Available online at ScienceDirect. Procedia Engineering 101 (2015 ) 85 92

Similar documents
Available online at ScienceDirect. Procedia Engineering 81 (2014 )

Influence of Shot Peening on the Fatigue Resistance of Sulfuric Anodized AA 7175-T74

Statistic characteristics of fatigue properties in magnesium alloy

Available online at ScienceDirect. Procedia Engineering 101 (2015 )

Corrosion-Fatigue Cracking in Al 7075 Alloys

Effect of Occasional Shear Loading on Fatigue Crack Growth in 7075 Aluminum Alloy M. Makizaki 1, a, H. Matsunaga 2, 4, b, K. Yanase 3, 4, c 3, 4, d

Stress Corrosion Cracking of Novel Steel for Automotive Applications

Available online at ScienceDirect. Procedia Engineering 114 (2015 )

Available online at Fatigue G.S.Junior, H.J.C. Voorwald, L. F. S. Vieira, M. O. H. Cioffi, R.G.Bonora

The Effect of Mean Stress on Corrosion Fatigue Life

Prediction of fatigue crack propagation in aluminum alloy with local yield strength gradient at the crack path

Fatigue Crack Growth Analysis of Structural Components - the UniGrow Two-Parameter Driving Force Model

Available online at ScienceDirect. Procedia Engineering 86 (2014 ) 58 65

ScienceDirect. The Effect of Heat Treatment and Aging Process on Microstructure and Mechanical Properties of A356 Aluminium Alloy Sections in Casting

III Fatigue Models. 1. Will a crack nucleate? 2. Will it grow? 3. How fast will it grow?

Available online at ScienceDirect. 20th European Conference on Fracture (ECF20)

Aluminum Alloys GOTChA Chart

ScienceDirect. Fatigue Behavior of Dissimilar Aluminum Alloy Spot Welds

Mechanical Properties

Scanning probe microscope observations of fatigue process in magnesium alloy AZ31 near the fatigue limit

Fatigue strength properties of precipitation strengthening stainless steel A286 focused attention on small fatigue crack behaviour

The Effect of Microstructure on Mechanical Properties of Forged 6061 Aluminum Alloy

Available online at ScienceDirect. Procedia Engineering 100 (2015 ) 84 89

CRACK GROWTH PREDICTIONS USING SEVERAL RETARDATION MODELS

Tensile Flow Behavior in Inconel 600 Alloy Sheet at Elevated Temperatures

Creep failure Strain-time curve Effect of temperature and applied stress Factors reducing creep rate High-temperature alloys

WHY DID IT BREAK? The Use of Microscopy in Failure Analysis

Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated

Available online at ScienceDirect. Procedia Engineering 184 (2017 )

AN EVALUATION OF SEVERAL RETARDATION MODELS FOR CRACK GROWTH PREDICTION UNDER SPECTRUM LOADING

ScienceDirect. Dieless forming of carbon fibre reinforced plastic parts using 3D printer

Available online at ScienceDirect. XVII International Colloquium on Mechanical Fatigue of Metals (ICMFM17)

Available online at ScienceDirect. Procedia Engineering 133 (2015 ) th Fatigue Design conference, Fatigue Design 2015

Available online at Fatigue Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application

Accepted Manuscript. Fatigue Crack Growth Behaviour and Life Prediction for 2324-T39 and T7451 Aluminium Alloys under Truncated Load Spectra

Intergranular Corrosion (IGC)

Influence of Shielding Gas on Aluminum Alloy 5083 in Gas Tungsten Arc Welding

Fatigue Behavior of 2198-T8 Aluminum-lithium Alloy with Riveted Lap Joints

Corrosion-Fatigue Cracking in HY-80 and HY-130 Steels

Analysis of low cycle fatigue in AlMgSi aluminium alloys

ScienceDirect. Cumulative damage of high-strength cast iron alloys for automotive applications

Available online at ScienceDirect. Procedia Engineering 79 (2014 )

Cryorolling of Al 5083 Alloy: Microstructure and Mechanical Properties at Various Post Annealing Temperatures

Effects of asymmetric creep-ageing behaviour on springback of AA2050-T34 after creep age forming

Corrosion Fatigue Performance in Simulated Sea Water of Aluminium 6061-T651 Welded using ER4043 Filler Wire

Available online at ScienceDirect. Procedia CIRP 18 (2014 ) 57 61

Macro-Micro Scale Observation of Cyclic Hardening-Softening and Precipitates Zone of C460

The Effect of Crystallographic Texture on the Wrap Bendability in AA5754-O Temper Sheet Alloy

Internal Friction in Commercial Aluminium Alloy AW-2007

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture.

