Biological Control of Lippia

Similar documents
Ginger Industry R&D Priorities and Strategies: 2012 to 2017

A national approach to improving the capacity of the goat industry

Pollination Australia

Export Fodder FIVE YEAR RD&E PLAN

Litter Reuse: An Evidence-based Guide to Reusing Litter

Biological Control and Vegetation Management

(ACLEP) 2008 / Final report

Kelly Snell: new National CNG Coordinator!

Summer Weeds: Counting the costs for a climate-changed future

Managing myrtle rust in Australia (2063)

Macadamia industry interim benchmark report

Branched Broomrape and Siam Weed Estimating the investment needed for eradication

RIRDC Completed Projects in and Research in Progress as at June CASHEWS. August RIRDC Publication No 98/84

Predicting and managing invasive plant impacts at the landscape to regional scale

ORGANICS RIRDC Completed Projects in and Research in Progress as at June 2011

Understanding the characteristics of Australian farmers markets

Implementation of the System of Environmental Economic Accounting in Australia

Rural Industries Research & Development Corporation. R & D Plan for the Pasture Seeds Program

We are a leading global not-for-profit organisation specialising in sustainable solutions for agricultural and environmental problems

RESEARCH SUMMARY ASSESSING THE COMPETITIVENESS OF AUSTRALIAN AGRICULTURE

Perception of biological control against non-native invasive plants

5 th Australian Stream Management Conference

PUBLISHED BY Meat & Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059

Good Bug, Bad Bug ID

Land management practice trends in Australia s northern and remote agricultural industries

Sustainable Wildlife Enterprises

Submission to the Senate Legal and Constitutional Affairs Reference Committee

Biological Control Principles

Agricultural production has remained important to our economy In particular, we have been able to maintain our position even though we produce food

Cooperative Venture for Capacity Building Evaluation

Recommended Resources: The following resources may be useful in teaching this lesson:

National Velvet Accreditation Scheme Database Development

Update August Honeybee and Pollination Security CRC Bid Development

Preserving Biodiversity, Promoting Biosecurity and Biosafety: Australian Perspectives. Lois Ransom

RIRDCInnovation for rural Australia ORGANICS. RIRDC Completed Projects in and Research in Progress as at June 2010

Murray-Darling Basin Authority Basin-wide environmental watering strategy

Systematic review of Australian weed-related social surveys APRIL 2013

GRDC ANNUAL REPOR GRDC Vision GRDC Mission T GRDC Values

Committee Secretary Senate Standing Committees on Environment and Communications PO Box 6100 Parliament House Canberra ACT 2600

Contemporary trends and drivers of irrigation in the southern Murray-Darling Basin. by Aither

Submission on Lake Eyre Basin Intergovernmental Agreement

Australia s Current Approval Procedures for Biological Control with Particular Reference to its Biological Control Act

Biologische bestrijding van invasieve onkruiden; wereldwijd in gebruik. Jantien Meijer & Janny Vos, 18 december 2014, Themadag Exoten

Biocontrol of weeds Autumn 2018 update

ONLINE COURSE PEST AND DISEASE MANAGEMENT

Australia's Water Reform journey

Effects of artificial watering points on rangeland bird communities

Integrated Pest Management. Michael Bomford, PhD AFE 217 Plant Science 10/9/12

Development of fungal biopesticides for use against green vegetable bugs and mirids.

Eco Conditional Requirement

The wheat rust crisis in world agriculture Jim H. Adams

Climate change impacts on pest animals and weeds

Biocontrol of weeds in native ecosystems. Quentin Paynter

Chapter 8: Introduction to Biological Control of Aquatic Weeds

Alligator weed (Alternanthera philoxeroides Griseb.) strategic plan

An R&D Strategy for the Australian Pomegranate Industry. RIRDC Publication No. 09/165. RIRDCInnovation for rural Australia

Acknowledgements. Photographs have been taken by Susan Ivory or Sarah Mantel, SARDI, unless otherwise acknowledged.

