Membrane treatment of alkaline bleaching effluent on a kraft pulp mill

Similar documents
Leachate treatment by direct capillary nanofiltration. Hans Woelders Second Intercontinental Landfill Research Symposium Asheville NC, October 2002

Membrane BioReactor: Technology for Waste Water Reclamation

Executive Summary. Valmet Page 1

Keywords nanofiltration; capillary membrane; direct treatment; backflush; surface water.

TREATMENT OF WASTE FROM PULP INDUSTRY

Treatment and Reuse of Tannery Waste Water by Embedded System

Industrial Waste Water Treatment. Unit 5

Water Treatment Technology

OVERVIEW OF MEMBRANE PROCESSES FOR OMW TREATMENT. BGU, Prof. Jack Gilron

ANQUE High rate crystallisation processes: Application to softening and removal of scaling compounds for industrial wastewater re-use

MEMBRANE BIOREACTORS (MBR)

Waste Water Treatment Technologies and Practices in Indian Pulp and Paper Industries

R&D Goals and Priorities

DOW Ultrafiltration. Case History. DOW Ultrafiltration Modules Protect Reverse Osmosis System from High Iron

Degree of Closure of Swedish (Nordic) Bleached Kraft Pulp Mills, 1990 and

Treatment of saline streams: removal of non-precipitable salts Case studies

Micro- and ultrafiltration

INTRODUCTION TO PULP & PAPER TECHNOLOGY LEARNING OUTCOMES

Extreme Recovery Membrane Process and Zero Liquid Discharge Low Temperature Crystallization for Treating Scaling Mine Waters

Water reuse and waste water minimization

Tailor-made treatment concepts for wastewater re-use - experiences gained by pilot trials covering 7 water treatment technologies

HEAVY INDUSTRY PLANT WASTEWATER TREATMENT, RECOVERY AND RECYCLE USING THREE MEMBRANE CONFIGURATIONS IN COMBINATION WITH AEROBIC TREATMENT A CASE STUDY

M EMBRANE TECHNOLOGY for Process Industries

Reclamation of Sand Filter Backwash Effluent using HYDRAcap LD Capillary UF Membrane Technology

THE CURRENT USE OF HOLLOW FIBRE ULTRAFILTRATION AS PRE-TREATMENT FOR REVERSE OSMOSIS

Air Connection on Rack. Filtrate Connection on Rack

DOW Ultrafiltration. Case History. DOW Ultrafiltration Membranes Offer Reliable, Economical Answer to High Solids

Ultrafiltration Technical Manual

Pretreatment of Industrial Wastewater for ZLD/Resources Recovery

Advanced Treatment by Membrane Processes

PURPOSE PROCESS PAYOFF

Membrane Filtration Technology: Meeting Today s Water Treatment Challenges

WPS 595 Section 601 PULP & PAPER TECHNOLOGY SYLLABUS

Membrane Desalination Systems

Technical White Paper

Treatment of saline streams: removal of precipitable salts Case study Denieul M.-P., Mauchauffee S., Le Calvez G., De Laval A., Coste M.

Sustainability and Environmental Issues in the Kraft Pulp Industry. Celso Foelkel

ZERO DISCHARGE PROCESSES USING NEW LOW COST EVAPORATION TECHNOLOGY

Gregory E. Choryhanna and Alan R. Daza, SEPROTECH SYSTEMS INC. Process Development Division Ottawa, Canada

Continuous Water Recycling For Reusable Plastic Containers

Addressing increasing wastewater volumes in industrial and oil & gas operations using thermal systems

Lenntech. Tel Fax

Introduction. Membrane Filtration

Module 8: Introduction to Process Integration Tier III

Advanced Technologies for Produced Water Treatment 2014 PERF Spring Meeting

HERO HIGH EFFICIENCY REVERSE OSMOSIS

Submerged Membrane Technology for MBR

Possibilities for improving the pulping process

Operational Challenges in Energy and Chemical Recovery in Kraft Pulp Mills

Reverse Osmosis and Nano-filtration Innovation for Water Re-use

EQUILIBRIUM OF LIGNIN PRECIPITATION

Integration of a sulfite pulp mill and a viscose plant

Petro-Canada Re-Uses Treated Edmonton Waste Water. Coking.com Safety Seminar Calgary September 2008

