Environment Protection Engineering ECOLOGICAL HEATING SYSTEM OF A SCHOOL BUILDING. DESIGN, IMPLEMENTATION AND OPERATION

Similar documents
Ground Source Heat Pumps

geoexchange as an alternative energy source DESIGN APPROACHES

CITY OF ORONO HENNEPIN COUNTY, MINNESOTA

COMMERCIAL / INDUSTRIAL COOLING TOWER SIDE STREAM FILTER SYSTEMS

HIGH EFFICIENCY SHOWERS WASTE WATER HEAT RECOVERY UNIT. Saved power 80kW. Showers waste water 9 C Power consumption 3,1kW. Showers waste water 31 C

Ground Source Heating & Cooling

GEOTHERMAL HEAT PUMPS CONFIGURATIONS/INSTALLATION

Siddhipur Water Treatment Plant Lalitpur, Nepal

Introduction to Geothermal Comfort Systems in INDIA

Cares renewable ENERGY

GEOTHERMAL DISTRICT HEATING EXPERIENCE IN TURKEY

DRIP EMITTER SYSTEM STUDY GUIDE

The under-ground water is generally available in the following forms :

The Integration of Large-Scale Solar Thermal and Heat Pumps in District Heating Systems

GAUTENG DEPARTMENT OF INFRUSTRUCTURE DEVELOPMENT BUILDING ASSESSMENT REPORT WET SERVICES 78 FOX STREET BUILDING

Risk to GSHP Closed Circuit Systems Methodology & Analysis. John Westerman

Water supplied by Marafiq does not meet the process requirements.

use Solar thermal for hot water production

use Solar thermal for hot water production DESIGN APPROACHES

Series HEATING HEATING Dimensions LxWxH [mm] 1150 x 400 x x 600 x 650. GMSW 7 plus

The influence of the ground parameters assumptions on the low enthalpy heat pump s energy source simulation s results

BY AQUIFER THERMAL ENERGY STORAGE (ATES)

CULVERDEN URBAN WATER NETWORK

AS/NZS 1547:2012 and AS/NZS 1547:2000 On-site Domestic Wastewater Management CONTENTS COMPARISON [PART A: AS/NZS 1547:2012 LISTED ORDER]

AS/NZS 1547:2012 and AS/NZS 1547:2000 On-site Domestic Wastewater Management CONTENTS COMPARISON [PART B: AS/NZS 1547:2000 LISTED ORDER]

Presented by: David G. Lamothe, P.E.

PHRT HEAT PUMP WITH HYDRAULIC EQUIPMENT AIR / WATER 7 to 16 KW

17.0 INFRASTRUCTURE AND ENERGY

GeoExchangeTM. A safe, efficient and sustainable choice for heating and cooling your home.

Renewable energies Concepts Heat exchanger solutions. Experts for energy recovery. We make waste-heat to your profit

Valve Nest Filter with Time Clock Control Installation and Operation Manual

PROPOSAL FOR THE PROMOTION OF GEOTHERMAL HEATING FOR THE TOWN OF MONO. June 2009 CONTENTS

Hydraulic systems Quality without cutting corners

White Paper. Geothermal Heating and Cooling

Bifluid Geothermal System New Generation

INTEGRATION OF A NEW CCGT PLANT AND AN EXISTING LNG TERMINAL AT BARCELONA PORT Abstract ID Number: 155

G eothermal. S ystems. The Earth Connection

Borehole Field in the The Drake Landing Solar Community Okotoks, Alberta

Private Wells & Septic Systems

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard

WATER SUPPLY SERVICES

Texas Water Resources Institute

Taravosh Jam Design & Engineering Co.

Introduction to Geothermal Comfort Systems in INDIA

POINT OF SALE INSPECTION SEWAGE TREATMENT SYSTEM (STS) AND/OR PRIVATE WATER SYSTEM (PWS)

Septic Systems. Presented by: Terry Davidson P. Eng.

Magma On the other hand, molten rock is under active volcanoes at accessible depths. The temperatures excess 650 o C.

Geothermal Comfort Systems

Future European Heat. Renewable heating comparisons

Long-Term Heating Test Using the Semi-open Loop Ground Source Heat Pump System

INCREASE OF THE EFFICIENCY OF THE NEUBRANDENBURG GEOTHERMAL HEATING PLANT THROUGH SURPLUS HEAT STORAGE IN SUMMER

Heat exchangers and thermal energy storage concepts for the off-gas heat of steelmaking devices

Mitigation of Influence of Aquifer Thermal Energy Storage System on the Underground Environment.

