Dissolution Behavior of Mg from MgO into Molten Steel Deoxidized by Al

Similar documents
Influence of Sulfur on the Reaction between MnO SiO 2 FeO Oxide and Fe Mn Si Solid Alloy by Heat Treatment

Influence of Solid CaO and Liquid Slag on Hot Metal Desulfurization

Dissolution Behavior of Mg from MgO C Refractory in Al-killed Molten Steel

Form of Al Ti Oxide Produced by Al Ti Deoxidation Reaction at 1873 and 1473 K

Trial on the Applicaton of Capillary Phenomenon of Solid CaO to Desulfurization of Liquid Fe

Thermodynamic Interaction between Chromium and Aluminum in Liquid Fe Cr Alloys Containing 26 mass% Cr

Hiroyuki SHIBATA, 1) Yusuke WATANABE, 2) Keiji NAKAJIMA 3,4) and Shin-ya KITAMURA 1)

Activity Measurement of CaO SiO 2 AlO 1.5 MgO Slags Equilibrated with Molten Silicon Alloys

Equilibrium Relationships between Oxide Compounds in MgO Ti 2 O 3 Al 2 O 3 with Iron at K and Variations in Stable Oxides with Temperature

Influence of Steel Grade on Oxidation Rate of Molten Steel in Tundish

Evaluation of Viscosity of Molten SiO_2-CaO-MgO- Al_2O_3 Slags in Blast Furnace Operation

Xiao YANG, Hiroyuki MATSUURA and Fumitaka TSUKIHASHI

Effect of Chromium on Nitrogen Solubility in Liquid Fe Cr Alloys Containing 30 mass% Cr

Thermodynamics of TiN Formation in Fe Cr Melts

Trial of capillary refining by porous CaO with molten slag

Analysis of Hot Metal Desiliconization Behavior in Converter Experiments by Coupled Reaction Model

Enrichment of Phosphorus Oxide in Steelmaking Slag by Utilizing Capillary Action

Magnesium Deoxidation Equilibrium of Molten Fe Cr Ni Alloy Expressed by Quadratic Formalism and Redlich-Kister Type Polynomial

Formation of MgO Al 2 O 3 Inclusions in High Strength Alloyed Structural Steel Refined by CaO SiO 2 Al 2 O 3 MgO Slag

Effect of Oxygen Partial Pressure on Liquidus for the CaO SiO 2 FeO x System at K

Mechanism of Dissolution of Burnt Lime into Molten Slags Containing Iron Oxide.

Acceleration of Carburization and Melting of Reduced Iron in Iron Ore Carbon Composite Using Different Types of Carbonaceous Materials

High Efficiency Hot Metal Desulfurization by Enhancing Flux Dispersion in Mechanical Stirring Process

Effect of Al 2 O 3 or MgO on Liquidus Line in the FeO X Corner of FeO X -SiO 2 -CaO System at 1523 K under Various Oxygen Partial Pressures

Oxidation of Iron, Silicon and Manganese

Fundamental Research on a Rational Steelmaking Slag Recycling System by Phosphorus Separation and Collection

Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore

Conversion of CO 2 Gas to CO Gas by the Utilization of Decarburization Reaction during Steelmaking Process

Effect of CO 2 Content in Quicklime on Dissolution Rate of Quicklime in Steelmaking Slags

Characteristics of Particle Size Distribution of Deoxidation Products with Mg, Zr, Al, Ca, Si/Mn and Mg/Al in Fe 10mass%Ni Alloy

Activities of SiO 2 in Some CaO Al 2 O 3 SiO 2 ( 10%MgO) Melts with Low SiO 2 Contents at K

Carbide Capacity of CaO SiO 2 CaF 2 ( Na 2 O) Slags at K

KITAMURA Laboratory ( )

Modeling of the deoxidization process on submerged arc weld metals

Melting Rate of Iron Oxide Pellets into Iron Melt*

Optimum Conditions for Phosphorus Recovery from Steelmaking Slag with High P 2 O 5 Content by Selective Leaching

Sulphide Capacities of CaO Al 2 O 3 SiO 2 MgO MnO Slags in the Temperature Range K

Effect of Silicon on TiN Formation in Liquid Iron

DISSOLUTION RATE OF PURE CaO AND INDUSTRIAL LIME IN CONVERTER SLAGS*

EXPERIMENTAL INVESTIGATION OF PHASE EQUILIBRIA OF SUBSYSTEMS IN THE MnO-SiO 2 -Al 2 O 3 -MnS SYSTEM

Chromium distribution between slag and non-carbon saturated metal phases under changing partial pressure of carbon monoxide

Can Fluorspar be replaced in steelmaking? Eugene Pretorius Baker Refractories

Reoxidation of Al Ti Containing Steels by CaO Al 2 O 3 MgO SiO 2 Slag

The formation of an inner slag layer during the dissolution of MgO particles in ladle slag

