Preservation is a critical element in protecting consumer, TABLE 1. SIMILARITIES AND VARIATIONS REPORTED IN THE PET SURVEY RESPONSES

Similar documents
The Microbiological Requirements of a Stability Study. Ngoc Anh-Thu Phan 19 th June 2012

PRESERVATIVE EFFICACY TEST FOR COSMETIC PRODUCT

KORALONE C-204 Preservative for Household and Industrial & Institutional Products

IN THIS SECTION MICROBIOLOGY TESTING EXPERT SOLUTIONS FOR PRODUCT DEVELOPMENT. Bacterial Endotoxin (LAL) Testing

CSPA Microbiology Preservative Subcommittee (MPS)

Preservative Testing Choice of Challenge Isolates

Preservation Efficacy Testing

ANALYTICAL REPORT: Comparison of the Microbial Recovery Efficacy of QI Medical EnviroTest Paddles versus a Conventional Contact Plate

á61ñ MICROBIOLOGICAL EXAMINATION OF NONSTERILE PRODUCTS: MICROBIAL ENUMERATION TESTS

Growth Promotion Test Guide for Media Used in Sterility Tests

Antimicrobial effectiveness evaluation of Isocide powder coating versus stainless steel plate

Standard Operating Procedure Title: Stock Suspensions of Micro-Organisms

Introduction. Michael J. Miller, Ph.D. RMM»

Today s Topics. General Quality Control Best Practices. Practices Antimicrobial Effectiveness Testing(AET) Best Practices Environmental Isolates

Published Standards ISO General instructions for microbiological examination ISO Enumeration and detection of aerobic mesophilic bacteri

Test Method for the Continuous Reduction of Bacterial Contamination on Copper Alloy Surfaces

Test Method for Efficacy of Copper Alloy Surfaces as a Sanitizer

Disinfection Qualification Testing

Final text for addition to The International Pharmacopoeia

Method Suitability Report Membrane Filtration Sterility Test with QTMicro Apparatus

DISINFECTION QUALIFI CATION TESTING CONSIDERATIONS FOR THE ASEPTIC AND CLEANROOM MANUFACTURING ENVIRONMENT

á62ñ MICROBIOLOGICAL EXAMINATION OF NONSTERILE PRODUCTS: TESTS FOR SPECIFIED MICROORGANISMS

Study Title Antibacterial Activity and Efficacy of KHG FiteBac Technology Test Substance Using a Suspension Time-Kill Procedure

AN EFFECTIVE AND HIGH PERFORMANCE NEW BIOCIDES BLEND FOR IN-CAN PRESERVATION OF PAINTS

Technical Data Sheet. Clariant In-can Biocides. Nipacide BIT 10W. Chemical name:1,2-benzisothiazolin-3-one

Validating the microbiological integrity of cosmetic products through consumer-use testing

3.3.1 Microbial enumeration tests

Industry Case Study: A Microbial Investigation of Contamination by Burkholderia multivorans. Jim Klein and Geert Verdonk Merck & Co., Inc.

Final text for addition to The International Pharmacopoeia

Decontamination Effectiveness of Esco Celsafe CO2 Incubator Sterilization Feature using High Heat Temperature By Bekti Tri Sumaryati

Disinfectant Qualification A Multifaceted Study

Principles of Preservation

GUIDE TO INSPECTIONS OF MICROBIOLOGICAL PHARMACEUTICAL QUALITY CONTROL LABORATORIES

Study Title Antibacterial Efficacy of Bio-Care Technology's Non-Porous Test Substance

Slate Steel (Mild Steel) Ceramic

Technical Report: (6616) December 05, 2016 Date Received: December 05, 2016 Page 1 of 6

3.2 Test for sterility

MicroSwabs & MicroSwabPlus

2.1 Tryptone Soya Broth containing 4% Tween 80 (TSB + T), or another appropriate deactivating broth.

Guidelines for Laboratory Verification of Performance of the FilmArray Blood Culture Identification (BCID) Panel