EVOLUTION OF A MEETING: 20+ YEARS OF RESEARCH COMMUNICATION AND COORDINATION

Australian Beef Financial performance of beef farms, to

Please provide the following details on the origin of this report Contracting Party. Namibia. National Focal Point

Science and Regulation: A Canadian Approach to Invasive Alien Species

Exotic Eucalyptus nitens plantations established among native eucalypt populations

PEST MANAGEMENT POLICY. A Discussion Paper Prepared by the ad hoc Committee on Pest Management Policy of the Entomological Society of Canada

Revision of the Australian Shellfish Quality Assurance Program Manual in light of the FRDC funded PST review

1.1 Background Objectives Approach and scope Contributors 6 2. ABOUT THE BASIN 7

NSW RURAL LAND PERFORMANCE:

Blackberry. Control Brochure. Weeds of National Significance. Blackberry a Weed of National Significance. Distribution. Problems

Producing Quality Compost

NATIONAL OHS STRATEGY

Queensland s plantation forestry estate update

Carbon Energy UCG Projects update. UCG Association London March 2011

Improved Rice Seed Storage and Segregation for Advanced Breeding Lines

Invasions by plants in the inland waters and wetlands of Africa

Transformational reform: lessons and strategies to change the game

RENEWABLE ENERGY JOBS: FUTURE GROWTH IN AUSTRALIA 2017 SUPPLEMENT. Climate Council of Australia

Communicating Asian vegetable R&D through Access to Asian Foods newsletter

I s p y. Department of Agriculture and Food. The development of this edition of I SPY has been possible due to the financial support from:

Avocados for Life. Preparing for Biosecurity Issues


Did you know? All coniferous trees produce two types of cones: a seed cone and a pollen cone.

Expert Legal Consulting Water and Environment

Summary of submissions to SDLs Issues Paper

Title of the project: Diversity and Distribution of Water Mites (Acari: Hydrachnidiae) of the Interior Highlands of Arkansas

ACHIEVING SUCCESSFUL CHANGE. Towards effects-based strategies in the GBR

Peter Blundell Chairman Queensland Murray-Darling Committee Inc

Fire in Mediterranean Ecosystems

Maximising the Connection between Research, Development and Extension Providers and Agribusiness

BSBWHS304. Participate effectively in WHS communication and consultation process. Learner Guide

The Murray Darling Basin Plan. May This occasional paper provides an overview of the process of developing the Murray Darling Basin Plan.

ECONOMIC OUTLOOK 2015 NATIONAL ELECTRICITY FORECASTING REPORT

RARE NATURAL ANIMAL FIBRES

PROCEEDINGS OF THE AUSTRALIAN RANGELAND SOCIETY BIENNIAL CONFERENCE

The Biology and Aquaculture Potential of Cherax quadricarinatus. Clive M. Jones. Queensland Department of Primary Industries and Fisheries

Forest Health Program

Native vs. nonnative trees: comparative impacts on landscape biodiversity

Effects of new forest management on insect damage risk in a changing climate

A Hive-based Levy for the Honeybee Industry

Australia s rivers. Variability a characteristic of Australia s rivers. Pressures on the rivers

The Stay-Green Trait in Sorghum

Submission to the Murray Darling Basin Authority (Proposed Basin Plan)

Transcription:

Biological Control of Lippia Pub. No. 11/041 www.rirdc.gov.au

Biological Control of Lippia by Rieks van Klinken and Mic Julien October 2011 RIRDC Publication No 11/041 RIRDC Project No AWRC 08-51

2011 Rural Industries Research and Development Corporation All rights reserved. ISBN 978-1-74254-226-3 ISSN 1440-6845 Lippia biological control: final report Publication No. 11/041 Project No. AWRC 08-51 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation and the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person arising directly or indirectly from any act or omission or for any consequences of any such act or omission made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. However, wide dissemination is encouraged. Requests and inquiries concerning reproduction and rights should be addressed to the RIRDC Publications Manager on phone 02 6271 4165. Researcher contact details Name: Dr Rieks van Klinken Address: CSIRO Ecosystem Sciences PO Box 2583 Brisbane Qld 4001 Phone: 07 3214 2761 Fax: 07 3214 2885 Email: Rieks.vanklinken@csiro.au In submitting this report, the researchers have agreed to RIRDC publishing this material in its edited form. RIRDC contact details Rural Industries Research and Development Corporation Level 2, 15 National Circuit BARTON ACT 2600 PO Box 4776 KINGSTON ACT 2604 Phone: 02 6271 4100 Fax: 02 6271 4199 Email: rirdc@rirdc.gov.au. Web: http://www.rirdc.gov.au Electronically published by RIRDC in October 2011 Print-on-demand by Union Offset Printing, Canberra at www.rirdc.gov.au or phone 1300 634 313 ii

