Strep-Tactin Spin Column

Similar documents
Strep-Tactin Spin Column Purification Protocol

Strep-Tactin XT Spin Column

Strep-Spin Protein Miniprep Kit Catalog No. P2004, P2005

Strep-Spin Protein Miniprep Kit Catalog No. P2004 & P2005

(Twin-) Strep-tag purification from cell culture supernatant with WET FRED (Flow REgulation Device)

Strep-tag detection in Western blots

PROCEDURE FOR USE NICKEL NTA Magnetic Agarose Beads (5%)

Index 1. Product Description 2. Purification Procedure 3. Troubleshooting 4. Ordering Information

SERVA Ni-NTA Magnetic Beads

Expression and purification of proteins using double tag [Strep-tag /6xHistidine-tag]

AFFINITY HIS-TAG PURIFICATION

High-Affinity Ni-NTA Resin

Fab Streptamer Microbeads Manual, human

Immunoprecipitation of fusion proteins from cell extracts using Selector Resins

High-Affinity Ni-NTA Resin

Nickel-NTA Agarose Suspension

Fab-Streptamer Microbeads Manual

INSTRUCTIONS The resins are adapted to work mainly in native conditions like denaturing.

AFFINITY HIS-TAG PURIFICATION

Ni-NTA Agarose. User Manual. 320 Harbor Way South San Francisco, CA Phone: 1 (888) MCLAB-88 Fax: 1 (650)

GST Fusion Protein Purification Kit

Cobalt Chelating Resin

AFFINITY HIS-TAG PURIFICATION

Nickel Chelating Resin Spin Columns

AminTRAP HIS Prepacked Column

Strep-tag HRP Detection Kit

Generation of gene knockout vectors for Dictyostelium discoideum

TECHNICAL BULLETIN. HIS-Select HF Nickel Affinity Gel. Catalog Number H0537 Storage Temperature 2 8 C

SERVA IMAC Ni-IDA Test Kit Agarose for Affinity Purification of His-Tag Fusion Proteins

HOOK 6X His Protein Purification (Yeast)

ProteIndex TM Co-NTA Agarose 6 Fast Flow

Integrated Protein Services

TECHNICAL BULLETIN. Ni-CAM HC Resin High Capacity Nickel Chelate Affinity Matrix. Product No. N 3158 Storage Temperature 2 8 C

Purification of GST-tagged proteins using PureCube Glutathione Agarose

MagExtactor -His-tag-

MBP Excellose handbook - Purification of MBP fusion proteins -

For Research Use Only. Not for use in diagnostic procedures.

Mammalian expression and purification system using Strep-tag and/or 6xHistidine-tag

Comparison of different methods for purification analysis of a green fluorescent Strep-tag fusion protein. Application

Glutathione Agarose Resin User s Guide

HOOK 6X His Protein Purification (Bacteria)

5.2 Protein purification

ProteIndex Chemical-Tolerant Ni-Penta Agarose. Prepacked Cartridge. 6 FF Prepacked Cartridge, 5 x 1 ml settled resin

GST Elution Buffer. (Cat. # ) think proteins! think G-Biosciences

Glutathione Resin. (Cat. # , , , ) think proteins! think G-Biosciences

INTEGRATED PROTEIN SERVICES

Purification of cytoplasmic RNA from animal cells using the RNeasy Mini Kit

HOOK 6X His Protein Spin Purification (Bacteria)

His-Spin Protein Miniprep

1 ml gel corresponds to ml of 75% (v/v) Glutathione Agarose suspension.

AFFINITY GST PURIFICATION

Product is not classified as hazardous according to (EC) No 1272/2008 [CLP]. A Material Safety Data Sheet is provided.