MICROBIOLOGICAL EXAMINATION OF NON-STERILE PRODUCTS: TEST FOR SPECIFIED MICRO-ORGANISMS Test for specified micro-organisms

Protocols for Laboratory Verification of Performance of the FilmArray Blood Culture Identification (BCID) Panel

MICROBIOLOGICAL TOOLS FOR QUALITY ASSURANCE IN HATCHERY: Laboratory Methods

CHAPTER 4 DISCUSSION. Many types of suitable media can be used to support the fungal growth and there is no

Microbiological Quality Control as Described in the Compendia. Scott Sutton, Ph.D.

Urine Monovette with Boric Acid

Protocols for Laboratory Verification of Performance of the BioFire FilmArray Blood Culture Identification (BCID) Panel

Dealer Bulletin. Re: OPTIM 33TB; 3 Minute Fungicidal Claim. OPTIM 33TB Contact Times* To: All Authorized SciCan Dealers Canada

Tests to Support Sterility Claim. Imtiaz Ahmed

Creating a Culture of Data Integrity Using an Automated Detection and Enumeration Method

Document No. FTTS-FA-001. Specified Requirements of Antibacterial Textiles for General Use

Result:COMPLETE Report Date: December 28 th, 2015

Erin Patton, MS Senior Product Specialist Charles River Labs, Microbial Solutions

Some Industrially Important Microbes and Their Products

European Pharmacopoeia

Test Method of Specified Requirements of Antibacterial Textiles for Medical Use FTTS-FA-002

ENVIRONMENTAL PARAMETERS OF GROWTH

Microbiology for Oral and Topical Products - The basics Scott Colbourne Business Manager NSW ALS Food & Pharmaceutical

Glass microscope slides treated/coated with Sani-Shield were supplied by the Unelko Group.

ASSESSMENT OF THE MICROBICIDAL ACTIVITY OF AN ACCELERATED HYDROGEN PEROXIDE- BASED FORMULATION (AHP-5) AGAINST VRE AND MRSA

Protocol Reference: Verification Protocol

INTRODUCTION water-soluble Figure 1.

Indigo-Clean White Paper: #1 Bactericidal Performance Testing of Indigo-Clean Upon Bacterial Species. Healthcare

Alpha HydroMAID Cleaning Effectiveness of the Alpha HydroMAID Cleaning System versus Conventional Mopping

3M Food. with 3M. TB Effective Date: Number: April 2, 2013 Supersedes: New Technology Products Originating.

Antimicrobial Lab Test Report

EC-type approval protocol No. 2 Microbiological safety of toys containing aqueous media REV 2

Cosmetics Industry. Culture media for microbiological analysis of cosmetic products

Microbiological Quality of Drug Products after Penetration of the Container System for Dose Preparation Prior to Patient Administration

Accugen Laboratories, Inc.

ROCIMA 30 Microbicide

Exercise 19. Fungi: Molds and Yeasts F10 Or The Rotten World Around Us

EC-type approval protocol No. 2 Microbiological safety of toys containing aqueous media REV 3

Non-Formaldehyde Releasing Biofilm Control Options Putting you in control.

Microbiology Testing: USP requirements for Sterile and Nonsterile Preparations Webinar Q&A

COMPARING THE ANTIMICROBIAL ACTIVITY OF THE SEMCO 3A TOTAL ENERGY WHEEL WITH OTHER SELECTED ANTIMICROBIAL SURFACE TREATMENTS RESEARCH FINDINGS

Medical Mycology. Lab (1)

Finally, You Have a Choice! Online Ordering Available

Microbiological Analysis of Pharmaceutical Preparations

Microbiological Methods

Specifications, Methods and precedence of source with particular reference to microbiological requirements in TGOs.