Mechanisms of Pig-iron Making from Magnetite Ore Pellets Containing Coal at Low Temperature

Reduction of FeO in Molten Slags by Solid Carbon in. the Electric Arc Furnace Operation*

Sulphur Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka. Today s Topics

Recovery of Phosphorus from Modified Steelmaking Slag with High P 2 O 5 Content via Leaching and Precipitation

Phase Equilibrium for the CaO SiO 2 FeO 5mass%P 2 O 5 5mass%Al 2 O 3 System for Dephosphorization of Hot Metal Pretreatment

Influence of TiC on the Viscosity of CaO MgO Al 2 O 3 SiO 2 TiC Suspension System

Corrosion of Nozzle Refractories by Liquid Inclusion in High Oxygen Steels

Mechanism of Alumina Adhesion to Continuous Caster Nozzle with Reoxidation of Molten Steel

Reduction and Disintegration Behavior of Sinter under N 2 CO CO 2 H 2 H 2 O Gas at 773 K

Corrosion Mechanism of Commercial MgO C Refractories in Contact with Different Gas Atmospheres

The Study on Sulfur and Nickel Distribution Behavior of Nickel between Fe-Ni alloy and MgO-FeO-SiO 2 Slag System

Development of the Process for Producing Pre-reduced Agglomerates

Lecture 21: Evolution of ladle Treatment and Requirements

Effect of B 2 O 3 on Melting Temperature, Viscosity and Desulfurization Capacity of CaO based Refining Flux

EFFECT OF ACTIVITY COEFFICIENT ON PHOSPHATE STABILITY IN MOLTEN SLAGS

Trial to Evaluate Wettability of Liquid Zn with Steel Sheets Containing Si and Mn

Phase Equilibrium between Ni S Melt and CaO Al 2 O 3 Based Slag in CO CO 2 SO 2 Gas Mixtures at 1773 K

Kinetic Study on Recovery of Antimony in Anode Slime from Used Lead Batteries Utilizing Volatile Oxide Formation

Carbothermic Reduction of MgO by Microwave Irradiation

Phosphorous Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka

THERMODYNAMICS OF MANGANESE OXIDE IN CaO-SIO 2 -MgO SAT. -Cr 2 O 3 -MnO SLAGS FOR THE PRODUCTION OF HIGH MN STAINLESS STEEL

Influence of Slag Composition on Slag Iron Interfacial Tension

Recovery of Nickel from Selectively Reduced Laterite Ore by Sulphuric Acid Leaching

Influence of the Interfacial Tension on the Droplet Formation by Bubble Rupture in Sn(Te) and Salt System

Gasification and Reduction Behavior of Iron Ore-Carbon Composite under High Pressure

Fundamental Study of Sn Removal from Hot Metal by NH 3 Gas Blowing

Corrosion mechanism and kinetic behaviour of refractory materials in contact with CaO-Al 2 O 3 -MgO-SiO 2 slags

INVESTIGATION OF THE WETTING CHARACTERISTICS OF LIQUID Fe-19%Cr-10%Ni ALLOYS ON THE ALUMINA AND DOLOMITE SUBSTRATES AT 1873 K

Sulfide Capacity of CaO-SiO 2 -FeO-Al 2 O 3 -MgO satd. Slag

Secondary Steelmaking 1 Synthetic slag practice, injection ladle metallurgy, deoxidation

Activities of the Constituents in Spinel Solid Solution and Free Energies of Formation of MgO, MgO Al 2 O 3

SOLUBILITY OF MgO IN CaO-BASED SLAGS

Thermodynamic determination of low melting area in CaO-Al 2 O 3 -SiO 2 -MgO-MnO system inclusion and its control in spring steel

Manganese Equilibrium Distribution between Carbon-saturated Iron. Melts and Lime Based Slags Containing MnO, BaO, and Na20*

Effect of Mg Addition on the Evolution of Inclusions in Al Ca Deoxidized Melts

CHALLENGES IN PROCESS METALLURGY L. TENG, T. MATSUSHITA AND S. SEETHARAMAN

Effects of slag chemistry and temperature on wetting and penetration of refractories by slags

Thermodynamic database of P 2 O 5 -containing oxide system for De-P process in steelmaking

Metallurgy and materials

Simultaneous Evaluation of Viscous and Crystallization Behaviors of Silicate Melts by Capacitance and Viscosity Measurements

Lecture 23: Injection ladle metallurgy

Niobium Powder Production in Molten Salt by Electrochemical Pulverization

Thermal Conductivity of 2CaO SiO 2 Bearing Solid Solution

Unique functions of slags in steelmaking

Prediction of SiO 2 -Al 2 O 3 -CrO x complex inclusions in steel containing 16 per cent Cr-Si-Al-Mn

