High-efficiency light-emitting diode with air voids embedded in lateral epitaxially overgrown GaN using a metal mask

Similar documents
InGaN quantum dot based LED for white light emitting

The Optical Characteristics of Epitaxial Lateral and Vertical Overgrowth of GaN on Stripe-Patterned Si Substrate

Pre-treatment of low temperature GaN buffer layer deposited on AlN Si substrate by hydride vapor phase epitaxy

The low dislocation gallium nitride layer by AP-MOCVD. Abstract

Fabrication of Nanorod Light Emitting Diode by Ni Nano-cluster and Enhanced Extraction Efficiency

Improving performance of InGaN LEDs on sapphire substrates

Patterned sapphire for nitride enhancements

High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates

Free-standing a-plane GaN substrates grown by HVPE

Detrimental effects of dislocations II

Super widegap nitride semiconductors for UV lasers

Supplementary Information (SI)

III III a IIOI OlD IIO OlD 110 II II III lulu II OI IIi

Structural and optical properties of AlInN and AlGaInN on GaN grown by metalorganic vapor phase epitaxy

In-Situ Characterization During MOVPE Growth of III-Nitrides using Reflectrometry

Molecular Beam Epitaxial Growth of AlN/GaN Multiple Quantum Wells

Light enhancement by the formation of an Al-oxide honeycomb nano-structure on the n-gan surface of thin-gan light-emitting diodes

The Effects of Sapphire Substrates Processes to the LED Efficiency

Micro-Raman Scattering From Hexagonal GaN, AlN, and Al x Ga 1-x N Grown on (111) Oriented Silicon: Stress Mapping of Cracks

Rare Earth Doping of Silicon-Rich Silicon Oxide for Silicon-Based Optoelectronic Applications

High-efficiency GaN-based light-emitting diodes fabricated with identical Ag contact formed on both n- and p-layers

ARTICLE IN PRESS. Journal of Crystal Growth

Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes

Structural Analysis in Low-V-defect Blue and Green GaInN/GaN Light Emitting Diodes

INTEGRATION OF N- AND P-CONTACTS TO GaN-BASED LIGHT EMITTING DIODES

The Effect of Heat Treatment on Ni/Au Ohmic Contacts to p-type GaN

Research Article Thermal Characteristics of InGaN/GaN Flip-Chip Light Emitting Diodes with Diamond-Like Carbon Heat-Spreading Layers

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 6, December 2013

Article Fabrication of Low Dislocation Density, Single-Crystalline Diamond via Two-Step Epitaxial Lateral Overgrowth

Comparison Study of Structural and Optical Properties of In x Ga 1-x N/GaN Quantum Wells with Different In Compositions

CONVENTIONAL -plane InGaN GaN multiple

2014 NOBEL LECTURE IN PHYSICS

Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106

Effect of thermal annealing on the surface, optical, and structural properties of p-type ZnSe thin films grown on GaAs (100) substrates

MOVPE growth of GaN and LED on (1 1 1) MgAl

INGAN BASED LIGHT EMITTING DIODE AND LASER DIODE THE PRESENT AND THE FUTURE

Applications for HFETs

IMPROVEMENT OF CRYSTALLINE QUALITY OF GROUP III NITRIDES ON SAPPHIRE USING LOW TEMPERATURE INTERLAYERS

SCIENCE CHINA Physics, Mechanics & Astronomy. Study on growing thick AlGaN layer on c-plane sapphire substrate and free-standing GaN substrate

InGaN/GaN Light Emitting Diodes With a p-down Structure

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

OPTICAL MODE PATTERN STUDY OF GAN BASED LEDS WITH AND WITHOUT NANOSCALE TOP GRATING

THIN AlN FILMS GROWTH ON Si (III) BY HYDRIDE VAPOR PHASE EPITAXY

Characterization of 380 nm UV-LEDs grown on free-standing GaN by atmospheric-pressure metal-organic chemical vapor deposition

Performance enhancement of GaN-based flipchip ultraviolet light-emitting diodes with a RPD AlN nucleation layer on patterned sapphire substrate

Advantages of Employing the Freestanding GaN Substrates with Low Dislocation Density for White Light-Emitting Diodes

Highly efficient deep-uv light-emitting diodes using AlN-based, deep-uv transparent glass electrodes

Erbium-doped a-plane GaN epilayers synthesized by metal-organic chemical vapor deposition

GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy

Effect of AlGaAs Buffer Layer on Defect Distribution in Cubic GaN Grown on GaAs (001) by MOVPE

Properties of GaN-based light-emitting diodes on patterned sapphire substrate coated with silver nanoparticles prepared by mask-free chemical etching

Polycrystalline Silicon Produced by Joule-Heating Induced Crystallization

Development of indium-rich InGaN epilayers for integrated tandem solar cells

3.46 OPTICAL AND OPTOELECTRONIC MATERIALS

High Performance AlGaN Heterostructure Field-Effect Transistors

Nano-imprint Technology on LED Applications

Stimulated Emission with 349-nm Wavelength in GaN/AlGaN MQWs by Optical Pumping

Crystallographic Characterization of GaN Nanowires by Raman Spectral Image Mapping

Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition

Investigation of Efficiency and Droop Behavior Comparison for InGaN/GaN Super Wide-Well Light Emitting Diodes Grown on Different Substrates

Nanomaterials and Analytics Semiconductor Nanocrystals and Carbon Nanotubes. - Introduction and Preparation - Characterisation - Applications

Supporting Information

1004 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 48, NO. 8, AUGUST 2012

Fabrication and Overgrowth of Semi-polar and Non-polar GaN on Sapphire for Advanced III-nitride Optoelectronics

Structure and formation mechanism of V defects in multiple InGaN/ GaN quantum well layers

Effects of growth pressure on erbium doped GaN infrared emitters synthesized by metal organic chemical vapor deposition

Red luminescence from Si quantum dots embedded in SiO x films grown with controlled stoichiometry

Correlation Between Energy Gap and Defect Formation of Al Doped Zinc Oxide on Carbon Doped Silicon Oxide

Efficient 350 nm LEDs on low edge threading dislocation density AlGaN buffer layers

DISTRIBUTION A: Distribution approved for public release.

HIGH-PERFORMANCE blue and green light emitting

Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition

ZnO thin film deposition on sapphire substrates by chemical vapor deposition

Reduction of dislocation density in heteroepitaxial GaN: role of SiH 4 treatment

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu

Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator

1. Introduction. 2. COMD Mechanisms. COMD Behavior of Semiconductor Laser Diodes. Ulrich Martin

High performance 380-nm ultraviolet light-emitting-diodes with 3% efficiency droop by using freestanding. manufacturing from GaAs substrate

Germanium and silicon photonics

DISORDERING OF InGaN/GaN SUPERLATTICES AFTER HIGH-PRESSURE ANNEALING

OUTLINE. Preparation of III Nitride thin 6/10/2010

Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes

Growth of ultra small self-assembled InGaN nanotips

Lecture contents. Heteroepitaxy Growth technologies Strain Misfit dislocations. NNSE 618 Lecture #24

White Paper: Pixelligent Internal Light Extraction Layer for OLED Lighting

High reflectivity and thermal-stability Cr-based Reflectors and. n-type Ohmic Contact for GaN-based flip-chip light-emitting.

Effect of High NH 3 Input Partial Pressure on Hydride Vapor Phase Epitaxy of InN Using Nitrided (0001) Sapphire Substrates

The Blue Laser Diode. Shuji Nakamura Stephen Pear ton Gerhard Fasol. The Complete Story. Springer

The Effect of Interfacial Roughness on the Electrical Properties of Organic Thin Film Transistors with Anisotropic Dielectric Layer

Fabrication and Characterization of Two-Dimensional Photonic. Crystal Microcavities in Nanocrystalline Diamond

The Effect of Growth Conditions on The Optical and Structural Properties of InGaN/GaN MQW LED Structures Grown by MOCVD

Crystalline Silicon Solar Cells With Two Different Metals. Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi

Fabrication of photonic band-gap crystals

Biexciton Emission from Edges and Grain. Boundaries of Triangular WS 2 Monolayers

Impurity free vacancy disordering of InGaAs quantum dots

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

Supporting Information. AlN/h-BN Heterostructures for Mg Dopant-Free Deep Ultraviolet Photonics

MRS spring meeting San Francisco, April 5-9, 1999, paper Y5.21 DIELECTRIC FUNCTION OF AlN GROWN ON Si (111) BY MBE