PUBLIC WATER SYSTEM ANNUAL REPORT

Ministry of the Environment and Climate Change. DRAYTON DRINKING WATER SYSTEM Inspection Report

Workshop 1 Our Groundwater and Surfacewaters are Connected and We are What We Drink Hosted by: Lackawanna County Conservation District

Groundwater Master Plan Update: Emergency Groundwater Supply Analysis & Water Quality Discussion

National Standards of the People's Republic of China

Modern Technologies in Rainwater Harvesting. Fritz Poerschke, Director R&D - WISY AG Germany

SIMULATION MODEL IN TRNSYS OF A SOLAR HOUSE FROM BRAŞOV, ROMANIA

Application of solar cooling system in a campus library in Hainan, China

SECTOR ASSESSMENT (SUMMARY): ENERGY

Camel Solar brings you some of the most advanced solar thermal systems available on the market today through innovation, research and development.

So What Does Go Into a Closed-Loop Ground Heat Exchanger?

Chapter 6 Cost Estimation

Subsoil heat for our homes

Fusion Series Treatment Systems Small Scale Residential & Commercial Treatment Units

Biogas plants made by EISENMANN

Geothermal Heating & Cooling in Health Care Applications

Demonstration of the TESSe2b system in residential houses in Austria, Cyprus and Spain and their energy analysis

the faculty for factory program (FFF), Jordan

Research on Sustainable Utilization of Shallow Geothermal Resources in Beijing, China

Harford County Health Department Resource Protection Division

Comparison of dewatering schemes for foundation pits under complex hydrogeological conditions

ScienceDirect. Application of a novel, vacuum-insulated solar collector for heating and cooling

APPENDIX A: EMERGENCY RESPONSE AND CONTINGENCY PLAN TEMPLATE

Private Sewage Systems Standard of Practice Proposed Revisions

COUNTY OF SUFFOLK STEVEN BELLONE SUFFOLK COUNTY EXECUTIVE SUFFOLK COUNTY PLANNING COMMISSION SUFFOLK COUNTY MODEL GEOTHERMAL CODE OVERVIEW MEMO

Expectation of Water Works Association in Lao PDR International Water Forum: MDGs to SDGs - Sustainable water environment and Stable water supply

Considerations for hydraulic fracturing and groundwater and surface water protection: lessons learned in the U.S.

Guide. Heat Pump Boilers. Information. Issue Ten >

Treatment options for hydrogen sulfide. Testing for hydrogen sulfide

Draft proposals for Test methods for close-coupled solar water heating systems - Reliability and safety

Deep geothermal energy Kirchweidach

GAUTENG DEPARTMENT OF INFRUSTRUCTURE DEVELOPMENT BUILDING ASSESSMENT REPORT WET SERVICES ABSA BUILDING

Active solar heating system with concrete plate heating analysed with dynamical thermal simulations

ST-4 Polygeneration plant. Parc de l Alba Cerdanyola del Vallès

Introduction and Operation of Advanced Environmental Systems: Geothermal Heat Collection System and New Wastewater Treatment System

Geoexchange for BC Public Sector Organizations

Long Point Water Treatment Plant Process Evaluation and Design Upgrades for Performance Enhancement; Dover, DE

Innovative Groundwater Heat Pump System for Space Heating and Cooling in USA and China

Commonwealth of Massachusetts Title 5 Official Inspection Form Subsurface Sewage Disposal System Form - Not for Voluntary Assessments

New developed solar thermal systems for heating and cooling Budapest, 16 th April 2009 Tsekouras Panagiotis Mech. Engineer NTUA Centre for Renewable

Thermia Large capacity Heat pumps

Coal Bed Methane (black coal, green future.)

Iron/Manganese Package Plant Pre-Engineered Ground Water Treatment. Village of Bolivar, NY

Maximum performance. For sure.