Recovery of Molybdenum from Spent Lubricant

Development of the Molten Slag Reduction Process -1 Characteristics of Closed Type DC arc Furnace for Molten Slag Reduction

Effect of Slag Composition on Inclusion Control in LF-VD Process for Ultra-low Oxygen Alloyed Structural Steel

DENSITY AND SURFACE TENSION. OF CUxO SLAG -;; ~ 1503 K ~ Si0 2 content /mol% MOLTEN SLAGS, FLUXES AND SALTS '97 CONFERENCE - 157

Chromium distribution between slag and non-carbon saturated metal phases under changing partial pressure of carbon monoxide

Rate and Mechanism of Reduction-Dissolution of Chromite in Liquid Slags

Briquette Smelting in Electric Arc Furnace to Recycle Wastes from Stainless Steel Production

The effect of carbon in slag on steel reoxidation by CaO-SiO 2 - Al 2 O 3 -MgO-MnO-Fe t O slags

Dynamic Migration Process and Mechanism of Phosphorus Permeating into Metallic Iron with Carburizing in Coal-based Direct Reduction

Surface Reaction of Blast Furnace Slag under Hydrothermal Conditions

Lecture 25: Principles of degassing

Transcription:

, pp. 223 2238 Dissolution Behavior of Mg from MgO into Molten Steel Deoxidized by Al Akifumi HARADA, 1) Gaku MIYANO, 2) Nobuhiro MARUOKA, 3) Hiroyuki SHIBATA 3) and Shin-ya KITAMURA 3) * 1) Graduate Student, Department of Metallurgy, Graduate School of Engineering, Tohoku University, 2-1-1 Katahira Aoba-ku, Sendai City, 98-8577 Japan. 2) Formerly Graduate Student, Department of Metallurgy, Graduate School of Engineering, Tohoku University. Now at Research & Development Division, UACJ Corporation, 1351 Uwanodai, Fukaya City, 366-8511 Japan. 3) Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira Aobaku, Sendai City, 98-8577 Japan. (Received on March 14, 214; accepted on June 24, 214) The formation of MgO Al 2O 3 spinel-type inclusions has often been reported even when Mg is not added during treatment. Many researchers have investigated the dissolution behavior of Mg from slag; however, studies on the reaction between molten steel and MgO-type refractory are limited. In this paper, the inclusion composition of Al-deoxidized steel melted in a MgO crucible, and mass transfer rates of Mg from a MgO rod and MgO in slag to Al-deoxidized molten steel were investigated. These studies clarified that Mg dissolved in the molten steel and the spinel formed not only with the reaction of molten steel and slag but also with the reaction of molten steel and MgO crucible. The dissolution rate of Mg from MgO rod increased as the rotation rate and Al content in steel increased. The MgO Al 2O 3 spinel layer formed at the interface between the metal and MgO rod. The Mg content was higher for the reaction between molten steel and MgO in slag compared to the reaction between molten steel and MgO rods, as it equilibrated with MgO activity in slag. KEY WORDS: inclusion; spinel; MgO; refractory; dissolution; slag; composition change. 1. Introduction As the demand for high-quality steel continues to increase, the ladle refining process has become increasingly important for obtaining molten steel with a suitable composition and cleanness. The precise control of the inclusion composition is very important. However, the reactions in the ladle treatment of steel are very complex as they simultaneously occur among the molten steel, slag, and refractory. In addition, the formation of MgO Al 2O 3 spinel-type inclusion has been often reported even when Mg is not added during the treatment. 1) The spinel-type inclusion often causes surface flaws and cracking because of its high melting temperature and low deformability. It also raises a serious problem for operations by causing nozzle clogging. From a thermodynamic consideration, it is presumed that Mg is formed in molten steel through the reduction of MgO in the slag or refractory by Al, which is added to molten steel as a deoxidizer. Many researchers have investigated the dissolution behavior of Mg in the reaction between molten steel and slag; however, studies on the reaction between molten steel and MgO-type refractory are limited. Wanibe et al. 2) studied the reaction between molten iron and MgO crucible and deduced that the dissolution of Mg from the refractory * Corresponding author: E-mail: kitamura@tagen.tohoku.ac.jp DOI: http://dx.doi.org/1.2355/isijinternational.54.223 occurs through a change in O content. Ito et al. 3) and Matsuno et al. 1) measured the inclusion composition of Al-deoxidized steel melted in a MgO-type crucible. According to their experimental results, Mg dissolved in the molten steel, and a MgO Al 2O 3 spinel-type inclusion formed. Jansson et al. 4) investigated the effect of relative velocity, temperature, and steel composition on the dissolution rate of MgO C refractory in Al-deoxidized molten steel by the rotating cylinder method. However, the change in Mg content over time was unclear in their experiments. It is important to know the dissolution behavior of Mg from refractory to control the inclusion composition. Therefore, in this study, the inclusion composition of Al-deoxidized steel melted in a MgO crucible and the influence of slag were investigated first. 5) Then, the mass transfer rates of Mg from MgO rods to Al-deoxidized molten steel were measured, and an empirical equation was established. Finally, the behavior of Mg in the reaction between molten steel and MgO rod was compared to the reaction between molten steel and MgO in slag. 2. Experimental Method 2.1. Inclusion Composition of Al-deoxidized Steel Melted in a MgO Crucible The experimental set up is shown in Fig. 1. Two hundred grams of metal and 1 g of slag were placed in a MgO crucible having an inner diameter of 32 mm and a height of 1 mm. The composition of metal and slag are listed in 214 ISIJ 223