On the Long-Term Stability of 6013-T6 Aluminium Alloy Sheet

Available online at ScienceDirect. Procedia Materials Science 12 (2016 ) 42 47

Modelling of Fiber Metal Laminate (FML) Composite under Block Loading Using the Stiffness Degradation Model

Effect of Modified AA5356 Filler on Corrosion Behavior of AA6061 Alloy GTA Welds

Available online at ScienceDirect. Procedia Engineering 133 (2015 ) th Fatigue Design conference, Fatigue Design 2015

Thin Products < 75 mm 7055-T7751. Strength (MPa) 500. Thick Products mm Year First Used in Aircraft

G. Silva, B. Rivolta, R. Gerosa & U. Derudi

The Microstructure and Mechanical Properties of Inconel 718 Fine Grain Ring Forging

Effect of constituent-particles distribution on mechanical behavior of an AlMgSi alloy

International Journal of Fatigue

Arch. Metall. Mater. 62 (2017), 3,

Investigation of strength characteristics of aluminum alloy under dynamic tension

Extreme value statistical analysis to determine the endurance limit of a 1045 induction hardened steel alloy

Available online at Fatigue Influence of Anodizing Process on Fatigue Life of Machined Aluminium Alloy

EFFECT OF MEAN STRESS ON SHORT CRACK GROWTH IN FATIGUED 316L STAINLESS STEEL

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

ADVANCES in NATURAL and APPLIED SCIENCES

SMM 3622 Materials Technology 3.1 Fatigue

On the Early Initiation of Fatigue Cracks in the High Cycle Regime

Finite Element Analysis of Drilling of Titanium Alloy

Available online at ScienceDirect. Procedia Materials Science 12 (2016 ) Diffusion of hydrogen in the TRIP 800 steel

Improvement of Mechanical Properties of 7475 Based Aluminum Alloy Sheets by Controlled Warm Rolling

High-cycle fatigue characteristics of squeezed cast aluminum alloy smooth specimens cut from car wheels

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions

Available online at ScienceDirect. Procedia Engineering 81 (2014 )

LOW CYCLE FATIGUE AND FATIGUE GROWTH BEHAVIORS OF ALLOY IN7 18. J. 2. Xie. Institute of Aeronautical Materials Beijing , P. R. China.

Structures should be designed in such a way that they do not fail during their expected / predicted safe-life

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Fracture Analysis of a Crack Propagating in Aluminium-7% Silicon Alloy Casting

Fatigue Properties of Nitrided Alloy 718 at Elevated Temperature

HIGH CYCLE FATIGUE OF AN ORTHORHOMBIC TI-22AL- 25NB INTERMETALLIC ALLOY

Available online at ScienceDirect. Procedia Engineering 160 (2016 ) 61 68

Global Journal of Engineering Science and Research Management

ScienceDirect. Failure Analysis on Fracture of a S135 Drill Pipe

Chapter 6 Mechanical Properties

PROPERTIES OF AW 5059 ALUMINIUM ALLOY JOINTS WELDED BY MIG AND FRICTION STIR WELDING (FSW)

The effect of ER4043 and ER5356 filler metal on welded Al 7075 by metal inert gas welding

Fatigue Crack Growth Rate Measurement in Welded Joints

Available online at Fatigue Received 4 March 2010; revised 9 March 2010; accepted 15 March 2010

EVALUATION OF FATIGUE PROPERTIES OF NICKEL BASED SUPERALLOY MAR 247 WITH ALUMINIDE COATING AND CRACK DETECTION BY NON DESTRUCTIVE TECHNIQUES

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

Observations of Corrosion Fatigue Crack Initiation Processes in Metals by Means of AFM

Manufacturing influences on the fatigue properties of quenched and tempered SAE 4140 specimens

Available online at ScienceDirect. Procedia Engineering 81 (2014 )

Impact Toughness of Weldments in Al Mg Si Alloys

IMPROVEMENT OF MECHANICAL PROPERTIES IN FE-MN-TI STEEL BY ALLOYING WITH CR AND MO , Tehran, Iran. Tabriz, Iran

Effect of Ti Addition and Mechanical Alloying on Mechanical Properties of an AA7050 Extruded Aluminium Alloy. Brazil

