COMPARISON OF BIOFILTER RESIDENCE TIME

Similar documents
BIOFILTRATION - ADAPTATION TO LIVESTOCK FACILITIES

Biofilter media mixture ratio of wood chips and compost treating swine odors

BIOFILTER MEDIA MIXTURE RATIO OF WOOD CHIPS AND COMPOST TREATING SWINE ODORS

DESIGN OF A HORIZONTAL AIRFLOW BIOFILTER

Biofiltration is. The average odor. Treating Odor Emissions from Buildings Biofilters

VENTILATION REQUIREMENTS TO PREVENT PIT AIR UP-DRAFTING IN

Odor Management. Current Challenges and Future Strategies: Environmental Management in Swine Production in North Dakota Jan 11-12, 2007 Casselton, ND

DRAINING OF SLURRY PITS - A SIMPLE WAY TO REDUCE EMISSIONS FROM PIG HOUSING UNITS

Protection Distances for Sufficient Dispersion and Dilution of Odor from Swine Buildings

MEASUREMENT OF ODOUR EMISSIONS FROM HOG OPERATIONS IN MANITOBA

Air Quality Education in Animal Agriculture: Biofilters for Odor and Air Pollution Mitigation in Animal Agriculture

PARTIAL BIOFILTRATION OF EXHAUST AIR FROM A HYBRID VENTILATED DEEP PIT SWINE FINISHER BARN

LABORATORY MEASUREMENT OF HYDROGEN SULFIDE AND SULFUR DIOXIDE RELEASES FROM SWINE MANURE OF DIFFERENT SOLID CONTENTS

Performance Validation of a Shell Media Biological Odor Control System

SEPARATION OF WASH/SPILLAGE WATER FROM DEFECATED MANURE

Natural Windbreak Effect on Livestock Hydrogen Sulfide Reduction and Adapting an Odor Model to South Dakota Weather Conditions

NH 3 Emissions from Poultry Layer Operations

Microturbine Operation with Biogas from a Covered Dairy Manure Lagoon

Odor Basics & Reducing Technologies

AIR EMISSIONS FROM TWO SWINE FINISHING BUILDING WITH FLUSHING: AMMONIA CHARACTERISTICS

Best Technologies for Reducing Odor Emissions from Curtain-Sided, Deep Pit Swine Finishing Buildings

Passively Aerated Composting of Manure Slurry

DESIGN, CONSTRUCTION, INSTALLATION, AND OPERATION OF A COMPACT BIO-OXIDATION SYSTEM TO MANAGE ODORS AT THE CITY OF WILSONVILLE WWTP

Biofiltration RJ ENVIRONMENTAL / METITO. Presented by: Georgios Ioannou, Product Manager

This page is for on-line indexing purposes and should not be included in your printed version.

Overview of Methods to Reduce Odorant Emissions from Confinement Swine Buildings

Comparison of measured and modeled ambient hydrogen sulfide concentrations near a 4000 head swine facility

DAYTIME ODOR EMISSION VARIATIONS

Air Quality and Indoor Environment of Compost Bedded Dairy Barns in Ohio

Ammonia Emissions from Confined Feeding Operations (CFOs): Control and Mitigation

REDUCTION IN MANURE WEIGHT AND VOLUME USING AN IN-HOUSE LAYER MANURE COMPOSTING SYSTEM UNDER FIELD CONDITIONS

Covers for Manure Storage Units

Ammonia and Greenhouse Gas Emissions of a Swine Breeding-Gestation-Farrowing Facility in the Midwestern USA

Current Understanding of Manure Pit Foaming, Barn Explosions, and Safety Precautions

Improving the Air Quality of Animal Feeding Operations

Removal of hydrogen sulfide using upflow and downflow biofilters

Improving the Air Quality of Animal Feeding Operations

HYDROGEN SULFIDE EMISSIONS FROM A MECHANICALLY-VENTILATED SWINE BUILDING DURING WARM WEATHER

PRACTICAL APPROACHES TO IMPROVE AIR QUALITY OF ANIMAL FEEDING OPERATIONS WITH PROPER FACILITY AND MANURE MANAGEMENT

Odor reduction during biofiltration as affected by air flow rate and media moisture content

INTEROFFICE MEMORANDUM

Ammonia and Greenhouse Gas Emissions of a Modern U.S. Swine Breeding-Gestation-Farrowing Facility