Fig. 1. Schematic diagram of the experimental set up to investigate the inclusion composition of steel melted in a MgO crucible. Table 1. Initial composition of metal to investigate the inclusion composition of steel melted in a MgO crucible (mass%). Fig. 2. Schematic diagram of the experimental set up to investigate the reaction between the MgO rod and molten steel. Table 2. C Mn S Al.15.15.1.1 Initial composition of slag to investigate the inclusion composition of steel melted in a MgO crucible (mass%). CaO Al 2O 3 SiO 2 MgO FeO 45 35 12 7 1 tube was sampled. The samples were quenched in water. The composition of metal and slag were analyzed by ICP- AES. The total O content in the metal was analyzed by a fusion-infrared absorption method. The morphology and composition of inclusions were observed by FE-SEM with EDX. An experiment without slag was also performed by the same method for comparison. Tables 1 and 2. To adjust the metal composition, electrolytic iron, carbon, FeS, Fe 2mass%Mn alloy, and Fe 2mass%Al alloy were loaded in a MgO crucible. Fe 2mass%Mn alloy and Fe 2mass%Al alloy were previously made using an arc furnace. Slag was prepared by melting CaO, Al 2 O 3, MgO, SiO 2, Fe 2 O 3, and electrolytic iron in an Al 2 O 3 crucible at 1 723 K. CaO was made by heating CaCO 3 at 1 273 K for 3 h in an Al 2 O 3 crucible. The MgO crucible with alloy and slag was placed in a high-frequency induction furnace. As slag is not heated by electromagnetic induction, a carbon crucible was set to heat the slag around the upper part of the MgO crucible. An Al 2 O 3 tube with an inner diameter of 16 mm was inserted into the furnace for sampling, temperature measurement, and alloy addition. The top of the tube was sealed by silicon rubber. Before heating, the atmosphere in the furnace was replaced by purified Ar gas. The temperature of the molten steel was controlled at 1 873 K using a pyrometer corrected by a thermocouple. After the temperature was reached, the silicon rubber of the tube was opened, and 1 g of Fe 2mass%Al alloy which corresponded to.1 mass% was added as a deoxidizer. The metal sample was sucked up using a quart tube at a predetermined time (1 2 min), and slag that adhered on the quart 2.2. Reaction with MgO Rod and Molten Steel Deoxidized by Al The experimental set up is shown in Fig. 2. Two hundred grams of electrolytic iron and pure Al were charged into an Al 2O 3 crucible with an inner diameter of 33 mm and a height of 1 mm. In this experiment, the Al 2O 3 crucible was used to keep the Al content high, and the target value of Al content was between.1 and.3 mass%. The Al 2O 3 crucible with alloy was set in a high-frequency induction furnace. Around the Al 2O 3 crucible, a carbon crucible was set to suppress the induction stirring of the metal phase. The atmosphere in the furnace was replaced by purified Ar gas before heating. Compared to experiment 2.1, the sealing condition of the furnace was improved in this experiment to avoid the oxidation of Al by air leakage. In addition, to keep the inert atmosphere in the furnace, sampling was not conducted during the experiment. Therefore, to obtain the composition change behavior over time, experiments were carried out under the same conditions with changing experimental times. The temperature of molten steel was controlled at 1 873 K using a pyrometer corrected by a thermocouple. After reaching the temperature, a MgO rod 6 mm in diameter was dipped into the molten steel and rotated at 2231 214 ISIJ