AFFINITY HIS-TAG PURIFICATION

Bacterial PE LB. Bacterial Protein Extraction Lysis Buffer. (Cat. # , , , , , )

MEXi Expression and Purification of Recombinant Proteins from Mammalian Cells using Strep-tag

Glutathione Resin. (Cat. # , , , ) think proteins! think G-Biosciences

Classic cloning with pask-iba and pexpr-iba vectors

AFFINITY GST PURIFICATION

Expression and Purification of the Thermus thermophilus Argonaute Protein Daan C. Swarts *, Matthijs M. Jore and John van der Oost

Click Chemistry Capture Kit

Jan 25, 05 His Bind Kit (Novagen)

Expression and purification of proteins using Strep-tag and/or 6xHistidine-tag

Ni-NTA Agarose H A N D B O O K. Ni-NTA Agarose NP ml Ni-NTA Agarose NP ml Ni-NTA Agarose NP ml

ProteoSpin Total Protein Concentration, Detergent Clean-Up and Endotoxin Removal Mini Kit Product Insert Product # 22800

PeriPreps Periplasting Kit

Amintra NI-NTA Resin Metal Chelate Affinity Resin

Expression and purification of proteins using Strep-tag and/or 6xHistidine-tag

E.Z.N.A. Yeast RNA Kit. R preps R preps

AFFINITY HIS-TAG PURIFICATION

E.Z.N.A. Bacterial RNA Kit. R preps R preps

Amintra Affinity Resins

User manual. Protino Ni-TED 150 packed columns Protino Ni-TED 1000 packed columns Protino Ni-TED 2000 packed columns Protino Ni-TED Resin

Click-&-Go TM Protein Enrichment Kit *for capture alkyne-modified proteins*

A General Protocol for GST Pull-down Lili Jing *

Total RNA Purification Kit. Cat. #.: TR01 / TR Size : 50 / 150 Reactions Store at RT For research use only

Ni-IDA/ Ni-NTA Agarose

About the Kits... 2 Description 2 Components 3. Overview... 3

Protocol 1. Purification of 6xHis-tagged proteins from E. coli under native conditions

RISE Program Workshop in Protein Purification

For the quick and efficient purification of highly specific and ultra pure antibodies

RNAprep Pure Kit (For Cell/Bacteria)

ProteoEnrich ATP-Binders Kit 1 kit

High Pure RNA Isolation Kit for isolation of total RNA from 50 samples Cat. No

Total RNA Miniprep Purification Kit. Cat.# :TR01/TR Size : 50/150 Reactions Store at RT

NoviPure Microbial Protein Kit (50)

Yeast Nuclei Isolation Kit

TECHNICAL BULLETIN. EZview Red ANTI-FLAG M2 Affinity Gel. Catalog Number F2426 Storage Temperature 20 C

Cross Linking Immunoprecipitation

About the Products...2 Description 2. Overview...3 Basic principles 3 Specific considerations 7

Protocol for in vitro transcription

OPPF-UK Standard Protocols: Insect Cell Purification

Purification. Purification

Table of Contents. II. Kit Components III. Materials required but not supplied VII. Experimental Examples IX. Troubleshooting...

RayBio Genomic DNA Magnetic Beads Kit

The preparation of native chromatin from cultured human cells.

Note: for laboratory research use only. RNA High-purity Total RNA Rapid Extraction Kit (Spin-column) Signalway Biotechnology

RNAprep pure Kit (For Cell/Bacteria)

EndoFree Maxi Plasmid Kit

MicroRotofor Lysis Kit (Bacteria) Instruction Manual. Catalog #

Tissue & Cell Genomic DNA Purification Kit. Cat. #:DP021/ DP Size:50/150 reactions Store at RT For research use only

Transcription:

Strep-Tactin Spin Column Purification Protocol Last date of revision November 2012 Version PR10-0006 www.strep-tag.com

For research use only Important licensing information Products featuring Strep-Tactin and Strep-tag are based on technologies covered by intellectual property (IP) rights. On completion of the sale, IBA grants respective Limited Use Label Licenses to purchaser. IP rights and Limited Use Label Licenses for said technologies are further described and identified at http://www.iba-lifesciences.com/patents.html or upon inquiry at info@iba-lifesciences.com or at IBA GmbH, Rudolf-Wissell-Str. 28, 37079 Goettingen, Germany. By use of this product the purchaser accepts the terms and conditions of all applicable Limited Use Label Licenses. Trademark information The owners of trademarks marked by or TM are identified at http://www.iba-lifesciences.com/patents.html. Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

Content Content 1 Introduction to the Strep-tag /Strep-Tactin system 5 2 Preparation of cleared lysates 8 2.1 Preparation of cleared lysate after cytoplasmic expression of Strep-tag fusion proteins 8 2.2 Preparation of cleared lysate after periplasmic expression of Strep-tag fusion proteins 9 3 Purification of Strep-tag fusion proteins using Strep-Tactin Spin Columns 11 4 Trouble Shooting 13 4.1 No or weak binding to Strep-Tactin column 13 4.2 Contaminating proteins 13 This manual can be downloaded under www.iba-lifesciences.com/technicalsupport.html. Strep-Tactin Spin Column Purification Protocol 3