EFFECT OF LOAD ASYMMETRY AND MICROSTRUCTURE ORIENTATION ON FATIGUE CRACK GROWTH IN STABLE AND THRESHOLD REGIONS IN AN AIRCRAFT AL 2124-T851 ALLOY

GENERATING FATIGUE CRACK GROWTH THRESHOLDS WITH CONSTANT AMPLITUDE LOADS

Effect of thermal exposure on mechanical properties hypo eutectic aerospace grade aluminium-silicon alloy

Transcription:

Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 101 (2015 ) 85 92 3rd International Conference on Material and Component Performance under Variable Amplitude Loading, VAL2015 Corrosion fatigue crack growth of 7475 T7351 aluminum alloy under flight simulation loading A. Chemin a *, D. Spinelli a, W. Bose Filho a, C. Ruchert a a,* Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 Jd. Sta Angelina, zip code: 13563-120, Sao Carlos Sao Paulo Brasil Abstract Corrosion crack propagation experiments were carried out on specimens of 7475 T7351 aluminum alloy. Variable amplitude tests were performed with flight-simulated spectrum Twist (Transport Aircraft Wing Structures) and Falstaff (Fighter Aircraft Loading Standard for Fatigue) exposed to air and saline environment. The results showed that fatigue crack propagation life of specimens tested on saline environment were longer than specimens tested on air environment. The fatigue surfaces of specimens tested on saline environment examined in the SEM showed oxide and Na crystals in the wake of crack, which can promote retardation of crack propagation. 2015 2015 The The Authors. Authors. Published Published by Elsevier by Elsevier Ltd. This Ltd. is an open access article under the CC BY-NC-ND license Peer-review (http://creativecommons.org/licenses/by-nc-nd/4.0/). under responsibility of the Czech Society for Mechanics. Peer-review under responsibility of the Czech Society for Mechanics Keywords:Corrosion fatigue, aluminum alloy, flight load 1. Introduction Fatigue and corrosion are recognized as degradation mechanisms that affect the integrity of components, which are built with aluminum alloy. Corrosion is a phenomenon that can start naturally and is usually associated to intermetallic particles that can transform the aluminum alloy to electrochemical cell, whereas fatigue is a phenomenon that occurs because the cyclic load and for this reason, the structure of material is deformed permanently (1,2). The combination of these phenomena have been studied by development of new test methodologies that promotes research and knowledge, in laboratory testing, as the behavior material varies according with environment and loading * Corresponding author. Tel.: +55-16-3373-9591; fax: +55-16-3373-9590. E-mail address:aline.albuquerque@usp.br 1877-7058 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the Czech Society for Mechanics doi:10.1016/j.proeng.2015.02.012

86 A. Chemin et al. / Procedia Engineering 101 ( 2015 ) 85 92 simultaneously (3,4,5,6). The corrosion of commercial alloys for aircraft occurs because of intermetallics, such as Al 7Cu 2Fe presents in all 7000 series alloy (3,7). The fatigue crack growth in metals that leads to final fracture initiates from slip lines subjected to both plastic deformation and corrosion at the same time (5). When the crack is open the slip motion exposes fresh metal surface and then becomes anodic, the adjacent regions where no slip occurs become cathodic, thereby forming a local electrochemical cell (5). The material under random loading, as during a flight for example, plus corrosion effects cause the crack growth analyses to be more complex. In 1970, two standards for flight simulation loading, TWIST and FALSTAFF by NLR (National Laboratory Research), were developed and are generate with the mean stress for TWIST and maximum stress for FALSTAFF (8,9). The main aim of this paper is evaluate the fatigue life of 7475 T7351 aluminum alloy under flight simulated loading and corrosive environment at the same time. The NaCl solution was chosen as one of the corrosive environments, because of the saline nature of seawater. Nomenclature a F TWIST FASLTAFF NLR Crack size, mm Flight numbers A Standardized load sequence for flight simulation tests on transport aircraft wing structures Fighter Aircraft Loading Standard for Fatigue National Laboratory Research 2. Experimental Detail 2.1. Material The chemical composition of 7475 T7351 was detected by X-ray optical spectroscopy and presented on Table 1. Table 1. Chemical composition of 7475 T7351 aluminum alloy (% wt) Si Fe Cu Mn Mg Cr Zn Ti P V B Al % 0.03 0.08 1.67 0.01 2.156 0.23 5.47 0.043 0.001 0.01 0.011 Base The values of chemical composition of 7475 T7351 aluminum alloy presented on Table 1 is according with recommendations of ASM 2355-89. Tables 2 and 3 present the tensile properties from tests conducted in the T and L directions, as recommended in ASTM E8M-00. Table 2. Strength test of specimen in direction L (ASTM E8M-00). Φ(mm) A (mm 2 ) σ r (MPa) σ y (MPa) AR (%) ΔL a (%) E (GPa) Mean Values 6,052 28,77 469,8 395,1 19 16,55 71 DP 0,064 0,61 13,28 13,04 3 1,17 7,7