New Biocidal Active. MBIT Effectively Preserves Paint, Latex, Colorants, and Mineral Slurries

Microbial Media and Culture Dishes

ISO INTERNATIONAL STANDARD

FINAL REPORT STUDY TITLE

Study Title Antimicrobial Activity and Efficacy of Seal Shield's Electroclave. Test Method Custom Device Study. Study Identification Number NG7233

3.0. Materials and methods

ENVIRONMENTAL PARAMETERS OF GROWTH

smart antimicrobial additive we will work with you to create unique antimicrobial solutions to fit your product needs PROVEN ANTIMICROBIAL ACTIVITY

Exercise 13 DETERMINATION OF MICROBIAL NUMBERS

Public Health England (PHE) Certified Reference Materials for Microbiology. Certificate of Analysis Clostridium perfringens CRM13170L

Microbial Survival. Created on 2/25/ :05 AM

Analytical Service Code

Introducing. Wound Dressing. Incorporated with

An Overview of Antimicrobial Testing for Textile Applications

Analysis of Agion Coated Galvanized Steel Air Ducts in Woodward Academy Middle School after 10 Years of Service

Submitted May 16, May 23, 2014 BY:

Public Health England (PHE) Certified Reference Materials for Microbiology. Certificate of Analysis

ICH Topic Q4B Annex 8 Sterility Test General Chapter. Step 3

New York State Department of Health - Wadsworth Center Laboratory of Environmental Biology NYS ELAP Laboratory ID 10765

Transcription:

PRESERVATIVE EFFICACY TESTING Representatives from finished product companies and suppliers provide insight on methods ensuring preservation of consumer, household and industrial products. Vidya Ananth The Clorox Company; Tony Rook The Sherwin-Williams Company; Dolores A. Shaw The Dow Chemical Company; Sangeeta Ganguly-Mink Stepan Company; Phyllis Vitolo Nice Pak Products, Inc.; Milady Brutofsky Lonza, Inc.; and Courtney Detwiler State Industrial Products For the Consumer Specialty Products Association Microbiology Preservative Subcommittee Preservation is a critical element in protecting consumer, household and industrial (CH&I) products from microbial spoilage. Most CH&I products are aqueous based and contain high levels (>90%) of available water that provide an environment conducive to microbial growth. In addition, many essential nutrients required for microbial growth are present in key product formulation ingredients such as surfactants, dispersants, emulsions, rheology modifiers, enzymes and fragrances. 1 Microbial spoilage may compromise products to decrease efficacy, yield undesirable aesthetics or even pose a human health safety risk. For this reason, spoiled products may lead to expensive recalls that may draw negative attention from consumers, media and regulatory bodies, thus causing damage to brand and company reputation. 2 It is necessary to include effective preservatives in products to help mitigate these risks. Preservatives are defined by the US Environmental Protection Agency (EPA) as antimicrobial pesticides that are effective in non-public health products and are used to control the growth of microorganisms. 3 Preservatives that are used in CH&I products must be registered with EPA for their intended use and are regulated by the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) 7 U.S.C. 136 et seq. (1996) which provides for federal regulation of pesticide distribution, sale and use. 4 Preservatives are used in almost all water-based liquid cleaners and help increase consumer confidence in the quality of products. 5 Many companies are attempting to move away from traditional or synthetic preservatives while incorporating natural or more sustainable ingredients, thereby making preservation of these products even more challenging. Similarities The ideal characteristics of a preservative include: broadspectrum efficacy, shelf-life stability, product compatibility, safety in use, cost effectiveness, commercial availability, registration with appropriate regulatory agencies, and an environmentally favorable profile. Other factors that may impact the robustness of the preservative system include raw material quality, packaging design, exposure conditions (warehouse/transit) and consumer use habits. 6 Many companies use in-house or compendial Preservative Efficacy Test (PET) methods to evaluate the mitigation and control of spoilage organisms in products. 7,8 The PET method is used to demonstrate a product s ability to prevent microbial growth TABLE 1. SIMILARITIES AND VARIATIONS REPORTED IN THE PET SURVEY RESPONSES Pooling of challenge inocula Multiple ( 2) microbial challenges Type of recovery media Test product incubation conditions Use of neutralizing agents Neutralization validation included Neat product evaluated Single product lot evaluated Testing conducted on lab scale batches Stability sample test products (room temperature and accelerated temp) PET variations are due to unique product types Variations Selection of microorganisms Frequency of product challenge Ratio of inoculum volume to finished product Inoculum concentration Methods for determining inoculum concentration Preparation of mold spore inoculum Sample replicates Justification for PET method modifications Test sample quantity and containers Acceptance criteria PET studies conducted internally and externally Selection of samples through development and commercialization stages 2 happi happi.com April 2015