4 Strep-Tactin Spin Column Purification Protocol

1 Introduction 1 Introduction to the Strep-tag /Strep-Tactin system The Strep-tag II is a short peptide (8 amino acids, WSHPQFEK), which binds with high selectivity to Strep-Tactin, an engineered streptavidin. The binding affinity of Strep-tag II to Strep-Tactin (K d = 1 µm) is nearly 100 times higher than to streptavidin. Strep-tag can be genetically fused upstream or downstream to the reading frame of any gene and expressed as fusion peptide. This technology allows one-step purification of almost any recombinant protein under physiological conditions, thus preserving its bioactivity. The Strep-tag system can be used to purify functional Strep-tag II proteins from any expression system including baculovirus, mammalian cells, yeast, and bacteria. After application of up to 600 µl of crude extract on a spin column and binding of the Streptag proteins on the Strep-Tactin matrix, unspecific proteins are washed away in four short washing steps. Gentle elution of up to 150 µg purified recombinant protein in a total of 50-450 µl is then performed by addition of the same washing buffer containing low concentrations (2 mm) of D-biotin. The Strep-tag /Strep-Tactin interaction is compatible with a variety of reagents (see table 1) making the system attractive for purifying metallo- and membrane proteins, large proteins and protein complexes. Because of its small size, Strep-tag generally does not interfere with the bioactivity of the fusion partner. Thus, removal of the tag becomes superfluous. Comprehensive reviews and scientific publications giving an overview of various Strep-tag applications are listed at www.iba-lifesciences.com. Fig. 1: Three different Strep-tag proteins were expressed in E. coli, purified from 10 ml culture using Strep-Tactin spin columns, and eluted with 100 µl Buffer BE (Biotin Elution Buffer). 8 µl of each eluate were loaded on a SDS-PAGE. Proteins were visualized by Coomassie staining. 1: cell lysate 2: eluate Strep-Tactin Spin Column Purification Protocol 5

1 Introduction, continued Important notes The affinity matrix in the Strep-Tactin spin columns has the same purification properties as Strep-Tactin MacroPrep. To enable small elution volumes containing the recombinant protein in high yield and high concentration, the spin column elution buffer contains biotin instead of desthiobiotin. Thus, Strep-Tactin spin columns cannot be re-used and this elution buffer should not be used with other Strep- Tactin resins. Since protein purification is based on the highly selective binding of Strep-tag to Strep-Tactin, the contact time of the lysate with the resin has to be sufficient for complete complex formation. Therefore, it is important not to exceed 700 x g (approx. 2000 rpm in a microfuge) when centrifuging Strep-Tactin spin columns for protein binding. However, washing steps should be performed at maximum speed. To ensure buffer flow during the centrifugation steps, the spin columns should be centrifuged with an open lid. For very viscous cell lysates, it may be necessary to extend the centrifugation time. The ph of all lysates and buffers should not be lower than 7.5. To prevent proteins from being degraded during cell harvest, lysis, or even purification, it is recommended to work quickly at 4 C and if necessary to add protease inhibitors. 6 Strep-Tactin Spin Column Purification Protocol