A. Chemin et al. / Procedia Engineering 101 ( 2015 ) 85 92 87 Table 3. Strength test of specimen in direction T (ASTM E8M-00). Φ(mm) A (mm 2 ) σ r (MPa) σ y (MPa) AR (%) ΔL a (%) E (GPa) Mean values 5,99 28,23 472,2 398,3 15 11,18 73 DP 0,052 0,61 13,28 13,04 0,8 0,46 1,9 2.2. Fatigue tests The two simulated flight histories were generate from Genesis for Fatigue. TWIST has 4000 flights and 362665 cycles and was simulated with mean stress 80MPa, Figure 1 (a); the FALSTAF has 200 flights or 35966 points of load reverse and was simulated with maximum stress 200 MPa. Fatigue crack growth tests used M(T) specimens in T-L direction, dimension of height, width and thickness (244x100x3mm), center notch 10mm and pre crack 1mm (2a=2mm). The tests were performed at room and saline environment of 3.5% and 5.0% NaCl on MTS dynamic test machine, Figure 1. The 3.5% NaCl was chosen as one of the environments because of the composition of seawater, and 5.0%NaCl was chosen because this composition is recommended for corrosion acceleration tests. The crack size was determined by the electrical-potential method. Table 4 shows the sequence of fatigue crack growth tests performed and shows the parameters obtained experimentally, to generate saline fog. Table 4. Parameter of Fatigue tests under spectrum loading: a= Mean Stress and b= Maximum Stress. Specimen Fatigue Test Environment Stress a,b (MPa) CP1 TWIST Air 80 a CP2 TWIST 3.5% NaCl 80 a CP3 TWIST 5.0% NaCl 80 a CP4 FALSTAFF Air 200 b CP5 FALSTAFF 3.5% NaCl 200 b CP6 FALSTAFF 5.0% NaCl 200 b

88 A. Chemin et al. / Procedia Engineering 101 ( 2015 ) 85 92 (a) (b) Chamber for nebulization of saline solution Figure 1. Corrosion fatigue test (a) MTS machine and (b) the scheme of crack encapsulation system. The data obtained by fatigue tests under spectrum loading were processed and the fatigue crack rate was determined by equation (1): d2a df = a i+1 a i F i+1 F i (1)

A. Chemin et al. / Procedia Engineering 101 ( 2015 ) 85 92 89 3. Results The figure 2 (a) shows the crack size versus Flight number and Figure 2(b) shows fatigue crack rate versus crack size to flight TWIST exposed for each chose environment. (a)

90 A. Chemin et al. / Procedia Engineering 101 ( 2015 ) 85 92 (b) Figure 2. Fatigue test under TWIST and FALSTAFF flight (a) 2a vs Flight numbers, (b) d2a/df vs 2a. (enlarge these figures, the page limit is 8, so they can be enlarged, so the legends and data can be read) Figure 2(a) shows that for fatigue crack growth tests under TWIST flight loading and environment of 3.5% NaCl, the specimen failed under flight numbers close the test in air, on Figure 2(b) is possible to see that the fatigue crack rate of air test and 3.5%Cl were close. However, when the tests were performed on environment of 5.0%NaCl, the specimen fractured with larger flight number. For this fatigue crack growth test at 5.0%NaCl, the specimen presented a large life than tests at air and 3.5%NaCl, in other words, this environment (5.0%NaCl) decelerated the crack growth and not by hydrogen embritllement or acidification of surface, as expected (10). The fatigue crack growth tests under FALSTAFF flight loading and saline environment shown a similar behavior, Figure 2 (a), as the tests performed under TWIST flight: the specimen tested at saline environment fractured with larger flights than air tests. The fatigue crack propagation rate revealed that the crack growth occurred with acceleration and retardation and with low rate values than tests executed at air. The flight is a random loading that promotes a load interaction effect on crack tip as formation of plastic zone, which can decelerates the crack growth. However, the oxide and NaCl crystals formed by corrosion on material surface