Cubic GaN Light Emitting Diode Grown by Metalorganic Vapor-Phase Epitaxy

SOLID-STATE lighting (SSL) based on LEDs is an emerging

Transcription:

High-efficiency light-emitting diode with air voids embedded in lateral epitaxially overgrown GaN using a metal mask Chu-Young Cho, 1 Min-Ki Kwon, 3 Il-Kyu Park, 4 Sang-Hyun Hong, 1 Jae-Joon Kim, 2 Seong-Eun Park, 5 Sung-Tae Kim, 5 and Seong-Ju Park 1,2,* 1 School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea 2 Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea 3 Department of Photonic Engineering, Chosun University, Gwangju 501-759, South Korea 4 LED-IT Fusion Technology Research Center and Department of Electronic Engineering, Yeungnam University, Gyeongbuk 712-749, South Korea 5 Samsung LED Co. Ltd., Suwon 443-743, South Korea * sjpark@gist.ac.kr Abstract: We report high-efficiency blue light-emitting diodes (LEDs) with air voids embedded in GaN. The air void structures were created by the lateral epitaxial overgrowth (LEO) of GaN using a tungsten mask. The optical output power was increased by 60% at an injection current of 20 ma compared with that of conventional LEDs without air voids. The enhancement is attributed to improved internal quantum efficiency because the air voids reduce the threading dislocation and strain in the LEO GaN epilayer. A ray-tracing simulation revealed that the path length of light escaping from the LED with air voids is much shorter because the air voids efficiently change the light path toward the top direction to improve the light extraction of the LED. 2011 Optical Society of America OCIS codes: (230.0230) Optical devices; (230.3670) Light-emitting diodes; (230.4000) Microstructure fabrication; (310.6860) Thin films, optical properties. References and links 1. J. S. Speck and S. J. Rosner, The role of threading dislocations in the physical properties of GaN and its alloys, Physica B 273-274, 24 32 (1999). 2. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Phys. Rev. B 56(16), R10024 R10027 (1997). 3. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, Determination of piezoelectric fields in strained GaInN quantum wells using the quantumconfined Stark effect, Appl. Phys. Lett. 73(12), 1691 (1998). 4. E. F. Schubert, Light-emitting diodes (Cambridge University Press, Cambridge, U.K., 2003). 5. H. G. Kim, H. K. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C. H. Hong, Impact of two-floor air prism arrays as an embedded reflector for enhancing the output power of InGaN/GaN light emitting diodes, Appl. Phys. Lett. 95(22), 221110 (2009). 6. M. H. Lo, P. M. Tu, C. H. Wang, C. W. Hung, S. C. Hsu, Y. J. Cheng, H. C. Kuo, H. W. Zan, S. C. Wang, C. Y. Chang, and S. C. Huang, High efficiency light emitting diode with anisotropically etched GaN-sapphire interface, Appl. Phys. Lett. 95(4), 041109 (2009). 7. C. F. Lin, C. M. Lin, K. T. Chen, W. C. Huang, M. S. Lin, J. J. Dai, R. H. Jiang, Y. C. Huang, and C. Y. Chang, Blue light-emitting diodes with a roughened backside fabricated by wet etching, Appl. Phys. Lett. 95(20), 201102 (2009). 8. M. Haino, M. Yamaguchi, H. Miyake, A. Motogaito, K. Hiramatsu, Y. Kawaguchi, N. Sawaki, Y. Iyechika, and T. Maeda, Buried Tungsten Metal Structure Fabricated by Epitaxial-Lateral-Overgrown GaN via Low-Pressure Metalorganic Vapor Phase Epitaxy, Jpn. J. Appl. Phys. 39(Part 2, No. 5B), L449 L452 (2000). 9. C.-Y. Cho, J.-B. Lee, S.-J. Lee, S.-H. Han, T.-Y. Park, J.-W. Kim, Y. C. Kim, and S.-J. Park, Improvement of light output power of InGaN/GaN light-emitting diode by lateral epitaxial overgrowth using pyramidal-shaped SiO 2., Opt. Express 18(2), 1462 1468 (2010). 10. O. Nam, M. Bremser, T. S. Zheleva, and R. F. Davis, Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy, Appl. Phys. Lett. 71(18), 2638 (1997). 4 July 2011 / Vol. 19, No. S4 / OPTICS EXPRESS A943