North Light and Pole Star GDF SUEZ

EXPERIMENTAL STUDY ON SOLAR HEATING BY NATURAL HEAT CONVECTION AND RADIATION

To find out more about installing a heat pump call or visit energysavingtrust.org.uk

Transcription:

Environment Protection Engineering Vol. 38 2012 No. 2 DOI: 10.5277/epe120213 JACEK ZIMNY*, KRZYSZTOF SZCZOTKA* ECOLOGICAL HEATING SYSTEM OF A SCHOOL BUILDING. DESIGN, IMPLEMENTATION AND OPERATION The concept, construction and analysis of a hybrid heating system have been presented for a school building in Wielka Wieś near Wojnicz, district of Tarnów. Because of technical wear of old existing heating system and increasing energy costs it was decided to complete its modernization. In consultation with the ENION energy company in Tarnów, a complex analysis of the possibility and advisability of the use of heat pumps for heating purposes has been made. Favourable environmental conditions in the vicinity of the premises such as available land and shallow ground water reservoir is located, were decisive in the fundamental way of the economic support of the proposed project. 1. DESCRIPTION OF THE OBJECT BEFORE MODERNIZATION The Primary School and Middle School in Wielka Wieś is located in the valley of Dunajec on clay soils. The area has several acres next to the building as possible to install a gas manifold, and in addition, these sites have rich deposits of shallow ground water. Fig. 1. Building of the primary school in Wielka Wieś [2] *AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Equipment for Environment Protection; corresponding author K. Szczotka, e-mail: szczotka@agh.edu.pl

142 J. ZIMNY, K. SZCZOTKA School building (Fig. 1) was built in traditional technology before 1987. Its surface area is approximately 1107 m 2 and capacity of 3538 m 3. In order to reduce heat losses, old windows were replaced with new ones before modernization of the heat source and central heating system [1, 2]. The building is located in the 3rd climate zone. The demand for thermal power amounts 105.4 kw. The boiler room was equipped with a gas boiler with the capacity of 145 kw (for lack of data, its efficiency was assumed at 80%) and in an unused old coal boiler (Fig. 2). Central heating was made in an open system of steel pipes, corroded, requiring replacement. Heat was transferred through cast iron radiators equipped with faulty valves. The internal installation was designed to the power of ca. 105 kw and heating water parameters of 90/70 C. Fig. 2. Boiler room in school; Jubam gas boiler and an old coal boiler [1] The wells drilling showed the presence of groundwater resources with the parameters relevant to the needs of the planned installation. As a peak source remained the existing gas boiler water. The analysis based on real data confirmed the return on investment for customers by reducing costs and the optimum selection system, which after the first year of operation delivered 87% of the heat required to heat the building. It should be stressed that the current demand for heating power is 105 kw, while the heat pump heating output only 32 kw, provides 30.5% of demand. This choice of heating system and pump power proved to be suitable both in terms of technical and economic feasibility, and investment for the recipient, the Office for the District, which finances energy management utilities.

Ecological heating system of a school building 143 2. ASSUMPTIONS FOR THE TECHNICAL-ECONOMIC ANALYSIS The basis for the analysis was the invoice for the gas received from the Office for the District. The estimated annual energy demand was ca. 500 GJ/year. Due to the nature of the project, it was assumed that the heat pump will not be able to cover peak power demand, but will be the basis with the power of ca. 30 kw and annual production of approximately 255 GJ/year. This is to ensure continuous operation of the device in the heating season and at the same time to maximize the power of the device. For the municipal office is expected to deliver a cheaper supply of heat energy, and for ENION SA Tarnów permanent warm reception [2, 4]. Horizontal ground collector is a polyethylene tube, inside which circulates antifreeze fluid (usually aqueous solution of polyethylene glycol), transporting heat. Polyethylene jacket eliminates the possibility of corrosion. The collector is arranged in the ground below the freezing zone. Surface alignment of the collector should be around 1.2 2 times greater than the surface of the heated building. Vertical ground collector is usually made as a heat exchanger in the U-shaped tubes filled with polypropylene freeze fluid, and placed in vertical wells 15 100 m deep. The average distance between wells is about 7 m. Water extracted by means of deep wells is the most preferred lower heat source for heat pumps, because it guarantees a high heat capacity throughout the year. Water after cooling by 4 C in the heat pump will be discharged to absorbing well. More often as a lower heat source air is used. However, it can be a source of heat in the temperature range from 15 C to 25 C, thus it is mostly used in the bivalent heating systems, consisting of primary sources (heat pump) and peak (eg. gas boiler). It was assumed that the lower heat source would be a flat plate collector placed in the field adjacent to the school. Finally, as a lower heat source was proposed and realized vertical collector using groundwater. By using such a collector improving heat pump efficiency was expected and making investment cost lower than those of the ground exchanger [2, 5]. 3. GEOLOGICAL ANALYSIS The next stage of operation was to order the execution of the project (NOT Tarnów) of geological wells and aquifers to determine the resources (June 2003. Design work on the implementation of hydrogeological wells drilled in the Quaternary to the collection for heating purposes in Great Village on the plot No. 683 was made in June 2004. The deposits of groundwater were estimated to be more efficient than 10 m 3 /h, while ca. 6 m 3 /h was needed. For the safety of investments, it was foreseen in the project execution of 4 deep wells (2 production wells and 2 injection wells) [5].