Foreword In Australia the area affected by lippia is mainly in the Murray Darling Basin, in south-east Queensland, New South Wales and Victoria. The industries most affected by lippia invasions are pastoral production and mixed farming enterprises. The environment in general, including several Ramsar and other protected wetlands, is also affected. In most situations biological control is the only realistic way of managing this weed, and the long-term purpose of this research is to find effective and safe means of biological control. Native range survey work relied on classic field survey techniques across the native range of lippia, supplemented by culturing and preliminary testing of potential agents in the laboratory in Buenos Aires. This work was done by an entomologist from the US Department of Agriculture s South American Biological Control Laboratory and a plant pathologist from the University of Bahia Blanca. Genetic work principally involved sequencing of P. canescens and P. nodiflora samples collected from around the world. Special effort was directed at sampling P. nodiflora from Australia, Africa, Asia and the Americas to help determine its native range distribution. This project was funded in Phase 1 of the National Weeds and Productivity Research Program, which was managed by the Australian Government Department of Agriculture, Fisheries and Forestry (DAFF) from 2008 to 2010. The Rural Industries Research and Development Corporation (RIRDC) is now publishing the final reports of these projects. Phase 2 of the Program, which is funded to 30 June 2012 by the Australian Government, is being managed by RIRDC with the goal of reducing the impact of invasive weeds on farm and forestry productivity as well as on biodiversity. RIRDC is commissioning some 50 projects that both extends on the research undertaken in Phase 1 and moves into new areas. These reports will be published in the second half of 2012. This report is an addition to RIRDC s diverse range of over 2000 research publications which can be viewed and freely downloaded from our website www.rirdc.gov.au. Information on the Weeds Program is available online at www.rirdc.gov.au/weeds Most of RIRDC s publications are available for viewing, free downloading or purchasing online at www.rirdc.gov.au. Purchases can also be made by phoning 1300 634 313. Craig Burns Acting Managing Director Rural Industries Research and Development Corporation iii

About the authors Dr Rieks van Klinken is a research scientist with CSIRO Ecosystem Sciences. He has been working on invasive plants for the past 14 years, mostly in northern Australia, and currently leads the tropical invasive plants group in Brisbane. Mr Mic Julien worked at CSIRO on the biological control of tropical invasive plants for more than 30 years. He is now a Retired Fellow with CSIRO Ecosystem Sciences in Brisbane. iv

Contents Foreword... iii About the authors... iv Summary... vi Introduction... 1 Objectives... 1 Methodology... 1 Results... 2 Plant taxonomy... 2 Native range studies... 2 Potential biological control agents... 3 Recommendations... 4 References... 5 v

Executive Summary Studies of the ecology, biology and management of lippia, Phyla canescens, have been supported by the New South Wales Department of Primary Industries, the Weeds Cooperative Research Centre and Australian Wool Innovation. This is a long-term project, and an agreement was developed with the Australian Weeds Research Centre through the Department of Agriculture, Fisheries and Forestry to support the research for the period from March 2009 to May 2010. The paper presented here is an edited version of the final report submitted to DAFF as part of the agreement. The area affected by lippia in Australia In Australia the area affected by lippia is mainly in the Murray Darling Basin, in south-east Queensland, New South Wales and Victoria. The industries most affected by lippia invasions are pastoral production and mixed farming enterprises. The environment in general, including several Ramsar and other protected wetlands, is also affected. In most situations biological control is the only realistic way of managing this weed, and the long-term purpose of this research is to find effective and safe means of biological control. In brief, the project has three objectives: to continue work on natural enemies of lippia arthropods and pathogens by conducting further survey work and detailed field and laboratory studies on high-priority species in the weed s native range in South America to build on the experience and knowledge gained by project staff in Argentina and Australia, to the point where the first of the natural enemies with greatest potential can be imported into Australian quarantine for detailed testing to complete the genetic work that underpins the biological control program. This work will also determine the genetic structure of P. canescens in Australia and its origin (or origins) in South America, which will help direct the search for and selection of agents. Research methods Native range survey work relied on classic field survey techniques across the native range of lippia, supplemented by culturing and preliminary testing of potential agents in the laboratory in Buenos Aires. This work was done by an entomologist from the US Department of Agriculture s South American Biological Control Laboratory and a plant pathologist from the University of Bahia Blanca. Genetic work principally involved sequencing of P. canescens and P. nodiflora samples collected from around the world. Special effort was directed at sampling P. nodiflora from Australia, Africa, Asia and the Americas to help determine its native range distribution. Main findings The main findings resulting from this research are as follows: Molecular work has shown that Australian populations previously identified as P. nodiflora and thought to be exotic contain both native and exotic genotypes. This has implications for the management of lippia especially in the selection of biological control agents and for conservation of native P. nodiflora genotypes in Australia. The most important potential biological control agents have been identified for further study following comprehensive native range surveying. vi