a rate of 1 4 rpm. The time to dip the MgO rod was set as the start time of the experiment. Before immersion, the MgO rod was placed just above the molten metal for preheating. The depth of the rod dipped in metal was 3 mm. The experimental time was changed from 2.5 to 6 min. After that, the crucible with melt was quenched in water. The parameters varied in each experiment are listed in Table 3. The chemical composition of Al and Mg in the metal was analyzed by ICP-AES. The total O content in the metal was analyzed by fusion and the infrared absorption method. The interface between the metal and MgO rod after experiments was observed by EPMA. 2.3. Reaction with MgO in Slag with Molten Steel Deoxidized by Al The experimental set up is shown in Fig. 3. One hundred grams of electrolytic iron and 15 g of slag pellet were charged in a MgO crucible with an inner diameter of 32 mm and a height of 1 mm. The composition of slag is listed in Table 4 and plotted on the phase diagram in Fig. 4. As the slag was saturated with MgO, the activity of MgO was unity. To make a slag pellet, CaO, Al 2O 3, and MgO powder were mixed and pressed to form a disc 13 mm in diameter, and the disc was sintered at 1 273 K for 12 h. The MgO cru- Fig. 4. Slag composition to investigate the inclusion composition of steel melted in a MgO crucible on the phase diagram of a CaO MgO Al 2O 3 system at 1 873 K. Table 3. Experimental parameters to investigate the reaction between the MgO rod and molten steel. Target value of Al Temperature Experiment al Time Rotation rate (mass%) (K) (min) (rpm).1,.3 1 873 6 1, 2, 4 Table 4. Initial composition of slag to investigate the reaction between MgO in slag and molten steel (mass%). CaO Al 2O 3 MgO 45 42 13 Fig. 3. Schematic diagram of the experimental set up to investigate the reaction between MgO in slag and molten steel. Fig. 5. Change in the Al, Mg, and O content during the experiments to investigate the inclusion composition of steel melted in a MgO crucible. 214 ISIJ 2232

cible with electrolytic iron and slag was set in a highfrequency induction furnace. The atmosphere in the furnace was replaced by purified Ar gas before heating. After the temperature reached 1 873 K, pure Al or Fe 2mass%Al alloy was added as a deoxidizer through an Al 2O 3 tube 16 mm in diameter. Fe Al alloy or pure Al with iron particles was held at the upper part of the tube by a magnet prior to the experiment to maintain the inert atmosphere in the furnace. The target value of Al content was.3 mass%. The time when the deoxidizer was added was set as the start of the experiment. After holding for the predetermined time (2.5 6 min), the crucible with melt was quenched in water. The analysis methods for the chemical composition of the metal were the same as in the previous section. 3. Results and Discussion 3.1. Inclusion Composition of Al-deoxidized Steel Melted in a MgO Crucible 3.1.1. Experimental Results Figure 5 shows the change in Al, Mg, and O content over time for the experiments with and without slag. Upon the addition of deoxidizer, Al content increased; however, it gradually decreased over the experimental time in each case. This decrease is caused by the reaction with O in the atmosphere, slag, and crucible. In both experiments, the dissolution of Mg in the molten steel was observed. The Mg content in the experiment with slag was higher than that without slag. However, Mg and O content widely varied over time. These variations were caused by the unstable O content in the atmosphere as the silicon rubber of the tube opened frequently for sampling. Figure 6 shows the typical inclusions in the metal samples at 1 and 1 min observed by FE-SEM with EDS. In both experiments, the inclusions were alumina or alumina with a small amount of MgO at 1 min. In addition to these inclusions, at 1 min after deoxidation, spineltype inclusions were observed. The change in the average composition of 1 inclusions in each sample over time is shown in Fig. 7. Initially, most of the inclusions were alumina, and the MgO content gradually increased until 15 min. After that, the MgO and Al 2O 3 content decreased, and SiO 2 and MnO content increased. The change in the later stage of the experiment was caused by the decrease in Al content in the molten steel. However, the difference in the inclusion composition upon slag addition was not clear. This result indicates that the change of the inclusion composition from alumina to spinel occurs not only with the reaction of molten steel and slag but also with the reaction of molten steel and MgO crucible. 3.1.2. Discussion about the Composition of Inclusions To investigate the stable composition of inclusions, a phase stability diagram for MgO, MgO Al 2O 3, and Al 2O 3 was calculated. The method for creating it is described in Ref. 6). Figure 8 shows the phase stability diagram with the experimental results. The results in the experiments with/ without slag were located at a spinel stable region from 1 min to 2 min. Thus, the composition of molten steel was moved to the spinel stable region by Al deoxidation. This result shows that the Mg content of molten steel increases with the reaction of molten steel and slag and also with the reaction of molten steel and MgO crucible. However, in each case, not only spinel but also alumina was observed, even though the composition of Al and Mg was located in Fig. 6. Morphology and composition of typical inclusions observed by FE-SEM with EDS. 2233 214 ISIJ