11. C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager 3rd, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Strain-related phenomena in GaN thin films, Phys. Rev. B Condens. Matter 54(24), 17745 17753 (1996). 12. Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template, Appl. Phys. Lett. 87(25), 251915 (2005). 13. M. Hao, J. Zhang, X. H. Zhang, and S. Chua, Photoluminescence studies on InGaN/GaN multiple quantum wells with different degree of localization, Appl. Phys. Lett. 81(27), 5129 (2002). 14. Y. Wang, X. J. Pei, Z. G. Xing, L. W. Guo, H. Q. Jia, H. Chen, and J. M. Zhou, Effects of barrier growth temperature ramp-up time on the photoluminescence of InGaN/GaN quantum wells, J. Appl. Phys. 101(3), 033509 (2007). 1. Introduction III-nitride based light-emitting diodes (LEDs) have rapidly developed for the next generation solid-state lightings. Although InGaN-based LEDs are commercially available, LEDs still require further improvement of the external quantum efficiency (EQE). The low EQE of LEDs is mainly attributed to the low internal quantum efficiency (IQE) and low light extraction efficiency (LEE). The low IQE is due to the low crystal quality of GaN epilayer [1] and strong polarization-induced electric fields in highly strained InGaN/GaN multiple quantum wells (MQWs) [2,3]. The large mismatch of lattice constants and thermal expansion coefficients between GaN and sapphire degrade the quality of GaN epilayers by introducing threading dislocations that act as non-radiative recombination centers in InGaN/GaN MQWs [1]. Furthermore, the existence of the quantum confined Stark effect (QCSE) induced by the strong built-in piezoelectric field in InGaN/GaN MQWs results in a reduction in the carrier recombination rate by increasing the spatial separation between the electron and hole wave functions involved in the radiative recombination [2,3]. Another major reason for the low EQE is a low LEE, which mainly results from the total internal reflection of light caused by the difference in the refractive indexes of GaN (n = 2.5) and air (n = 1) [4]. Among the many recent approaches to an improvement in EQE, an air void structure embedded in LEDs has been actively studied as a means to increase the IQE and LEE for the fabrication of high efficiency optoelectronic devices [5 7]. Until now, most LEDs with air voids have been fabricated using an additional crystallographic wet etching process [5 7]. However, excessive wet etching process can cause epitaxial growth problems, such as surface pits and a rough surface. This study investigates InGaN/GaN blue LEDs with embedded air void structures that were realized by the lateral epitaxial overgrowth (LEO) of GaN using a tungsten (W) mask. The W mask and air void structures inserted into the GaN epilayer reduced threading dislocation and relieved strain. Furthermore, the air void structures embedded in LEDs improved light extraction by changing the light path. 2. Experiments Figure 1(a) shows a schematic of an LED with air voids produced by the LEO of GaN using a W mask. GaN LEDs with emission at 460 nm were grown on a c-plane (0001) sapphire by metalorganic chemical vapor deposition (MOCVD). After the growth of a 25 nm-thick GaN nucleation layer at 550 C, a 2.5 μm-thick undoped GaN cladding layer was grown at 1020 C. A line-shaped photoresist (PR) mask pattern with a width of 4 μm and a spacing of 10 μm between patterns was formed on a GaN cladding layer in the <1-100> GaN crystal direction by the photolithography method. Then, a 30 nm-thick W layer was deposited on the PR pattern as an LEO mask by electron-beam evaporation. Arrays of line-shaped W masks on the GaN cladding layer were obtained after the lift-off process. Figure 1(b) shows a plan-view scanning electron microscopy (SEM) image of the W masks. After the overgrowth of 2 μmthick undoped GaN, a 2 μm-thick n-gan was grown on the GaN epilayer covered with W masks. Figures 1(c) and (d) show cross-sectional SEM images of a coalesced LEO GaN epilayer that was grown using a W mask. As shown in Figs. 1(c) and (d), the full coalescence of the LEO GaN was achieved, and the W patterns were fully covered by the GaN epilayer. Note that air void structures can be created under the W mask without an additional wet etching process. The formation of the air void structure is attributed to the decomposition of GaN by the chemical reaction of GaN with hydrogen (H 2 ) and W during the LEO process of 4 July 2011 / Vol. 19, No. S4 / OPTICS EXPRESS A944