We propose that the leaf-feeding beetle Kuschelina bergi be imported for host specificity testing in quarantine in Australia. Research has highlighted the importance of plant taxonomy when assessing potential biological control agents. Potential biological control agents have been identified for lippia. The first of these should be available for release within two years, contingent on funding. We recommend that funding for research into lippia biological control continue to be provided and that the research focus on conducting the detailed host specificity tests required to confirm that the priority agents are safe to release in Australia. vii

Introduction Studies of the ecology, biology and management of lippia, Phyla canescens, have been supported by the New South Wales Department of Primary Industries, the Weeds Cooperative Research Centre and Australian Wool Innovation. This is a long-term project, and an agreement was developed with the Australian Weeds Research Centre through the Department of Agriculture, Fisheries and Forestry to support the research for the period from March 2009 to May 2010. Objectives The lippia biological control project has three objectives: to continue work on natural enemies of lippia arthropods and pathogens by conducting further survey work and detailed field and laboratory studies on high-priority species in the weed s native range in South America to build on the experience and knowledge gained by project staff in Argentina and Australia, to the point where the first of the natural enemies with greatest potential can be imported into Australian quarantine for detailed testing to complete the genetic work that underpins the biological control program. This work will also determine the genetic structure of P. canescens in Australia and its origin (or origins) in South America, which will help direct the search for and the selection of agents. Methodology Native range survey work relied on classic field survey techniques across the native range of lippia, supplemented by culturing and preliminary testing of potential agents in the laboratory in Buenos Aires. This work was done by an entomologist from the US Department of Agriculture s South American Biological Control Laboratory and a plant pathologist from the University of Bahia Blanca. Genetic work principally involved sequencing of P. canescens and P. nodiflora samples collected from around the world. Special effort was directed at sampling P. nodiflora from Australia, Africa, Asia and the Americas to help determine its native range distribution. Progress was reported to the National Lippia Working Group at a meeting in September 2009 at Narrabri, New South Wales. Several conference and journal papers have also been prepared: these are listed in the reference section. 1

Results Plant taxonomy The taxonomy of Phyla species in their native range in South America remains problematic. In summary, only one Phyla species, P. canescens (lippia), occurs in the southern range of Phyla in Argentina, whereas other species also occur in the northern range. The Darwinion Herbarium in Buenos Aires recognises three species P. canescens, P. nodiflora and P. fruticosa (which was P. reptans) but we expect changes as a result of a current revision of the genus. Meanwhile, genetic research that is part of this project has developed a phylogeny for P. canescens sensu lato. that comprises four clades, all of which are represented in Australia. The first two clades include forms that the Darwinion Herbarium calls P. nodiflora and P. fruticosa, northern forms in Argentina. Clades 3 and 4 include the southern and parts of the northern native range of lippia in Argentina and Chile. Further, our genetic studies of P. nodiflora suggest that this species does not occur in Argentina perhaps not in South America but occurs naturally on all other continents except Antarctica. Our genetic studies also show that there have been multiple introductions of lippia into Australia. There is, however, little genetic variation in lippia, and gene mixing makes it difficult to pinpoint with accuracy the source of Australian populations. Nonetheless, most Australian populations are from central Argentina. P. nodiflora includes a genotype native to Australasia. There are also exotic genotypes from Africa and elsewhere, some of which have naturalised. Potential biological control agents that have been recorded from other Phyla species in Argentina might still be sufficiently host specific for release in Australia since P. nodiflora is a sister group to these taxa. Native range studies Pathology CSIRO and the Universidad National del Sur at Bahia Blanca collaborated in the work on pathology. A detailed final report is available on request. Seventeen fungus species were found on Phyla species in surveys conducted during three-and-a-half years. Only three species were considered to have potential as biological control agents. Two, the rust Puccinia lantanae and the leaf-spotting fungus Cercospora lippiae, might be useful for classic control and are considered in this report; the third species, a group of Colletotrichum fungi, might have potential as bioherbicides, but such studies are outside the scope of this project. The rust Puccinia lantanae was collected on Phyla species in northern Argentina from a range of forms. Inoculation tests have shown it to be capable of infecting Phyla species and genotypes other than those from which it was collected, suggesting that it may be oliophagous within Phyla. The microcyclic and autoecious conditions of this form of the rust that infects Phyla were confirmed, these being important factors for its consideration as an agent of classic biological control. This rust was not easily found in the field, which could be because of the prolonged drought in Argentina (similar to that experienced in Australia) during the period of the field surveys. When more field material has been collected and isolated host range tests will be conducted to determine if Puccinia lantanae is likely to infect the lippia genotypes that are invasive in Australia but not the native Phyla nodiflora. Cercospora lippiae fungi are widespread geographically and across all forms of Phyla. Only four of the 16 locations were included in the plant genetic studies, but those four occur in clades 3 and 4. Cercospora are difficult to work with experimentally. We have isolated them from various regions, but further work is needed to determine the environmental conditions for successful sporulation of mycelia, germination of conidia and infection, thus allowing host range studies to be conducted. 2