144 J. ZIMNY, K. SZCZOTKA 4. IMPLEMENTATION AND TESTING OF PRODUCTION WELLS Promising assessment of the draft was the basis for drilling a production well (June 2004). Drill spoil was rinsed with pressurized water from the hole causing a diversion of material to the surface. The drilling confirmed that the geological strata situated in the draft, that is impermeable layer rich in clay, reached the depth of ca. 8 m below the surface, followed by 3.5 m in the aquifer containing coarse gravel with a high performance filtration of about 25 m/day and a layer of impermeable clay beginning at 12 m below the surface. Then the pumping test was performed for 24 h pumping water with the yield of 10 m 3 /h caused a decrease in water level from 0.6 m below the surface by about 2.5 m. The study confirmed the efficiency of the actual deposit of the design data [2]. Parameter Bacteriological indicators [2] Test result Table 1 Highest permissible value for human consumption The number of colony-forming bacteria in 1 ml of water at 37 C after 24 h 122 20 Total coliforms in 100 cm 3 of water above 300 0 The number of thermotolerant coliforms and E. coli suspected in 100 cm 3 water 0 0 Table 2 Indicators of physical, chemical and organoleptic features [2, 5] Parameter Test result Turbidity 5.3 mg/dm 3 SiO 2 Colour 3.0 mg/dm 3 Pt Smell g1r Reaction ph 7.4 Iron 0.73 Ammonia 0.5+/ 0.059 Nitrites as nitric oxide 0.005 Nitrates as nitric oxide 4.39 mg/dm 3 Manganese 0.291 Sulfur 1967 Free chlorine below the detection limit Conductivity a 887 μs cm 1 Related to the temperature of 20 C with temperature measured 20.6 C

Ecological heating system of a school building 145 In order to examine the composition of water in terms of mineral content, water sample retrieved from the reservoir was commissioned to study 29 Jun 2004 in the County Sanitary-Epidemiological Station in Tarnów. Tests were conducted in the period from 29 June to 8 July 2004. The results are shown in Tables 1 and 2. The study showed a high content of iron, but did not exclude the application of heat pumps. 5. IMPLEMENTATION AND TESTING OF INJECTION WELLS Well damping was performed on 22.12.2004 by Hydrodol. The technology used by this company is drilling the well s dry. This ensures that there is in this case, the leaching of ore under pressure, which can cause additional erosion of walls of the hole and the porous soil adhesion to the pipe above the filter. The profile found during drilling was very beneficial, because the level of about 8.3 m below the surface was impermeable layer of dust and clay, followed by about 3.5 m layer of gravels and sands, and clay beginning from 12.8 m below the impermeable layer. Aquifer started 9.25 m below the surface and remained stable at this level. The resulting profile of the layers turned out to be very promising for use as a discharge of water from the heat pump. In order to confirm the assumptions, 24-hour pumping test were made (by using fire hoses), which confirmed execution of the absorption bed and tightness. The study was conducted at constant inspection of the drilling company representative [5, 6]. 6. SELECTION OF HEAT PUMP SUPPLIERS Selection of heat pump suppliers required the announcement and completion of the tender procedures. The tender was won by the Ochsner Heat Pump, the value of the works and equipment amounted to 48 838 ZLP. Assembly work included involvement in the heating system, installation of a buffer with the capacity of 1 m 3, heat pumps, heat meter on the output of the PC, submersible pump, the main electricity distribution and the relevant RCD and overcurrent protection, and making connections with the water pipes stacked wells. Eventually heat pump OCHSNER Golf Maxi GMWW 38 was mounted (Figs. 3 5) [6]. 7. START-UP PERIOD AND INITIAL RESULTS The final stage was the final acceptance of work connected with the training of people who will deal with the operation of the heat pump (05.01.2005) [2]. Preliminary measurements of the parameters of the device gave [4], water temperature in the flow of production well 11 C, decrease of water temperature after flow through the heat exchanger in the HP 3.5 C, temperature at the exit from the HP and power supply to the buffer 51.5 C,