through the shelf life of the product. PET studies determine the effective concentration of a preservative system that is necessary to protect a formulated product from microbial spoilage. Currently, a standardized guidance for conducting PET evaluations of CH&I products does not exist. In order to understand the current industry practices, the CSPA Microbiology Preservative Subcommittee (MPS) conducted a survey in August 2013 of all CSPA member companies within the Cleaning Products and Antimicrobial Product Divisions, including product manufacturers, raw material suppliers and contract labs. Seventeen responses were collected and summarized and are presented in this paper. Approach and Results As the initial step to understand industry practices, the CSPA s MPS commissioned a PET task force who conducted a 29-question survey. The goal was to gather current information from the member companies on PET study parameters and conditions including acceptance criteria. Data from the survey will be used in developing the guidance and methodology for conducting PET evaluations. An overall summary of the similarities and variations of the PET methodologies are provided in Table 1. Variations in PET Method Most of the surveyed companies have defined an internal PET method and allow for a number of modifications of these methods. The survey identified previous microbiological issues as the critical reason for modifying their PET method. Other product factors necessitating variations of the method included product ph, viscosity, product component, solvent content, water content or water activity (Aw) and packaging processes. Additional aspects cited by those responding were salt/electrolyte content, product application and end use. Modifications or variations to a company s internal PET method are depicted in Figure 1. The two most frequent modifications to the PET were the inclusion of unique microbes and the number of challenges applied. Sample Considerations The survey addressed multiple characteristics related to samples in PET evaluations. In particular, sample selection based on the stage of product development was considered. Other characteristics included the volume of product tested, the number of lots evaluated, the number of replicates, inclusion of controls and sample container specifics. Responses from the companies surveyed indicated that testing was conducted through various stages of product development. The majority of the companies conducted PET evaluations on the lab scale batch during product development. Some of those surveyed performed PET evaluations on pilot scale batches, manufacturing scale test batches and product launch material. In some cases, the product development team was responsible for determining the stage at which the PET evaluation will occur. Over half of the respondents indicated that testing was completed on neat (undiluted) products. However, a few responded that product was diluted to customer specifications or label claims prior to testing. Dilutions included were 1:1 (50% solution); 1:9 (10% solution); 9:1 (90% solution). One company FIGURE 1: VARIATIONS/MODIFICATIONS IN PET METHODOLOGY VARIATIONS IN PET Unique microbes 94.118 Number of challenges 82.3529 Recovery media 41.1765 Inoculum volume 35.2941 Incubation conditions 29.4118 Acceptance criteria 17.6471 Incubation 5.8824 Sample volume 5.882 0 25 50 75 100 % RESPONSE FOR EACH VARIATION April 2015 happi.com happi 3