Entomology The entomological studies were a collaboration between CSIRO and the US Department of Agriculture laboratory in Buenos Aires. A detailed final report is available on request. Sixteen insect species have been found on lippia a far lower diversity than expected. Five of the species have potential as biological control agents; another seven have little potential because they have been collected very few times and in low numbers, and nothing is known about them; the remaining four species are known to be polyphagous. Potential biological control agents Four insects and a mite have potential as biological control agents: The leaf-feeding beetle Kuschelina bergi has been collected only on lippia and has been studied in the laboratory in Argentina. It can feed and develop on all forms of Phyla in Argentina but has a preference for P. canescens. We propose that this insect be brought to a quarantine facility in Australia for host specificity testing, beginning with Australian native forms of P. nodiflora. The leaf beetle Longitarsus sp. 2 is the second Longitarsus species found on lippia in the southern range in Argentina. The first, the northern species Longitarsus sp. 1, was studied and found not to be host specific. Successful techniques for rearing this insect are yet to be developed. The eriophyid mite is new to science. It is microscopic and appears to infest all forms of Phyla in Argentina. The mites are usually highly host specific, so there could be several species or forms specific to each form of Phyla. Collections have been sent to Dr Sebahat Ozman, an eriophyid specialist in Turkey, who has agreed to determine the number of species and describe them. Techniques for managing and host testing this mite are yet to be developed. Stem galler 1 is probably an agromyzid fly. Galls are formed on nodes near the base of stems, and the stem galler is found on prostrate stems and sometimes stems covered in substrate. There may be different fly species making galls on different forms of Phyla since there appear to be size differences between plant forms. Parasitic wasps have emerged from galls collected throughout the range of Phyla in Argentina. Techniques for rearing and studying this insect are yet to be developed. Stem galler 2 is another as yet unidentified gall former, this one found in northern Argentina. Galls are formed on a node half-way down erect stems, and the stem above is killed. The galls appear to be caused by an agromyzid fly, and parasites have also emerged from galls held in the laboratory. The range of this insect is not yet known. All surveys were conducted during a period of intense and prolonged drought in Argentina, and it is probable that the drought restricted the numbers of many herbivorous arthropods and pathogens. Should the drought break and several normal growing seasons occur, natural enemies not recorded or from the second group of rarely found insects might become more abundant. Among these rare insects are a weevil, a leaf-mining fly, two species of thrip (sap feeders) and four species of moth. Progress was reported to the National Lippia Working Group at a meeting in September 2009 at Narrabri, New South Wales. Several conference and journal papers have also been prepared: these are listed in the reference section. 3

Recommendations This is a long-term project in the late exploration phase and moving towards the host specificity testing phase, when potential agents will be imported into Australia for study. We recommend that funding be provided for detailed host specificity testing initially of the Australian Phyla nodiflora and the subsequent release of any host-specific agents. 4