Ammonia Emissions and Potential Options for U.S. Poultry Facilities

Economics of Tunnel Ventilation for Freestall Barns

EFFICACY OF A MICROBIAL ADDITIVE IN REDUCING ODOR, AMMONIA, AND HYDROGEN SULFIDE EMISSIONS FROM

Biofilters Used to Reduce Emissions from Livestock Housing A Literature Review

Foaming Manure Pit Dangers

Agricultural & Natural Resource Engineering Applications. Covers: A Method to Reduce Odor from Manure Storages

1000 Olfactometry Analyses and 100 TD-GC/MS Analyses to Evaluate Methods for Reducing Odour from Finishing Units in Denmark

Temporal Variations in Gas and Odor Emissions from a Dairy Manure Storage Pond

Duffin Creek Water Pollution Control Plant Odour Control

Kansas Irrigated Agriculture s Impact on Value of Crop Production

Odor Assessments of Idaho Livestock Farms

Performance response of growing-finishing pigs to an air-cooled environment during a simulated hot weather growth period

Mitigating Odors from Agricultural Facilities: A Review of Literature Concerning Biofilters

Overview of NH 3 Emission from Poultry Facilities and the BMPs and BATs

Impact of Straw Cover on Greenhouse Gas and Odor Emissions from Manure Storage Lagoons Using a Flux Hood

PIUS MWANGI NDEGWA, PhD

Practices to Reduce Dust and Particulates from Livestock Operations

MITIGATING ODORS FROM AGRICULTURAL FACILITIES: A REVIEW OF LITERATURE CONCERNING BIOFILTERS

West County Treatment Plant Noise and Odor Control Project Update. June 29, 2004

A NEW METHOD FOR REDUCTION OF NH 3 EMISSIONS FROM PIG HOUSING SYSTEMS BY ADDING SULPHURIC ACID TO SLURRY

Emissions from Animal Production Systems John W. Worley. Table of Contents

Sponsors. We thank the following sponsors: Formatting Tina Smith Graphics CD-ROM David Brown

STATE OF MINNESOTA MINNESOTA POLLUTION CONTROL AGENCY FINDINGS OF FACT. Project Description

Comparison of the Predictions of Four Setback Models with Field Odour Plume Measurement by Trained Odour Sniffers

STATE OF MINNESOTA MINNESOTA POLLUTION CONTROL AGENCY FINDINGS OF FACT

STATE OF MINNESOTA MINNESOTA POLLUTION CONTROL AGENCY FINDINGS OF FACT

ISU Research, Programs & Assistance

Mitigating Odors from Agricultural Facilities: A Review of Literature Concerning Biofilters

Efficacy of a microbial additive in reducing odor, ammonia, and hydrogen sulfide emissions from farrowing-gestation swine operation

Use of Electromagnetic Soil Surveys to Locate Areas of Nutrient Buildup

Assessment of a Two-Stage Wood Chip-Based Biofilter Using Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry- Olfactometry

Performance response of growing-finishing pigs to an air-cooled environment during a simulated hot weather growth period

Progress on Pit Foaming (what we know, what we don t know, what we re doing)

Manure Du Jour April 2, 2009

Measurement and analysis of ammonia and hydrogen sulfide emissions from a mechanically ventilated swine confinement building in North Carolina

Biofiltration of Nitrous Oxide Using Cow-Manure Based Compost as Medium Filter

On-Farm Mortality Composting Practices

Odor and Odorous Chemical Emissions from Animal Buildings: Part 2. Odor Emissions

ABE 482 Environmental Engineering in Biosystems. November 14 Lecture 30

VOC CO 2 CH 4 N 2O. Viable particles. Increasing diversity. Broilers. Pigs. Cattle. Each source type may be outside barn to varying degrees.

Engineering controls to reduce hydrogen sulfide exposure of workers in swine buildings

Precision ventilation to improve indoor air quality and reduce emission in pig housing

Foaming in Deep-pit Manure Storages: Understanding the Causes

Author(s) First Name Middle Name Surname Role Joseph M. Zulovich Ph.D., P.E., Extension Assistant Professor, Commercial Agricultural Engineer

ADAPTATION OF BIOLOGICAL WASTE GAS PURIFICATION SYSTEMS TO MEDITERRANEAN REGION

Gas and PM Emissions Monitoring from Swine Gestation and Farrowing Barns in Central Iowa

Composting Success at Spotsylvania County, Virginia

A Comparison of Gaseous Emissions from Swine Finisher Facilities Fed Traditional vs. A DDGS- Based Diet

Figure 1. Design of the vertical biofilters.