indicated that dilutions may be necessary depending on the product viscosity. More than 80% of those surveyed evaluated only one lot of product and about half performed from one to three replicates. Participating companies indicated that PET evaluation sample volumes ranged from 1-250mL or grams per sample. Sterile plastic or glass sample containers were used which ranged from 50-250mL. Since controls are a critical aspect of any microbiological evaluation, a question pertaining to the types of controls used during PET evaluation was included. The most common laboratory controls reported were sterility controls (media, unpreserved sample), negative controls (unpreserved samples), positive controls (well preserved samples) and inoculum controls (individual/pooled counts). Other controls employed were neutralizer confirmation, neutralizer sterility and current marketed products as comparative benchmarks. Most surveyed companies reported that the PET product samples were typically stored between 23-26 C for up to four weeks. A few companies indicated shorter sample incubation TABLE 2. ATCC MICROBIOLOGICAL STRAINS USED FOR CHALLENGE TESTING Microorganisms Gram Negative Bacteria ATCC Number Pseudomonas aeruginosa 9027, 15442, 10145 Pseudomonas putida 12633, 49128 Pseudomonas fluorescens 13525* Burkholderia cepacia 25416 Escherichia coli 8739, 11229, 25922 Enterobacter gergoviae 33028 Enterobacter aerogenes 13048 Citrobacter freundii 8090 Klebsiella pneumoniae 13883, 4352* Klebsiella oxytoca 13182* Serratia liquefaciens 27592 Acinetobacter baumannii 19606* Gram Positive Bacteria Yeast Mold Staphylococcus epidermidis 12228, 14990 Staphylococcus aureus 6538 Candida albicans 10231 Saccharomyces cerevisiae 834* Aspergillus brasiliensis (formerly Aspergillus niger) * Reported only by a few respondents 16404 periods of one to three weeks. The number and frequency of microbial challenges were company specific and depended on many conditions including product type, raw materials, manufacturing environment, packaging format, shelf life and intended use. These conditions also impacted the sampling intervals following each challenge inoculation. Interestingly, the survey indicated that the number of challenges performed by companies was evenly split between conducting a single challenge and multiple challenges. Of those responding that multiple challenges were used, two to eight challenges were performed, with two to three challenges as most common. The interval between challenges was most typically reported as one week. The studies generally lasted from one to eight weeks. A respondent inoculated and immediately sampled afterwards to provide a Day 0 evaluation. This ensured that the challenge organisms were recovered in the test substance thus demonstrating that neutralization occurred. Inoculum Choice and Consideration When selecting microbes for PET evaluation, most companies TABLE 3. ENVIRONMENTAL/ PRODUCT ISOLATES USED FOR CHALLENGE TESTING Microorganisms Gram Negative Bacteria Pseudomonas oleovorans Pseudomonas pseudoalcaligenes Pseudomonas alcaliphila Pseudomonas aeruginosa Pseudomonas japonica Pseudomonas sp. Enterobacter gergoviae Aeromonas hydrophila Alcaligenes faecalis Provencia rettgeri Serratia marcescans Halomonas venusta Gram Positive Bacteria Enterococcus avium Enterococcus casseliflavus Microbacterium paraoxydans Bacillus subtilis/spp Yeast Candida xestobii Rhodotorula mucilaginosa Cryptococcus saitoi Cryptococcus magnus Rhodosporidium kratochvilovae 4 happi happi.com April 2015