References Journal publications related to this project Fatemi, M, Gross, CL, Julien, M & van Klinken, R (in prep.), On the origin and genetic variation of Lippia (Phyla canescens: Verbenaceae) in Australia inferred from ITS rdna phylogeny and ISSR analysis, Biological Invasions. Fatemi, M, Gross, CL, van Klinken, R & Julien, M (in prep.), The enigma of Phyla nodiflora (Verbenaceae): ITS rdna reveals a phylogeny, American Journal of Botany. Julien, MH, De Clerck-Floate, R, Bourne, A & Gellender, M (submitted), Growth responses of the floodplain weed lippia (Phyla canescens) to damage: seeking its Achille s heel, Weed Research. Macdonald, MJ, Whalley, RDB, Julien, MH, Sindel, BM & Duggin, JA (submitted), Flood-induced recruitment of the invasive Phyla canescens (Verbenaceae), Plant Ecology. Xu, C, Julien, MH, Fatemi, M, Girod, C, van Klinken, R, Gross, C & Novak, S 2010, Phenotypic divergence during the invasion of Phyla canescens in Australia and France: evidence for selection-driven evolution, Ecology Letters, vol. 12, pp. 32 44. Xu, C, Schooler, SS & van Klinken, RD 2010, Clonal integration leads to over-investment in shaded leaves and a species-specific pattern of ramet growth and maternal subsidy for two invasive plants, Journal of Ecology, in press. Conference presentations related to this project Julien, MH, van Klinken, RD, Xu, C, Sosa, A, Traversa, G, Delhey et al. 2009 Ecology, genetics and the potential for biological control of lippia, Phyla canescens, Proceedings of the 15th Biennial NSW Weeds Conference, 14 17 September 2009, Narrabri, New South Wales. Sosa, AJ, Traversa, MG, Delhey, R, Kiehr, M, Cardo, MV & Julien, MH 2008, Biological control of lippia (Phyla canescens): surveys for the plant and its natural enemies in Argentina, in MH Julien, R Sforza, MC Bon, HC Evans, PE Hatcher, HL Hinz et al. (eds) Proceedings of the XII International Symposium on Biological Control of Weeds, CAB International, Wallingford, UK, pp. 211 15. Julien, MH, Sosa, AJ, Traversa, G, Xu, C, Fatemi, M & Greizerstein, E 2008, The potential for biological control of Lippia, Phyla canescens, 5th International Weed Science Congress. Vancouver, Canada, June, Abstract and poster. Final reports Traversa, G, Delhey, R, Kiehr, M & Julien, J 2010, Biological control of lippia (Phyla canescens): native range surveys for plant pathogens, Final report submitted by CSIRO to the Department of Agriculture, Fisheries and Forestry, unpub. Sosa, S, Julien, M, Telesnicki, M & Cardo, V 2010, Biological control of lippia, Phyla canescens (Verbenaceae): surveys for its natural enemies in southern South America, Final report submitted by CSIRO to the Department of Agriculture, Fisheries and Forestry, unpub. 5

Biological Control of Lippia Pub. No. 11/041 by Rieks van Klinken and Mic Julien In Australia the area affected by lippia is mainly in the Murray Darling Basin, in south-east Queensland, New South Wales and Victoria. The industries most affected by lippia invasions are pastoral production and mixed farming enterprises. The environment in general, including several Ramsar and other protected wetlands, is also affected. In most situations biological control is the only realistic way of managing this weed, and the long-term purpose of this research is to find effective and safe means of biological control. Native range survey work relied on classic field survey techniques across the native range of lippia, supplemented by culturing and preliminary testing of potential agents in the laboratory in Buenos Aires. This work was done by an entomologist from the US Department of Agriculture s South American Biological Control Laboratory and a plant pathologist from the University of Bahia Blanca. Genetic work principally involved sequencing of P. canescens and P. nodiflora samples collected from around the world. Special effort was directed at sampling P. nodiflora from Australia, Africa, Asia and the Americas to help determine its native range distribution. Phase 2 of the Program, which is funded to 30 June 2012 by the Australian Government, is being managed by RIRDC with the goal of reducing the impact of invasive weeds on farm and forestry productivity as well as on biodiversity. RIRDC is commissioning some 50 projects that both extends on the research undertaken in Phase 1 and moves into new areas. These reports will be published in the second half of 2012. This report is an addition to RIRDC s diverse range of over 2000 research publications which can be viewed and freely downloaded from our website www.rirdc.gov.au. Information on the Weeds Program is available online at www.rirdc.gov.au/weeds Most of RIRDC s publications are available for viewing, free downloading or purchasing online at www.rirdc.gov.au. Purchases can also be made by phoning 1300 634 313. This publication can be viewed at our website www.rirdc.gov.au. All RIRDC books can be purchased from: www.rirdc.gov.au Contact RIRDC: Level 2, 15 National Circuit Barton ACT 2600 PO Box 4776 Kingston ACT 2604 Ph: 02 6271 4100 Fax: 02 6271 4199 Email: rirdc@rirdc.gov.au web: www.rirdc.gov.au www.rirdc.gov.au