Fig. 7. Change in average composition of each element in the inclusions. Fig. 9. Change in the contents of Al, Mg, and O in Fe.3mass%Al molten steel under each rotation rate of the MgO rod. Fig. 8. Composition change in the metal phase plotted on the phase stability diagram of MgO, MgO Al 2O 3, and Al 2O 3. the spinel stable region. This discrepancy could be caused by the slow reaction rate for the change from alumina to spinel, as this reaction is controlled by mass transfer in solid alumina. 3.2. Reaction with MgO Rod and Molten Steel Deoxidized by Al 3.2.1. Experimental Results The changes in the content of Al, Mg, and O with time are shown in Figs. 9 and 1. Al content was almost constant and high during the experiment. Mg content increased in the early stage and became almost constant after ~15 min. In the samples of.1 and.3 mass% Al, the Mg contents were ~.6 and 1.3 mass ppm, respectively. The O content in each sample was about 5 ppm. Figure 11 shows the mapping images of EPMA at the interface between metal and a MgO rod rotating at 1 rpm 214 ISIJ 2234

in Fe.3mass%Al molten steel after 15 min. The reaction layer containing Al 2O 3 was confirmed at the interface, and from the quantitative analysis results, the composition of the layer was MgO Al 2O 3 spinel, as shown in Fig. 12. The formation of a spinel layer at the interface between the metal and MgO rod was also observed in other samples, and the thickness of the layer gradually increased with time. On the other hand, although a similar layer was observed at the interface between metal and crucible, its thickness was much smaller than that between the metal and MgO rod. 3.2.2. Discussion about the Mg Content in Steel and Dissolution Rate of MgO Rod As shown in Figs. 9 and 1, MgO rod was dissolved in molten steel deoxidized by Al, and the Mg content increased. The reaction causing the increase in Mg in the molten steel is expressed as follows. 3MgO + 2Al = 3Mg + Al2O3... (1) This reaction indicates that the MgO rod is reduced by Al in the molten steel and forms Mg. In addition to the dissolution of Mg, the spinel formation at the interface between the metal and MgO rod was also observed. The reaction of spinel formation is thought to be the following. Mg + O + Al2O3 = MgO Al2O3... (2) MgO + 2Al + 3O = MgO Al2O3... (3) Mg + 2Al + 4O = MgO Al2O3... (4) Equation (2) represents the reaction between Al 2O 3 and Fig. 1. Change in the contents of Al, Mg, and O in Fe.1mass%Al molten steel under the rotation rate of 4 rpm. Fig. 12. Results of point analysis at the interface between the MgO rod and Fe.3%Al molten steel at a rotation rate of 1 rpm after immersion for 6 min. Fig. 11. Results of mapping analysis at the interface between the MgO rod and Fe.3%Al molten steel at a rotation rate of 1 rpm after 15 min. 2235 214 ISIJ

Mg formed by the reaction shown in Eq. (1). Equation (3) represents the reaction between the MgO rod and Al, and Eq. (4) represents the reaction between Mg and Al in molten steel. The free-energy change of formation (ΔG) of the reactions shown in Eqs. (2) (4) is expressed by Eqs. (5) (7). ( ( )) ( a 2 3 / ( a a a 2 3 O )) ( a 2 4 / ( a a a 2 3 O )) ΔG (2) = ΔG + RTln a / a a a ΔG = ΔG + RTln (3) ΔG = ΔG + RTln (4) (2) MgO Al2O3 Mg O Al2O3 (3) MgO Al O MgO Al (4) MgO Al O MgO Al... (5)... (6)... (7) where ΔG (n) is the free-energy change of formation (J/mol), ΔG (n) is the standard free-energy change of formation (J/mol), R is the gas constant (J/(mol K)), T is the temperature of the molten steel (K), and a is activity. Subscript of (n) indicates the reaction shown in Eq. (n). The standard free-energy changes in Eqs. (5) (7) are expressed as follows using the thermodynamic data. 7) ΔG ( 2) = 11 677. 14 93. 52T J/ mol... (8) ΔG = (3) 888 97. 86 21. 93 T J/ mol... (9) ΔG = (4) 978 94. 84 128. 98 T J/ mol... (1) The free-energy change of formation for each reaction during the experiment was calculated. In this calculation, the activities of Mg and Al were calculated using the concentration of each element and the activity coefficient. 7,8) The activity of O was calculated using the equilibrium relationship of Al and Al 2O 3. The activities of MgO, Al 2O 3, and MgO Al 2O 3 were assumed to be unity. Figure 13 shows the calculation result for the experiment of Fe.3mass%Al molten steel with a MgO rod at a rotating rate of 4 rpm. During the experiment, only the reaction shown in Eq. (3) had a large negative value. Therefore, the spinel layer can be considered to be formed at the rod interface by the reaction of Al and the MgO rod. The free-energy change of this reaction was negative during the experimental time. However, the spinel formation by this reaction became difficult to occur after the formation of spinel layer on the surface of MgO rod. Because, the direct contact between MgO and molten steel was restricted by this layer. In addition, after 15 min, the free-energy changes of Eqs. (2) and (4) become close to zero. This indicates that the Mg content after 15 min was in equilibrium with the spinel, based on the reaction shown in Eqs. (2) or (4). When the equilibrium contents of Mg in Fe.1 and.3 mass%al were calculated by Eq. (4), their values were around.6 and 1.3 mass ppm, respectively. These calculation results were in good agreement with the experimental results after 15 min. Therefore, it can be considered that the Mg content was determined by the equilibrium relationship with spinel in this experimental system. The dissolution rate of Mg increased with the increase in the rotation rate of the MgO rod. It is notable that the mass transfer in molten metal is a rate-controlling step and the concentration difference of Mg in steel with the equilibrium value determined by Eq. (4) is the driving force for the dissolution of MgO. In this case, the molar flux of Mg (J Mg (mol/(m 2 s))) is expressed by Eq. (11). * JMg = k( CMg CMg )...(11) where k is the mass transfer coefficient of Mg (m/s), and * C Mg and C Mg are the molar concentration of Mg in molten metal at the interface and bulk, respectively (mol/m 3 ). Eq. (11) is rewritten by Eq. (12). d[%mg] Aρm k * = ([%Mg] [%Mg] )... (12) dt W where [%Mg] * and [%Mg] are the mass concentrations of Mg at the interface and bulk, respectively (mass%), t is time (s), A is the interfacial area between molten steel and the MgO rod (m 2 ), ρ m is the density of molten steel (kg/m 3 ), and W is the weight of molten steel (kg). Then, Eq. (13) is obtained by the integration of Eq. (12). W Aρ m * [%Mg] [%Mg] ln * [%Mg] [%Mg] = kt... (13) where [%Mg] is the mass concentration of Mg in bulk at min. [%Mg] * was.13 mass% in Fe.3mass%Al because [%Mg] * was determined by the equilibrium with the spinel as mentioned above. Based on the relationship between the left side term of Eq. (13) with time, the mass transfer coefficient can be estimated. Figure 14 shows the Fig. 13. Variation of the free energy-change of formation calculated for each reaction in the case of Fe.3mass%Al molten steel at a rotation rate of 4 rpm. Fig. 14. Estimation of the mass transfer coefficient for Fe.3%Al molten steel at a rotation rate of 2 rpm. 214 ISIJ 2236