Mortality Compost Nutrients and Use On Farm, Ways to Enhance Nutrient Content

Dairy Farm with good results in slurry

Objectives. Management Approaches. Mortality Compost Nutrients and Use On Farm, Ways to Enhance Nutrient Content

WAYS DARCO H 2 S ACTIVATED CARBON IS THE BEST SOLUTION FOR ELIMINATING ODORS

Practices to Reduce Odor from Livestock Operations

Odor Assessments of Idaho Livestock Farms and Manure Application Practices

Kogan Creek Power. Condenser. Contents. Update For ACC User Group. Kogan Creek Power Station and its Air

Socio-economic effect of livestock operations on their neighbours in Ilorin metropolis, Nigeria: implication for extension programme development

INTEROFFICE MEMORANDUM

Transcription:

Paper No. 984053 An ASAE Meeting Presentation COMPARISON OF BIOFILTER RESIDENCE TIME By R. E. Nicolai Research Fellow Biosystems and Agricultural Engineering Dept. University of Minnesota St. Paul, Minnesota, USA K.A. Janni Professor and Extension Engineer Biosystems and Agricultural Engineering Dept. University of Minnesota St. Paul, Minnesota, USA Written for presentation at the 1998 ASAE Annual International Meeting Sponsored by ASAE Disney s Coronado Springs Resort Orlando, Florida July 12-16, 1998 Summary: Residence time is a critical factor in determining the size of an open face biofilter. Four test biofilters were constructed with media comprised of yard waste compost and brush chips to compare 8 s. and 4 s. residence time. performance was monitored for ten months by measuring pressure drop, moisture content, odor threshold, hydrogen sulfide, and ammonia concentrations. Odor reduction efficiency for the 8 and 4 second residence time biofilters is 91% and 87% respectively. Hydrogen sulfide reduction efficiency is 97% and 96%. Ammonia reduction efficiency is 82% and 74%. There is no significant difference between an 8 s. and a 4 s. empty bed contact time for odor, hydrogen sulfide, and ammonia removal. Based on current information, the design residence time for biofilters on swine buildings is 4 to 5 seconds. Further research is needed to determine the minimum effective residence time for open face biofilters on livestock facilities. Keywords: s, Biofiltration, Swine, Odor, Hydrogen sulfide, Ammonia The author(s) is solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of ASAE, and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASAE editorial committees; therefore, they are not to be presented as refereed publications. Quotation from this work should state that it is from a presentation made by (name of author) at the (listed) ASAE meeting. EXAMPLE From Author s Last Name, Initials. Title of Presentation." Presented at the Date and Title of meeting, Paper No X. ASAE, 2950 Niles Road, St. Joseph, MI 49085-9659 USA. For information about securing permission to reprint or reproduce a technical presentation, please address inquiries to ASAE. ASAE, 2950 Niles Rd., St. Joseph, MI 49085-9659 USA Voice: 616.429.0300 FAX: 616.429.3852 E-Mail:<hq@asae.org> 1

COMPARISON OF BIOFILTER RETENTION TIME R. E. Nicolai and K. A. Janni Biosystems and Agricultural Engineering Department University of Minnesota, St. Paul, MN INTRODUCTION Pork production facilities generate odors. Those odors can be a nuisance to rural and urban neighbors near facilities. In a growing number of cases, concerns about odors and potential odors have caused the pork industry to experience governmental restrictions on growth and negative relations between residential neighbors and producers. These restrictions on growth and potential conflicts with neighbors will limit the business opportunities for the pork industry. Most of the odor reduction research in the past has focused on emissions from outside manure storages. One alternative to outside storages is to store manure below slatted barn floors in deep pits. Odors from barns with deep pits as well as barns where the manure is removed are a major part of the total odors coming from a pork production site (Jacobson et al., 1997). s reduce odor emissions (Janni et al., 1996). Since many biofilter applications are in the industrial market, little information is available for designing low cost systems for agriculture use. Nicolai et al. (1997) developed a low cost biofilter for swine production facilities. Average odor and hydrogen sulfide removal for that design was between 75 and 90 percent. One critical factor in determining biofilter size is the residence time. An indicator of the residence time is empty bed contact time, which is determined by dividing the volume of the empty filter bed by the airflow rate. An 8.8 s. empty bed contact time was used to achieve the odor reduction levels with the Nicolai et al. (1997) design. Zeisig (1987) reported adequate odor reduction could be achieved with 5 s. empty bed contact time. The objectives of this research was to determine the effect different air contact times (4 s. and 8 s.) have on odor, hydrogen sulfide, and ammonia emission. MATERIALS AND METHODS Figure 1 shows the layout of four 5ft. x 7ft. biofilters constructed in September, 1997 next to a 640 head capacity deep pitted nursery barn. An air mixing duct was constructed to receive exhaust air from three 1200 cfm pit fans. Four 250 cfm blowers mounted inside the air mixing duct moved air to each biofilter. Excess air from the pit fans was allowed to exit from one end of the mixing duct. Each biofilter consisted of a 6 in. deep plenum beneath a media support floor. This plenum received air from the blowers in the mixing duct. Two of the four biofilters had 12 in. deep media and two had 6 in. deep media. The empty bed contact time for these two depths is 8 and 4 s. 2