1 Introduction, continued Table 1: Reagents compatible with the Strep-tag /Strep-Tactin interaction Reagent Concentration Reduction Agents DTT β-mercaptoethanol Non-Ionic Detergents 50 mm 50 mm C 8 E 4 Octyltetraoxyethylene max. 0.88 % C 10 E 5 ; Decylpentaoxyethylene 0.12 % C 10 E 6 0.03 % C 12 E 8 0.005 % C 12 E 9 ; Dodecyl nonaoxyethylene (Thesit) 0.023 % DM; Decyl-β-D-maltoside 0.35 % DDM (or LM); N-dodecyl-β-D-maltoside 2 % Digitonin 0,5 % NG; N-nonyl-β-D-glucopyranoside 0.2 % NP40; Nonidet P40 2 % OG; N-octyl-β-D-glucopyranoside 2.34 % TX; Triton X-100 2 % Tween 20 2 % Ionic Detergents N-lauryl-sarcosine 2 % 8-HESO;N-octyl-2-hydroxy-ethylsulfoxide 1,32 % SDS; Sodium-N-dodecyl sulfate 0.1 % Zwitter-Ionic Detergents CHAPS 0.5 % DDAO; N-decyl-N,N-dimethylamine-N-oxide 0.034 % Fos-Choline-12 0,1 % LDAO; N-dodecyl-N,N-dimethylamine-N-oxide 0.13 % Others Ammonium sulfate (NH 4 ) 2 SO 4 2 M CaCl 2 max. 1 M CHS; Cholesterol hemisuccinate 0,1 % EDTA 50 mm Ethanol 10 % Guanidine max. 1 M Glycerol max. 25 % Imidazole max. 250 mm MgCl 2 1 M NaCl 5 M Urea max. 1 M Note: These reagents have been successfully tested for the purification of e.g., GAPDH-Strep-tag with concentrations up to those mentioned. For most reagents higher concentrations may be possible, though. However, since binding depends on the sterical accessibility of Strep-tag in the context of the particular protein the maximal concentration may vary for other proteins. Strep-Tactin Spin Column Purification Protocol 7

2 Preparation of cleared lysates, continued 2 Preparation of cleared lysates Recommended Buffers/Solutions Concentration of ingredients Notes Buffer W 100 mm Tris/HCl, ph 8.0 150 mm NaCl 1 mm EDTA Buffer P 100 mm Tris/HCl, ph8.0 500 mm sucrose polymyxin B sulfate 5x SDS-PAGE sample buffer It is recommended to work without EDTA when metalloproteins have been expressed for the release of the periplasmic content after periplasmic 1 mm EDTA expression 2 mg/ml may be used instead of EDTA for the release of the periplasmic content in case of metalloproteins 0.250 M Tris/HCl, ph 8.0 25 % glycerol 7,5 % SDS 0.25 mg/ml bromophenolblue 12.5 % v/v mercaptoethanol 2.1 Preparation of cleared lysate after cytoplasmic expression of Strep-tag fusion proteins Protocol 1. Chill Buffer W at 4 C. Resuspend the cell pellet of a 100 ml culture in 1 ml Buffer W. 2. Take a 10 µl sample for analysis of the total protein content via SDS- PAGE and/or Western blotting. The 10 µl sample should be thoroughly mixed with 90 µl Buffer W and 25 µl of 5x SDS-PAGE sample buffer. The sample should be incubated in an ultrasonic bath for 15 minutes to break up chromosomal DNA and should be heated at 70 C for 10 minutes prior to SDS-PAGE. 3. Sonicate the residual suspension under ice-cooling. Take care that the suspension does not become warm or even hot which may denature proteins or activate proteases. Perform bursts under cooling. French pressing is possible as well. Lysis should be complete and can be determined by measuring the optical density at 590 nm [% lysis = (1 - A 590 sonicate /A 590 suspension ) x 100]. 4. (Optional) If the lysate is very viscous, add RNase A (10 µg/ml), DNase I (5 µg/ml) and MgCl 2 (5 mm) and incubate on ice for 10 15 min. Continue page 9 8 Strep-Tactin Spin Column Purification Protocol

2 Preparation of cleared lysates, continued Protocol (continued) 5. Centrifuge the suspension at 13.000 rpm (microfuge) for 15 minutes at 4 C. 6. Carefully transfer the clear supernatant to a clean tube. Store the supernatant on ice until chromatography or store at -20 C if chromatography cannot be performed at the same day. 7. For analysis of the insoluble part of the expressed protein, dissolve the sediment with 1.25 ml 1x SDS-PAGE sample buffer (= 250 µl 5x SDS-PAGE sample buffer mixed with 1 ml Buffer W). 2.2 Preparation of cleared lysate after periplasmic expression of Strep-tag fusion proteins Periplasmic proteins are secreted into the periplasmic space located between the outer and inner membrane of E. coli. Proper secretion is only possible when the recombinant protein is fused to a N-terminal signal peptide (e.g., OmpA) which is cleaved following translocation by E. coli leader peptidase. In order to purify proteins secreted into the periplasmic space using immobilized Strep-Tactin, the Strep-tag can be fused to the C- or N-terminus using pask- IBA2, 2C, 4, 4C, 6, 6C, 12, 14, 44. Protocol 1. Chill Buffer P at 4 C. 2. Resuspend the cell pellet of a 100 ml culture in 1 ml Buffer P. 3. Incubate 30 minutes on ice. These conditions will usually sufficiently permeabilize the outer membrane of E. coli to release the soluble periplasmic components and leave the spheroplasts intact to ensure low contamination of the protein preparation with cytoplasmic proteins. Harsher treatments, e.g., osmotic shock or use of lysozyme, may be used if the periplasmic components are not completely released with the EDTA treatment alone. 4. Collect a 10 µl sample for analysis of the total protein content via SDS-PAGE and/or Western blotting The 10 µl sample should be thoroughly mixed with 90 µl Buffer W and 25 µl 5 x SDS-PAGE sample buffer. Store at -20 C. The whole sample must be incubated in an ultrasonic bath for 15 minutes to break up (disrupt) chromosomal DNA and should be heated to 70 C for 10 minutes prior to SDS-PAGE. 5. Remove spheroplasts by centrifugation at 13.000 rpm (microfuge) for 5 minutes at 4 C. Continue page 10 Strep-Tactin Spin Column Purification Protocol 9