the GaN. It was reported that the W mask is not dense and the hydrogen molecules and their radicals pass through the W mask, resulting in the decomposition of the GaN epilayer under the W mask [8]. Then, five periods of InGaN/GaN MQWs were grown at 770 C, followed by the growth of a 200 nm-thick p-gan layer at 980 C. Finally, LEDs with air voids were fabricated and the details of the procedure for the fabrication of the LEDs with a size of 300 300 μm 2 was reported elsewhere [9]. Fig. 1. (a) Schematic of air voids embedded LEDs using a W mask. (b) Plan-view SEM image of a W mask. (c), (d) Cross-sectional SEM images of an LEO GaN epilayer grown on a W mask. 3. Results and discussion The surface of a LEO GaN epilayer with air voids was characterized using an atomic force microscope (AFM) (not shown). The surface pit density of the LEO GaN epilayer in the window region was 4 10 8 cm 2 and that of the mask region was 6 10 7 cm 2. The surface pit density of the as-grown GaN epilayer without air voids was 5 10 8 cm 2, which is similar to that of the LEO GaN epilayer in the window region. The surface pits formed in the GaN epilayer are known mainly due to the propagation of the threading dislocations. The AFM results indicate that the threading dislocations are terminated when they encounter the W mask, resulting in a decrease in the threading dislocation density of LEO GaN in the mask region [9,10]. To identify the strain relaxation in the LEO GaN epilayer caused by the formation of air voids, a Raman measurement was performed. The shift of E 2 phonon mode peaks of a GaN epilayer on the Raman spectrum represents the strain state of the epilayer [11,12]. As shown in Fig. 2(a), the E 2 phonon mode peaks of the as-grown GaN and LEO GaN epilayer with air voids appear at 571.4 and 569.6 cm 1, respectively. The relaxation of residual strain can be calculated using the following equation [11]: K, (1) 0 xx 4 July 2011 / Vol. 19, No. S4 / OPTICS EXPRESS A945

where ω γ and ω 0 represent the Raman peaks of the LEO GaN and as-grown GaN epilayers, respectively. A redshift of 1.8 cm 1 of the LEO GaN epilayer with respect to an as-grown GaN corresponds to a relaxation of compressive stress σ xx by 0.428 GPa when a proportionality factor K γ of 4.2 cm 1 /GPa is used for the hexagonal GaN [11]. The relaxation of strain is attributed to the formation of the air voids in the GaN cladding layer. This result shows that a high quality strain-released GaN epilayer can be grown using a W mask and air voids. Fig. 2. (a) Room temperature Raman spectra of an as-grown GaN and LEO GaN epilayers. (b) Room temperature PL spectra of LEDs with and without air voids. The inset shows temperature dependent integrated PL intensity of LEDs. Figure 2(b) shows the room temperature and temperature-dependent photoluminescence (PL) spectra of the InGaN/GaN LEDs grown on a GaN epilayer with and without air voids. The PL spectra were measured from the top side of the samples at room temperature using a He Cd laser (λ = 325 nm) with an excitation laser power of 50 mw. As shown in Fig. 2(b), the PL intensity of air voids embedded LED is much higher than that of the conventional LED. The integrated PL intensity of the LED with air voids is increased by about two times compared to that of the conventional LED. The large enhancement of the PL intensity can be attributed to the improved IQE of the InGaN/GaN MQWs due to the reduction of dislocation density and the relaxation of strain in the GaN epilayer [9,10]. To confirm the improvement in the IQE, the temperature-dependent PL was measured at temperatures from 10 to 300 K. The inset of Fig. 2(b) shows an Arrhenius plot of the integrated PL intensities of LEDs with and without air voids. The PL intensities of both LEDs decrease rapidly as the temperature increases because of the thermally activated non-radiative recombination centers. The integrated PL intensity of the MQWs can be fitted by using the following equation [13,14]: 1 I(T) 1 C exp( E / k T) i i i B where I(T) is the integrated PL intensity of the MQWs, C i is the constant related to the density of the non-radiative recombination centers, E i is the activation energy of the corresponding non-radiative recombination centers, and k B is Boltzmann s constant. Above 130 K, the calculated E i is 90 mev for LEDs with air voids and 57 mev for conventional LEDs, and the calculated constant C i is 18 for LEDs with air voids and 25 for conventional LEDs. The large value of E i for LEDs with air voids is due to the reduction in threading dislocations in the GaN epilayer, which leads to a high energy barrier for carrier capture by threading dislocations. The small constant C i for an LED with air voids also means that LEDs with air voids have a lower density of non-radiative recombination centers than LEDs without air voids. In the case of IQE, the IQE of LEDs with air voids is estimated to be 34%, which is about two times higher than the 18% for conventional LEDs without air voids. These results indicate that a significant relaxation of strain and reduction of defects such as screw and edge- (2) 4 July 2011 / Vol. 19, No. S4 / OPTICS EXPRESS A946