146 J. ZIMNY, K. SZCZOTKA temperature at the entrance to the HP and the return of the buffer, 42 C, efficiency of the whole heating system with heat pump (with a circulating pump and submersible) ca. 3.0. Fig. 3. Heat pump with no external casing OCHSNER Golf Maxi GMWW 38 [1] Fig. 4. Assembled heating system, heat pump, buffer tank, electricity distribution, water installation [1, 6] Preliminary analysis indicated the technical parameters of the heat pump system. Intermittent increased heat demand is covered by switching on the gas boiler, working in parallel with the heat pump.

Ecological heating system of a school building 147 Fig. 5. Scheme of the heating system [2] 8. OPERATION OF THE HEATING SYSTEM The technical-economic project assumed heat consumption from the heat pump at the level of 255 GJ/year and the unit price 37 ZLP/GJ Gross. The average working time during the heating season was approximately 10 h/day. Return of investment costs was predicted after nine years of operation [1]. Currently, heat production is carried out continuously for 24 h a day (in the winter months, typically). Energy production from 3 January 2005 to 2 January 2006, amounted to 458 GJ. Based on these data, it can be expected that with the heat production of 460 GJ/year, the payback period will reduce to less than 7 years [2, 5]. The main objective of installing a heat pump was to reduce heating costs. The results of calculations show the extent to which this has been achieved in 2005 and 2009 (Figs. 6 10) [3]. In the year preceding the installation of heat pumps, gas consumption by the school was at the level of 20 893 m 3 /year, of which about 1440 m 3 /year were used for the preparation of meals, while the remaining 19 453 m 3 /year served to produce heat. Amount of heat produced was 500 GJ/year. Due to such a high consumption, it has been changed to the tariff W4. Taking into account changes of gas tariffs,, the cost of gas for heating purposes in 2005 would be 17 990 ZLP/year. After mounting the heat pump, gas consumption decreased to around 4200 m 3 /year, with the gas furnace of ca. 2320 m 3 /year. However, total heat production for the facility amounts to approximately 522 GJ/year. Due to a significant decrease in consumption, the object should be accounted for in the tariff W3. The cost of gas for heating will be in this case approximately 2541 ZLP/year. After adding up the

148 J. ZIMNY, K. SZCZOTKA cost of gas for the manufacture of heat in the gas furnace and heat cost of the heat pump, the total cost is 16 340 ZLP/year. The result is a decrease in costs for the purposes of central heating, which is approximately 9.2% [1]. Increasing economic effect is caused mainly by an increase in gas prices (reference costs) and in addition, in the tariff change (W3 for W4), where the share of fixed costs is much smaller. Fig. 6. Expenditure of electric power in heating months (2005) for the heat pump [1, 2] Fig. 7. Production of thermal energy in heating months of 2005 by HP [1, 2] Fig. 8. COP of heat pump in heating months of 2005 [1, 2]

Ecological heating system of a school building 149 Fig. 9. Electricity consumption by HP in heating months of 2009 [1, 2] Fig. 10. Heat production by HP in heating months of 2009 [1, 2] 9. CONCLUSIONS The analysis based on real data confirmed the return on investment for customers by reducing costs and optimum selection of the device that after the first year of work produced as many as 87% of the heat needed to heat the building. It should be noted that the demand for power facility is calculated to 105 kw, while the pump has the heat output of only 32 kw, which represents 30.5% of the demand. It turns out that such selection proved to be optimum in terms of investment for the owner of a heat pump ENION Tarnó SA Energy Company, as well as economical for the customer the Office for the District. REFERENCES [1] CEGLARZ G., The investment and installation of heat pumps in Wielka Wieś a case study, Tarnów, January 2005, ENION SA in Tarnów (in Polish). [2] CEGLARZ G., The results of the heat pump operation in Wielka Wieś, ENION SA, Tarnów, January 2006 (in Polish).

150 J. ZIMNY, K. SZCZOTKA [3] ZIMNY J., Renewable energy resources in low-energy building, 2010, Warsaw, PGA, AGH, WNT (in Polish). [4] RUBIK M., Heat pumps, Installation Technology in Housing, Warsaw, 2006 (in Polish). [5] PN-EN 14511, 1 4, Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling, 2009 (in Polish). [6] Directory of heat pumps, Ochsner 2010, www.ochsner.pl