used American Type Culture Collection (ATCC) strains of bacteria and fungi. The ATCC strains used are listed in Table 2. Additionally, environmental isolates recovered from raw materials, finished products or production equipment surfaces are also used by some companies (Table 3). The survey results indicated that microbe selection was a key contributor to variation in a company s standard method. There were no general trends identified for organism isolates with either standard or environmental strains among respondents. However, the surveyed companies focused heavily on Gram negative bacteria since these were the organisms that had the greatest spoilage potential in high water based formulations. Most companies reported using standard growth media for the inoculum preparation. Seventy-seven percent (77%) of the respondents used Trypticase Soy Agar/Broth (TSA/TSB) for bacteria while 35% used Sabouraud Dextrose Agar/Broth (SDA/ SDB) and 41% used Potato Dextrose Agar (PDA) for growing yeast and mold. A few of those surveyed also used other media such as Nutrient Agar/Broth, MacConkey, Tryptone Yeast Glucose (TYG), Plate Count Agar (PCA), Tryptone Glucose Extract (TGE), Brain Heart Infusion, Middlebrook and Synthetic Broth. The typical incubation temperatures used were 30-37 C for bacteria, 25-35 C for yeast and 25-32 C for mold. Approximately half of those surveyed used cultures in the stationary growth phase. A few used cultures in the exponential/log or late log phase of growth. Most companies prepared separate pools of bacterial and fungal strains while some challenged with individual strains of microorganisms in the PET. Most companies targeted a final concentration of 105 to 106 CFU/mL (Colony Forming Unit/mL) for bacteria, yeast and mold. Variations in inoculum concentration were as low as 103 CFU/mL and as high as 109 CFU/mL. Various methods for determining inoculum concentration were used including plate counts, turbidity measurements, Most Probable Number (MPN) and hemacytometer cell counts. Table 4 shows that most companies used plate counts to enumerate inoculum levels, followed by turbidimetric measurements. The survey revealed that currently there is no standard approach to preparing the mold inoculum; however, the following techniques were reported: Grew the mold on SDA or PDA plates or slants; Used phosphate buffer, saline containing a wetting agent (Tween 80, Triton X-100) and/or glass beads to dislodge the mold spores from the agar surface; Filtered the mold suspension through sterile gauze to remove mycelial fragments; and Prepared inoculum from pellets or dehydrated cultures. Lastly, respondents were asked about the quantity of inoculum added to the finished product. The most common response was 1:100 volume to volume ratio of organisms into finished product. The variations reported are presented in Table 5. TABLE 4. METHODS FOR ENUMERATING INOCULUM CONCENTRATION Inoculum Enumeration Methods Number of Responses Plate Count 8 Turbidity (Spectrophotometry) 5 MPN 1 Hemacytometer Cell Counts 1 TABLE 5. RATIO OF INOCULUM TO FINISHED PRODUCT Ratio Percentage of Responses 1:10 15 1:100 69 1:200 8 1:250 8 Aspects of Microbial Recovery An important aspect of conducting PET evaluations is the selection of appropriate media to support the growth of relevant bacteria and yeasts/mold. 9 The majority of the companies utilized TSA or TSA with neutralizers for recovery of bacteria. PDA or SDA, with or without neutralizers, were used for recovery of yeasts and molds. Bacterial recovery was conducted by incubating the plates at a temperature range of 30-35 C for one to two days. Incubation of mold/yeast recovery media was typically conducted at a temperature range of 23-30 C for a period of two to seven days. The survey specifically requested companies to comment on their neutralization practices. Sixty-five percent of respondents indicated the use of a neutralizer for recovery of organisms during PET, while 24% do not use a neutralizer. Most commonly utilized neutralizing media reported were Dey-Engley broth (D/E broth), D/E supplemented, Letheen broth (LB), LB modified with thioglycollate, TAT and lecithin. The vast majority of companies that incorporated a neutralizer in their recovery media also conducted neutralization validation (91%). However, the justification for conducting neutralization validation and the methodologies employed varied among responding companies, and no trend could be established. Acceptance Criteria The preservative level recommended by the outcome of the PET study should be predictive of effective protection against spoilage during consumer use. Since the acceptance criteria of a PET study can greatly influence the recommended effective preservative levels within a product, understanding how to accept a April 2015 happi.com happi 5

