 122 Lewatit Training Hans Jürgen Wedemeyer

Hardness leakage Co Flow system 0,5 0,45 Breakthrough point Conversion with reg. 40g/L NaCl 10% 0,4 reg. 50g/L NaCl 10% m e q / l 0,35 0,3 0,25 0,2 0,15 0,1 reg. 70g/L NaCl 10% reg. 90g/L NaCl 10% reg.110g/l NaCl 10% reg. 130g/L NaCl 10% 0,05 0 0 50 100 150 200 250 Leverkusen tap water (12 d) reg. 150g/L NaCl 10% 123 Lewatit Training Hans Jürgen Wedemeyer

Operating capacity Softening Co Current and Counter Current Operating capacity Lewatit S 1567 (S 1568) eq/l 1,9 1,7 1,5 1,3 1,1 0,9 0,7 0,5 Co Current Counter Current 0 50 100 150 200 250 300 g/ NaCl 124 Lewatit Training Hans Jürgen Wedemeyer

125 Lewatit Training Hans Jürgen Wedemeyer Disinfection

Maximum free chlorine levels (ppm) for SAC resins Resistance is also depending on ph value! Feed temperature C M+ S 108 M+ S 200 M+ S215 M+ SP112 3-10 0,3 0,4 0,5 1,2 10-15 0,2 0,3 0,4 1,0 15-20 0,1 0,2 0,3 0,6 20-30 <0,1 0,1 0,15 0,5 >30 No <0,05 <0,1 <0,5 Crosslinking % 8 10 16 12 Presence of heavy metals increase the catalytic effect and can be accelerate the destroying of the polymer matrix ph value is also very important, in case of low ph value the degradation can be much faster! 126 Lewatit Training Hans Jürgen Wedemeyer

Disinfection of HClO is increasing through acid ph value Sodiumhypochlorit NaOCl Dissociation of HClO depending on ph value and temperature 127 Lewatit Training Hans Jürgen Wedemeyer

Chlorine dioxid is working without decreasing up to ph 10 128 Lewatit Training Hans Jürgen Wedemeyer

Degradation of SBA Type 1 129 Lewatit Training Hans Jürgen Wedemeyer

Special cleaning of fouled anionic resin with alkaline brine solution Preparation of the alk. NaCl cleaning solution: 3BV 10% NaCl solution + 2% NaOH Styrenic resin: Heat up to 70 C Acrylic and Typ 2 resin: max. 25 C Injection of approx. 2 BV of the cleaning solution, air scour if necessary Exposure up to 3h Discharge the liquid phase with the last BV cleaning solution Rinse with demineralized water direction neutral ph value Regeneration with double amount of caustic Eluate of a treated WBA TOC content approx. 750 ppm 130 Lewatit Training Hans Jürgen Wedemeyer

Further cleaning possibilities to remove organic impurities Cleaning procedure is depending on vessel type (corrosion) Acrylic resins and Typ 2 resins temperature of max. 25 C for cleaning is recommended Air bubbling Backwashing 3 BV 6-15 % HCl 15% (20-70 C) 3 BV 4-10% NaOH (20-70 C) 3 BV 10% NaCl (20-70 C) 3 BV 2% NaOH / 10% NaCl (20-70 C) Tenside treatment ( e.g. Korolat 100N) Combination of these cleaning procedures increases the effectiveness 131 Lewatit Training Hans Jürgen Wedemeyer

Disinfection of Cation Exchange Resins 132 Lewatit Training Hans Jürgen Wedemeyer

Disinfection of Anion Exchange Resins 133 Lewatit Training Hans Jürgen Wedemeyer

MICROBIOLOGICAL AND CHEMICAL DEGRADATION PROTECTION (Shut down) During longer shut down times we recommend replacing the water with a 10% NaCl solution (Exhausted resin). Start with a sufficient backwashing of the resins. After back washing we recommend to replace the water in the vessel of the exhausted resin with a 10% NaCl solution. Possible steps before replacing with 10% NaCl In case of strong organic impurities of the resin (WBA/SBA) we recommend additional a pretreatment with a alkali brine cleaning procedure. In case of strong silica loading of the SBA (after exhaustion) we recommend additional a double NaOH regeneration and rinsing with a following NaCl exhaustion. In case of Iron contamination (WAC SAC) we recommend a treatment with 3 BV 15% HCl with a following demineralized water rinsing. 134 Lewatit Training Hans Jürgen Wedemeyer

Thanks for your attention! 135 Lewatit Training Hans Jürgen Wedemeyer