Nursery Barn Wall Pit Fans Blowers inside air duct Air duct to biofilter Air Mixing Duct 7' 12" deep bed 12" deep bed 5' 6" deep bed 6" deep bed Figure 1 Layout of four-cell biofilter. The biofilter media was 50% by weight yard waste compost and 50% brush wood chips. Since these biofilters were the open face type and followed the type of construction developed by Nicolai et al. (1997), they were exposed to Minnesota weather conditions. performance was monitored by comparing untreated air samples from each end of the air mixing duct to treated air samples which were collected from beneath a 1 m square flux hood on top of each biofilter. Air samples were analyzed using a dynamic olfactometer to determine odor detection threshold (Nicolai et al., 1997). Hydrogen Sulfide gas concentration was measured with a Jerome TM meter. Ammonia gas concentration was measured with NH 3 detector tubes. Air pressure differential on one blower and temperatures of the bed, untreated air, and treated air were continuously recorded on a dataloger system. Moisture content was determined by drying media samples and reported as a percent of dry matter. Detection Threshold (odor units) 1400 1304 1252 Inlet A ir - B elow F ilters 1200 1193 1147 Exhaust Air - Above 12" Bed Exhaust Air - Above 6" Bed 1028 1000 800 761 727 600 400 336 285 210 227 246 200 155 103 106 120 77 86 98 49 40 30 27 41 55 41 46 0 Sep-97 Oct-97 Nov-97 Dec-97 Jan-98 Mar-98 Apr-98 May-98 Jun-98 D ate of sam p les Figure 2 Odor detection thresholds of inlet and exhaust air from 12" and 6" deep biofilters. 3

RESULTS AND DISCUSSION Odor threshold levels Figure 2 shows odor detection threshold levels of air samples from before and after biofilter treatment. Samples were taken over a ten month period from September 1997 until June 1998. Odor levels are reported in odor units, which is the maximum dilutions of the sample air in clean air that will still allow trained odor panelists to detect the presence of an odor. Odor was reduced an average of 91% for the 12 inch deep biofilter and 87% for the 6 inch deep biofilter. The probability of variation in depth was 0.3750 using the nova statistical analysis. Thus, there was no significant difference in odor reduction between the two depths at the 5% level. Odor reduction efficiency improved from 82% to 97% for both biofilter media depths from startup to January. This efficiency increase was expected as the microorganisms, which oxidize the VOC's, multiplied and adapted to their new environment. Odor reduction efficiency for April was less then average (reductions of 84% for the 12 in. biofilter and 68% for the 6 in. biofilter). Warmer and dryer weather conditions during this period caused the biofilter media moisture content to be reduced. Inlet odor values were lower during the summer months as additional wall fans operated, thereby increasing the nursery ventilation rates. Hydrogen Sulfide 2500 2250 Inlet Air - Below Filters Hydrogen Sulfide (ppb) 2000 1500 1000 1850 1700 1025 1875 1875 Exhaust Air - Above 12" Bed Exhaust Air - Above 6" Bed 1090 500 455 295 0 145 63 54 4 25 6 18 19 50 67 23 21 18 26 25 Sep-97 Oct-97 Dec-97 Jan-98 Mar-98 Apr-98 May-98 Jun-98 Date of Sam ple Figure 3 Hydrogen sulfide concentrations of inlet and exhaust air from 12" and 6" deep biofilters. Figure 3 shows hydrogen sulfide concentration through the two different biofilter media depths. Hydrogen sulfide is reported in parts per billion. Hydrogen sulfide emissions were reduced an 4