2 Preparation of cleared lysates, continued Protocol (continued) 6. Carefully transfer the clear supernatant in a clean tube. Store the supernatant on ice until chromatography or store at -20 C if chromatography cannot be performed the same day. 7. To check whether a part of the expressed protein remained in the cells, resuspend the sedimented spheroplasts with 1 ml Buffer P and add 250 µl 5x SDS-PAGE sample buffer and perform SDS-PAGE, optionally followed by Western blotting to detect the recombinant protein specifically. 10 Strep-Tactin Spin Column Purification Protocol

3 Purification of Strep-tag fusion proteins using Strep-Tactin Spin Columns 3 Purification of Strep-tag fusion proteins using Strep- Tactin Spin Columns Recommended Buffers/Solutions Concentration of ingredients Notes Buffer W 100 mm Tris/HCl, ph 8.0 150 mm NaCl 1 mm EDTA Buffer BE (elution buffer) 100 mm Tris/HCl, ph 8.0 150 mm NaCl 1 mm EDTA 2 mm D-biotin It is recommended to work without EDTA when metalloproteins have been expressed Important notes The spin column matrix binds up to 4 nmol recombinant Strep-tag fusion protein (corresponding to 150 µg of a 37 kda protein (GAPDH- Strep-tag )) The composition of the lysis, wash and elution buffers can be modified to suit the particular application, e.g., by adding a mild detergent, a reducing reagent, protease inhibitors, glycerol or by modifying the ionic strength. The ph should not be lower than 7.5, though. For more information see table 1 on page 7. Generally, it is recommended to perform protein purification at 4 C Due to the spin column design it might happen that small amounts of lysate or washing buffer remain on the plastic ring fixing the column. Removal of such liquid prior to next step will achieve highest purities. Elution buffer should be applied in the center of the column. Strep-Tactin spin columns cannot be re-used. Protocol 1. Centrifuge cleared lysates (13.000 rpm, 5 minutes, 4 C, microfuge). Insoluble aggregates which may have formed after storage may clog the column and thus have to be removed. 2. Equilibrate the Strep-Tactin Spin Column with 2x 500 µl Buffer W. Centrifuge at each step for 30 seconds at 700 x g (approx. 2000 rpm). Discard the flow-through. This rehydrates the dried Strep-Tactin resin for the subsequent use. The spin column should be loaded with the cleared lysate containing Strep-tag proteins within 20 min, otherwise the capacity of the column might decrease. Continue page 12 Strep-Tactin Spin Column Purification Protocol 11