TABLE 6: PET ACCEPTANCE CRITERIA FOR BACTERIA, YEAST AND MOLDS Acceptance Criteria (over test period) Percentage of Responses Bacteria (%) Mold/Yeast (%) Complete log reduction 53 50 3 log reduction 27 14 2 log reduction 20 0 No increase 0 36 preservative package based on testing is a critical parameter. 10 Participants were questioned regarding the criteria they find acceptable against bacterial, fungal and/or yeast challenges. Survey responses provided a large variation in acceptance criteria, ranging from no increase of the initial microbial challenge concentration to a complete reduction over the course of the PET evaluation (Table 6). Over half of the respondents indicated their acceptance criteria was complete reduction for all three types of microbial challenges (bacteria, mold and yeast). A smaller proportion of the responses indicated a two or three log bacterial reduction from the initial microbial challenge by the end of the testing period was acceptable. Just over a third of the responses indicated it was acceptable when there was no increase of mold or yeast concentrations over the period of the test. Controls are a critical aspect of any microbiological evaluation, and, therefore, the survey questioned participants on the acceptance criteria of any control data generated during PET studies. In general, the majority of respondents indicated sterility controls should demonstrate no growth and inoculum viability controls should exhibit growth. Acceptance criteria for product controls mainly consisted of demonstrating sustained spoilage within an unpreserved product sample (negative control). However, some respondents required a product sample with a sufficient level of preservative to demonstrate no growth (positive control). Conclusions The consumer, household and industrial products industry widely recognizes the potential for microbes to survive within a variety of water-based consumer products. Therefore, preservatives are commonly included in aqueous based CH&I formulations to protect against microbiological contamination during normal consumer use. 7,11 This survey focused on understanding the various aspects of conducting an in-house Preservative Efficacy Test. Based on the responses, it is evident that many companies employ PET evaluations to determine the effectiveness of their preservative systems against microbiological contamination. It was discovered that many variations exist between company methodologies but core similarities were uncovered. Within companies, internal method modifications are often employed based on product characteristics or past performance. Due to the number of variations seen within the industry, there is a clear need for a more standardized guidance when conducting PET evaluations. Therefore, the CSPA MPS will continue to work toward developing a standard guidance document that includes recommendations for best practices when employing PET evaluations within CH&I products. The CSPA Microbiology Preservative Subcommittee The CSPA Microbiology-Preservative Subcommittee (MPS) is committed to establishing best practices and acceptable standards to address the increasing concern for microbiological quality within consumer, household, and industrial products. To support these goals, a Microbial Control Stewardship Task Force communicates the necessity for effective preservation strategies within consumer, household and industrial products. Website: www.cspa.org References 1. Dolores A. Shaw, Beth A. Browne, Tony Rook, Phil Geis & Vidya Ananth. (2014). Critical Elements of Household Product Preservation: An Overview. Household and Personal Products Industry May 2, 2014 p.1. 2. Phil Geis & Tony Rook. Microbiological Quality of Consumer Product. Household and Personal Products Industry May 3, 2011 p.1. 3. Retrieved Nov 14 2014, from http://www.epa.gov/oppad001/ad_info.htm. 4. Retrieved Nov 14 2014, from http://www2.epa.gov/laws-regulations/ summary-federal-insecticide-fungicide-and-rodenticide-act. 5. Retrieved Nov 14 2014, from http://www.aboutcleaningproducts.com/ ingredients/preservatives/ 6. Daniel K. Brannan. (1995). Cosmetic Preservation. J. Soc. Cosmetic Chem.46, 202 7. J. F. Krowka & J. E. Bailey. (2007). CTFA Technical Guidelines - CTFA Microbiology Guidelines The Cosmetic, Toiletry & Fragrance Association. 8. The United States Pharmacopeia and The National Formulary (USP-NF); USP <51> Antimicrobial Effectiveness Testing. 9. Philip A. Geis. (2006) Cosmetic Microbiology: A Practical Approach. 2nd Edition. New York: Taylor & Francis. 10. Wolfgang Siegert. (2013). Comparison of microbial challenge testing methods for cosmetics. Household and Personal Care Today, 8(2), 32. 11. The Cosmetic, Toiletry & Fragrance Association. (2003). CTFA preservative challenge and stability testing survey. Cosmetics and Toiletries. May 6 2003. 6 happi happi.com April 2015 Form No: 253-03420