average of 97% for the 12 in. deep biofilter and 96% for the 6 in. deep biofilter.. The probability of variation in depth was 0.3875 using the nova statistical analysis. Thus, there was no significant difference in hydrogen sulfide reduction between the two media depths at the 5% level. Since the biofilters had lower moisture contents during April the hydrogen sulfide removal efficiency was reduced. Ammonia 30.0 Inlet Air - Below Filters 28.5 25.0 22.5 Exhaust Air - Above 12" Bed Exhaust Air - Above 6" Bed 20.0 Ammonia (ppm) 15.0 13.5 16.0 12.0 10.0 9.0 9.0 8.0 9.5 5.0 0.0 2.5 2.8 1.5 1.0 0.5 5.0 1.0 0.5 0.5 Sep-97 Oct-97 Jan-98 Mar-98 May-98 Jun-98 Date of Sample Figure 4 Ammonia concentrations of inlet and exhaust air from 12" and 6" deep biofilters. Figure 4 shows ammonia concentration of inlet and exhaust air from the 12 inch and the 6 inch deep biofilters. Ammonia is reported in parts per million. The average ammonia reduction for each biofilter type was 82% for 12 in. and 74% for 6 in.. The probability of variation in depth was 0.1041 using the nova statistical analysis. Thus, there was no significant difference in ammonia reduction between the two depths at the 5% level. Pressure Drop Average pressure drop across the 12 in. biofilters was.045 in. of water and across the 6 in. biofilter it was.025 in. of water. Laboratory pressure tests with this media at 250 cfm air flow rates show the pressure drop per foot of depth to be between.04 and.1 in. 5

Media Moisture Content Moisture content in all biofilters remained above 40% except during April when they were near 30%. No additional water sprinkling was provided for the biofilter. One 6 in. biofilter was covered to prevent moisture addition for one month during June 98. The media dried to 5.25% moisture. This reconfirms Medina et al. (1994) findings that beds with peat or compost media, which tend to hold moisture, will dry out due to high air flow rates. Odor, hydrogen sulfide, and ammonia removal percentages after drying were 75%, 71%, and 33% respectively. CONCLUSION Significant odor, hydrogen sulfide, and ammonia reduction was achieved by the biofilters. There was no significant difference between an 8 s. and a 4 s. empty bed contact time for odor, hydrogen sulfide, and ammonia removal. Therefore, the recommended empty bed contact time for swine facilities is 4 to 5 s. Further research is needed to determine the minimum effective residence time for open face biofilters on livestock facilities. REFERENCES Jacobson, L. D., C. Radman, D. R. Schmidt and R. E. Nicolai. 1997. Odor measurements from manure storages on Minnesota Pig Farms. In: Proceedings of the Fifth International Livestock Environment Symposium. ASAE, May 29-31, Bloomington, MN. Janni, K. A., W.J. Maier, E. Tam, T.H. Kuehn, C.H. Yang, D.Vesley, M.A. Nellis, B.B. Bridges. 1996. Evaluation of biofiltration of air, an innovative air pollution control technology, Draft final report. Biosystems and Agricultural engineering, University of Minnesota. Medina, V.F., T.S. Webster, J.S. Devinny. 1994. Biofiltration of gasoline vapors: effects of direct water addition. Submitted for publication. Nicolai, R.E., K.A. Janni. 1997. Development of a Low Cost for Swine Production Facilities. Presented August 1997 at the ASAE Annual International Meeting, Paper No. 974040. ASAE, 2950 Niles Road, St. Joseph, MI 49085-9659 USA. Nicolai, R. E., C. J. Clanton, P. R. Goodrich, L. D. Jacobson, K. A. Janni, V.J. Johnson, and E. Lees. 1997. Development of a Dynamic Olfactometer Lab. Presented August 1997 at the ASAE Annual International Meeting, Paper No. 974019. ASAE, 2950 Niles Road, St. Joseph, MI 49085-9659 USA. Zeisig, H. D., and Munchen, T. U. 1987. Experiences with the use of s to Remove Odours from Piggeries and Hen Houses. In: Volatile Emissions from Livestock Farming and Sewage Operations. eds. V.C. Nielsen, J. H. Voorburg, and P. L Hermite, pp. 209-216. Elsevier Applied Science Publishers, New York. 6