3 Purification of Strep-tag fusion proteins using Strep-Tactin Spin Columns Protocol (continued) 3. Load up to 500 µl supernatant of cleared lysate onto the preequilibrated Strep-Tactin Spin Column. Centrifuge for 30 seconds at 700 x g (approx. 2000 rpm). Collect the flow-through. Apply 2 µl to an analytical SDS-PAGE. Lysates with the recombinant protein at low concentration may lead to reduced yields and should be concentrated prior to chromatography. If quantification is possible, apply a volume of lysate containing between 3 and 5 nmol recombinant Strep-tag II fusion protein. For very concentrated cell lysates, it may be necessary to extend the centrifugation time to 3-4 minutes. 4. Wash the column 4 times with 100 µl Buffer W. Centrifuge at each step for 30 seconds at 13.000 rpm. Collect the flow-through. Apply 2 µl of the first washing fraction and 20 µl of each subsequent fraction to an analytical SDS-PAGE. 5. Place the spin column into a fresh 1.5 ml reaction tube and choose one of the following procedures for elution: a. For maximum protein yield: Elute the recombinant protein by adding 3 times 150µl Buffer BE (Biotin-Elution-Buffer). At each step: First, centrifuge for 30 seconds at 700 x g (approx. 2000 rpm) and finish with 15 seconds at maximum speed. Pool the eluates. b. For maximum protein concentration: Elute the protein with 50µl Buffer BE (Biotin-Elution-Buffer). First, centrifuge for 30 seconds at 700 x g (approx. 2000 rpm) and finish with 15 seconds at maximum speed. Transfer the eluate from the collection tube onto the spin column and repeat the centrifugation step as above to maximize the yield. 10 µl samples of each fraction can be used for SDS-PAGE analysis. D-biotin and EDTA can be removed, if necessary, via dialysis or gel chromatography. 12 Strep-Tactin Spin Column Purification Protocol

4 Trouble Shooting 4 Trouble Shooting 4.1 No or weak binding to Strep-Tactin column ph is not correct. The ph should be > 7.5 Strep-tag II is not Use protease deficient E. coli expression strains. Add protease present. inhibitors during cell lysis. Strep-tag II is not Fuse Strep-tag with the other protein terminus; use other accessible. linker. Strep-tag II has been Check that the Strep-tag is not associated with a portion of the degraded. protein that is processed. Strep-tag II is partially Reduce washing volume to 2x 100 µl. accessible. Strep-Tactin column is Add avidin if biotin containing extracts are intended to be inactivated by biotin. purified (The total biotin content of the soluble part of the total E. coli cell lysate is about 1 nmol per liter culture (OD 550 = 1.0), however, it might be much higher when proteins are purified from cell culture supernatants. Add 2-3 nmol of avidin monomer per nmol of biotin. 4.2 Contaminating proteins Note: The soluble part of the E. coli total cell extract contains no proteins beyond the nearly irreversibly binding biotin carboxyl carrier protein (BCCP) which binds significantly to the Strep-Tactin column. Therefore, contaminating proteins interact, specifically or nonspecifically, with the recombinant protein itself and, therefore, are co-purified. Contaminants derive from remaining lysate. Contaminants are short forms of the tagged protein. Due to the spin column design it might happen that small amounts of lysate or washing buffer remain on the plastic ring fixing the column. Removal of such liquid prior to next step will achieve highest purities. Elution buffer should be applied in the center of the column. Use protease deficient E. coli expression strains. Add protease inhibitors after cell lysis. Fuse the Strep-tag II with the other protein terminus. Check for the presence of internal translation initiation starts (only in case of C- terminal Strep-tag II) or premature termination sites (only in case of N- terminal Streptag II). Add 6xHis-tag to the other terminus and use both tags for purification which will lead to full length protein preparations. Continue page 14 Strep-Tactin Spin Column Purification Protocol 13

4 Trouble Shooting, continued 4.2 Contaminating proteins (continued) Contaminants are covalently linked to the recombinant protein via disulfide bonds. Contaminants are noncovalently linked to the recombinant protein. Add reducing reagents to all buffers for cell lysis and chromatography. Increase ionic strength in all buffers for cell lysis and chromatography (up to 5 M NaCl) or add mild detergents (up to 2 % Triton X-100, 2 % Tween 20, 0.1 % CHAPS, etc). Please refer to www.iba-lifesciences.com/technical-support.html for downloading this manual. 14 Strep-Tactin Spin Column Purification Protocol

Your notices Strep-Tactin Spin Column Purification Protocol 15

IBA Headquarters IBA US Distribution Center IBA GmbH 1328 Ashby Road Rudolf-Wissell-Str. 28 Olivette, MO 63132 37079 Goettingen USA Germany Tel. 1-877-IBA-GmbH Tel: +49 (0) 551-50672-0 (1-877-422-4624) Fax: +49 (0) 551-50672-181 Fax 1-888-531-6813 E-mail: info@iba-lifesciences.com E-mail: info@iba-lifesciences.com