A. Chemin et al. / Procedia Engineering 101 ( 2015 ) 85 92 91 can induce the crack closure (11) and so, decelerates the crack growth too. Both phenomenon compete during the crack growth process, the positive load can form plastic zone and the negative load can promotes residual stress that accelerate the growth; the corrosion products deposited on crack tip and on wake of the crack, because this competition, crack growth rate showed peaks and valleys that are the acceleration and delay. Figures 3 and 4 shows the fractured fatigue surfaces. (a) (b) (c) Figure 3. Fatigue fracture under TWIST flight at (a) Air, (b) 3.5% NaCl, (c) 5.0% NaCl. (a) (b) (c) Figure 4. Fatigue fracture under FALSTAFF flight at (a) Air, (b) 3.5% NaCl, (c) 5.0% NaCl. Figures 3 (a) and 4 (a) show the fatigue surfaces on tests under TWIST and FALSTAFF, respectively, for air. Both surfaces reveal striation that is feature of fatigue random loading. The Figure 3 (b) and Figure 4 (b) show the surface fracture at 3.5% NaCl, in these surfaces, the striation is not clear and is possible see oxide products. The Figure 3 (c) the marks made by corrosion products, the load pressed these products against the surface, and this showed the marks. Figure 4 (c) does not show the marks of corrosion products.

92 A. Chemin et al. / Procedia Engineering 101 ( 2015 ) 85 92 4. Conclusions The results of corrosion fatigue crack growth tests showed a competition between corrosion effects and load effects as observed by graphs of fatigue crack growth rate to FALSTAFF and TWIST flight, feature by peaks and valleys of rate curves. The fatigue surfaces showed the presence of corrosion products that can promotes closure induced by oxide. Acknowledgements The authors thank the Brazilian aircraft manufacturer EMBRAER for supplying the material used in this research, to Professor Dr. Artur Motheo at São Carlos Institute of Chemistry IQSC/University of Sao Paulo for discussion about corrosion phenomena and CNPq (Brazil s National Council for Scientific and Technological Development) for the scholarships granted to them. 5. Reference [1] J. Schijve, Fatigue of structures and materials in the 20th century and the state of the art, Int. J. Fatigue, vol. 25, no. 8, pp. 679 702, Aug. 2003. [2] W. Geary, A review of some aspects of fatigue crack growth under variable amplitute loading, Int. J. Fatigue, vol. 14, no. 6, pp. 377 386, Nov. 1992. [3] J. Schijve. Fatigue of aircraft materials and structures. International Journal of Fatigue, v. 16, n. 1, p. 21-32, 1994; [4] F. Menan; G. Henaff. Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behavior of the aluminum alloy 2024.. International Journal of Fatigue, v.31, p. 1684 1695, 2009. [5] R. P. Gangloff. Environmental Cracking - Corrosion Fatigue. In: R. Baboian (Ed.); Corrosion Tests and Standards: Application and Interpretation-Second Edition. p.1-20, 2005. ASTM. [6] Braun, R. Transgranular environment-induced cracking of 7050 aluminium alloy under cyclic loading conditions at low frequencies. International Journal of Fatigue, v. 30, n. 10-11, p. 1827-1837, 2008. [7] A. Chemin, D. Marques, L. Bisanha, A. D. J. Motheo, W. W. Bose Filho, and C. O. F. Ruchert, Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys, Mater. Des., vol. 53, pp. 118 123, Jan. 2014. [8] J. B. Jonge, D. Schütz, H. Lowak, J. Schijve; A Standardized load sequence for flight simulation tests on transport aircraft wing structures TWIST. National Laboratory of Research (NLR). Amsterdan, 1953. [9] M. G. Van D. and J. B. Jonge. Introduction to a Fighter Aircraft Loading Standard for Fatigue Evaluation - FALSTAFF. Amsterdan. National Aerospace Laboratory NLR, 1979. [10] S. Mikheevskiy, G. Glinka, E. Lee; Fatigue crack growth analysis under spectrum loading in various environmental conditions. Metal. And Mat. Trans. A, April 2013. [11] K. Saxena and V. M. Radhakrishnan, Development of fatigue crack closure mechanism maps Part 1 - Basic concepts and boundary equations, Mat. Scien. And Tech. vol. 14, no. December, pp. 1227 1232, 1998.