type threading dislocations in the GaN epilayer and MQWs contributes to the increased IQE value. Furthermore, the LEE can also be enhanced by air voids because the air voids at the interface between GaN and sapphire should be able to change the path of the light escaping from the LEDs. To confirm the improvement of LEE by air voids, the LEE of LEDs with and without air voids was calculated using the Monte-Carlo ray-tracing method. The simulation model for LEDs with air voids consisted of 330 μm-thick sapphire (n = 1.7) and air void structures (n = 1) with a width of 4 μm and a height of 3 μm surrounded by 7.5 μm-thick GaN (n = 2.5). The MQWs active region with an IQE of 100% was inserted into the GaN. The total amount of light emitted from the LED was detected by receivers covering all directions. Figure 3 shows the results of ray-tracing simulations for LEDs with and without air voids. As shown in Figs. 3(a) and (b), the light more effectively escapes from the LED with air voids than from the conventional LED. In particular, Fig. 3(c) shows that the light is more efficiently extracted from the top side of the LED with air voids. These results clearly indicate that the path length of light escaping from the LED with air voids is much shorter because the air voids efficiently change the light path toward the top direction to improve the light extraction of the LED. Fig. 3. Monte-Carlo ray-tracing result for (a) a conventional LED and (b) the LED with air voids. (c) Far field patterns of an LED with air voids and a conventional LED. Figure 4(a) shows the current-voltage (I-V) characteristics of blue LEDs with and without air voids. As shown in Fig. 4(a), the forward voltage of the LED with air voids is 3.35 V at 20 ma, which is the same as that of the conventional LED without air voids. The 12.8 Ω series resistance of the LED with air voids is slightly lower than the 13.1 Ω of a conventional LED. Furthermore, the LED with air voids shows a reverse-bias leakage current of 5 10 5 A at 10 V, which is slightly lower than the 8 10 5 A of the conventional LED without air voids. These results indicate that the threading dislocations responsible for leakage currents are reduced by the W mask and air voids. To investigate the optical properties of the LEDs, the 4 July 2011 / Vol. 19, No. S4 / OPTICS EXPRESS A947

optical output power was measured. The optical output power of the LED was measured from the top side of the LEDs using a 2 cm-diameter Si photodiode connected to an optical power meter. Figure 4(b) shows the optical output power of LEDs with and without air voids as a function of injection current. As shown in Fig. 4(b), the optical output power of LEDs with air voids is increased by 60% at 20 ma of injection current compared to that of conventional LEDs. The large increase in optical output power can be attributed to an improvement in the IQE of the MQWs caused by the reduction of threading dislocation and relaxation of strain in the GaN epilayer. Moreover, the LEE is also improved by reflection and redirection of the light by the air void structures embedded in the LEDs. However, the observed enhancement of optical output power of LED with air void structures is lower than the expected value presumably due to the lower carrier injection efficiency in electroluminescence compared to PL process, and the ray-tracing simulation of light extraction process based on the very simple modeling of detailed structure of air voids in LEDs. 4. Summary Fig. 4. (a) I-V characteristics of the LEDs with and without air voids as a function of injection current. (b) Optical output power of the LEDs with air voids as a function of injection current. In summary, we demonstrate a high-efficiency blue LED with air voids embedded in an LEO GaN epilayer using W masks. The optical output power of blue LEDs with air voids is increased by 60% at 20 ma compared to that of conventional LEDs without air voids. The increase in optical output power was attributed to an improvement in the IQE and LEE of the LEDs produced by the air void structures. Acknowledgements This work was supported by the Ministry of Land, Transport, and Maritime Affairs (Grant No. 20090006) and a Korea Science and Engineering Foundation (KOSEF) NCRC grant funded by the Korea government (MEST) (Project No. R15-2008-006-02001-0). 4 July 2011 / Vol. 19, No. S4 / OPTICS EXPRESS A948