example to calculate the mass transfer coefficient in Fe.3mass%Al molten steel at a rotating rate of 2 rpm. In the same way, the mass transfer coefficients of the other experiments were evaluated as listed in Table 5. The mass transfer coefficient increased with an increase in the rotation rate of the MgO rod. The mass transfer coefficient that controls the dissolution rate of solid into liquid under forced convection has already been studied in many systems, and some non-dimensional equations have been proposed. For example, Eisenberg et al. 9) measured the dissolution rate of a cylinder made by benzoic acid in a water glycerin solution. They found that the mass transfer coefficient in their experiment satisfied the dimensionless correlation shown in Eq. (14). k U Sc.644.3 =.791 Re... (14) (835 < Sc < 11, 15 < Re < 5.2 1 4 ) where U is the relative velocity (m/s), Re is the Reynolds number (= LUρ m/μ), and Sc is the Schmidt number (= μ/ ρ md). In Re and Sc, L is the characteristic length (m), μ is the viscosity of molten steel (Pa s), and D is diffusivity (m 2 /s). Isobe et al. 1) investigated the dissolution behavior of a cylinder made by carbon steel into hot metal. They found that the mass transfer coefficient in their experiment satisfied the following equation. k L... (15) D Sc = 163 78 356. Re.. On the other hand, the mass transfer coefficient in the boundary layer of liquid flowing in a direction parallel to the plate can be described in Eq. (16). 11) k L 1/2 1/3... (16) D Re Sc = α The relationship between the Reynolds number and mass transfer coefficient in this experiment is shown in Fig. 15. Table 5. Calculated mass transfer coefficient of Mg in Fe.3mass%Al molten steel..3 mass% Al 1 rpm 2 rpm 4 rpm Mass transfer coefficient (cm/s).68.112.128 In this calculation, the characteristic length was assumed to be the diameter of the MgO rod. As shown in Fig. 15, the good relationship between the mass transfer coefficient and Re.46 was clarified, and this relationship was very close to Eq. (16). Figure 16 shows a comparison of the experimental results with the results calculated by Eq. (16). Based on this result, the value of α in Eq. (16) was estimated to be 1.3. 3.3. Reaction of MgO in Slag with Molten Steel Deoxidized by Al 3.3.1. Experimental Results Figure 17 shows the composition change in Al, Mg, Ca, and O in the metal. After deoxidation, the Al content rapidly increased and then decreased gradually. Mg content increased in the first 5 min after deoxidation and became nearly constant. Ca content rapidly increased after deoxidation and decreased drastically. After 1 min, the Ca content was very low. The O content decreased to about 1 ppm after deoxidation and became around 4 ppm. 3.3.2. Discussion about the Reaction between Molten Steel and Slag The increase in the Mg content was discussed by the thermodynamic calculation. In this experiment, the activity of O was calculated using the equilibrium relationship of Al and Al 2O 3, assuming that the activity of Al 2O 3 was unity. Then, the Mg content equilibrated with O can be calculated by Eqs. (17) and (18). Mg + O = MgO... (17) ΔG... (18) 7) ( 1) = 89 996. 98 81. 95 T J/ mol In this calculation, the activity of MgO was unity because the slag was saturated with solid MgO. From these calculations, the relationship between Al and Mg content in the steel was obtained, as shown in Fig. 18. In this figure, the contents of Al and Mg at each experimental time are plotted for the cases of deoxidization by Fe Al alloy and pure Al. The calculation results were in good agreement with the experimental results. Therefore, it can be concluded that the Mg content was determined by the equilibrium relationship with the MgO in slag. Fig. 15. Relationship between the mass transfer coefficient and Reynolds number for Fe.3%Al molten steel. Fig. 16. Comparison of the mass transfer coefficient calculated by Eq. (16) with the experimental results in Fe.3%Al molten steel. 2237 214 ISIJ

between molten steel and MgO rod. In the case of the reaction with slag, Mg is equilibrated with MgO activity in slag; however, in the case of the reaction with the MgO rod, Mg is equilibrated with the spinel formed at the interface. In addition, the Mg content in the case of reaction with slag was always close to equilibrium. Therefore, the reaction rate in this case can be considered to be faster than the dissolution rate of the MgO rod, which was controlled by the mass transfer in the metal phase. Fig. 17. Change in the contents of Al, Mg, Ca, and O during the experiment to investigate the reaction between MgO in slag and molten steel. 4. Conclusions In this study, the inclusion composition of Al-deoxidized steel melted in a MgO crucible and the influence of slag were investigated. Then, the mass transfer rates of Mg from the MgO rod to Al-deoxidized molten steel were measured, and the empirical equation was established. Finally, the behavior of Mg based on the reaction between molten steel and the MgO rod was compared to that of the reaction between molten steel and MgO in slag. The following results were obtained. (1) The alumina-type inclusion, which was observed just after Al addition, changed to the spinel-type inclusions regardless of the existence of slag. It was clear that the Mg dissolved in the molten steel, and the spinel formed from the reaction between molten steel and slag and also between molten steel and MgO refractory. (2) The dissolution rate of Mg from the MgO rod increased as the rotation rate and Al content in steel increased. At the interface between the metal and MgO rod, a MgO Al 2O 3 spinel layer was formed. According to thermodynamic calculations, Mg and Al in molten steel were considered to be in equilibrium with the spinel layer. (3) The mass transfer coefficient of Mg in this experiment could be expressed by the following dimensionless correlation equation. k L 1/2 1/3 D 1.3 Re Sc = (4) The Mg content was higher for the reaction between molten steel and MgO in slag compared to the reaction between molten steel and MgO rods, as it equilibrated with MgO in slag. REFERENCES Fig. 18. Comparison of the equilibrium relationship between Mg and Al content with their content during the experiment. Because of the reaction between molten steel and MgO in slag, the Mg content was higher than that from the reaction 1) H. Matsuno and Y. Kikuchi: Tetsu-to-Hagané, 88 (22), 48. 2) Y. Wanibe, T. Shimoda, K. Ito and H. Sakao: Tetsu-to-Hagané, 69 (1983), 128. 3) H. Itoh, M. Hino and S. Ban-ya: Tetsu-to-Hagané, 84 (1998), 85. 4) S. Jansson, V. Brabie and P. Jonsson: Ironmaking Steelmaking, 33 (26), 389. 5) A. Harada, G. Miyano, N. Maruoka, H. Shibata and S. Kitamura: CAMP-ISIJ, 25 (212), 982, CD-ROM. 6) A. Harada, N. Maruoka, H. Shibata and S. Kitamura: ISIJ Int., 53 (213), 211. 7) Recommended Values of Equilibrium Constants for the Reactions in Steelmaking, Japan Society for the Promotion of Science, 19th Committee, Tokyo, (1984), 255. 8) M. Hino: Denki Seiko, 72 (21), 13. 9) M. Eisenberg, C. W. Tobias and C. R. Wilke: Chem. Eng. Progress. Symp. Ser., No. 16, AIChE, New York, (1955), 1. 1) K. Isobe, H. Maede, K. Ozawa, K. Umezawa and C. Saito: Tetsu-to- Hagané, 76 (199), 233. 11) S. Taniguchi and J. Yagi: Transport Phenomena in Materials Engineering, Tohoku University Press, Sendai, (21), 43. 214 ISIJ 2238