PROCESS CHEMICALS & WATER MANAGEMENT FOR THE PAPER INDUSTRY

Membranes & Water Treatment

Pilot Scale Comparison of Gas Sparged and GAC Fluidized Anaerobic Membrane Bioreactors Treating Domestic Wastewater

FILMTEC Membranes System Design: Introduction

Mixed Salt Recovery for High Quality Pulp (MSRP)

Particle Removal with Membranes in Water Treatment in Germany State of the Art and Further Developments

First hydraulically optimized nanofiltration plant for Water Supply Company Overijssel, The Netherlands

Understanding Pretreatment. WesTech Engineering, Inc. Salt Lake City, Utah, USA

Situation in the textilesectorfor water ruese

Using a Novel Hybrid NF-RO to Enhance Sodium Chloride Removal

Saltworks Technologies

Dipl.-Ing. Marcus Verhülsdonk. Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München

Water solutions for the Pulp & Paper industry WATER TECHNOLOGIES

MEMBRANE BIOREACTORS (MBR) AND REVERSE OSMOSIS (RO) FOR LEACHATE TREATMENT. Abstract

A Hands-On Guide to Ultrafiltration/Diafiltration Optimization using Pellicon Cassettes

Innovation for Sustainable Production i-sup 2008 April 24 th

Effluent Treatment Methods And Reverse Osmosis and its Rejects Handling

Water Reuse and. Gasification Technologies Conference 2011

BOKELA DYNO Filter. Dynamic Crossflow Filtration. 02/ 2018 en

A Hands-On Guide to Ultrafiltration/ Diafiltration Optimization using Pellicon Cassettes

Electrocoagulation. Variable Electro Precipitation. Athena Global Energy Solutions

Effects of extended cooking times in the production of eucalytus pulps

POREX Tubular Membrane Filter Modules For Metal Contaminated Wastewater Treatment & Reclamation

Puu : Conventional and Non- Conventional Pulping as a Basis for Biorefinery (7 cr)

Biofuels Research at the University of Washington

CHAPTER 1 INTRODUCTION

Membrane Technique MF UF NF - RO

DEVELOPMENT OF THE. Ken Mikkelson, Ph.D. Ed Lang Lloyd Johnson, P.E. Aqua Aerobic Systems, Inc.

Advanced water and wastewater treatment technologies in Thailand

TECHNICAL NOTE Permeate recovery and flux maximization in semibatch reverse osmosis

TANNERY WASTEWATER TREATMENT & MANAGEMENT

Deliverable Report of processes specifications anaerobic waste water purification process of mechanical pulping production

Crossflow Filtration for Ink Jet Fluids

Hybrid RO & Softening Birjand Water Treatment Plant

THE INSTITUTE OF PAPER CHEMISTRY, APPLETON, WISCONSIN IPC TECHNICAL PAPER SERIES NUMBER 60

Control of sulfidity in a modern kraft pulp mill

Hannu Hämäläinen R&D Manager, SBU Pulp Chemicals Kemira Pulp&Paper Kemira Oyj FI Vaasa FINLAND

LIGNIN RECOVERY BY ACID PRECIPITATION IN A KRAFT MILL: AN ENERGY PERSPECTIVE

Reduction of fresh water intake by desalination. Raymond Creusen (TNO)

SEMINAR OPTIMUM DEGREE OF COOKING FOR BLEACLHABLE SULPHATE PULP FROM SWEETGUM. By James M. Snyder. February 14, Introduction

Paper Authors: Craig Bartels, Ph.D., Rich Franks, Jeff Campbell. Paper Title: Chemically Tolerant NF Membranes for Aggressive Industrial Applications

KTDA SEMINAR WATER TREATMENT PRESENTATION. John Waema

WPS 595 PULP & PAPER TECHNOLOGY SYLLABUS

ELIMINATION OF SODIUM HYDROXIDE IN CEHMICAL BAGASSE STREET OXYGEN DELIGNIFICATION STAGE IN TNPL

Combustion Processes in the Forest Products Industry

Reverse Osmosis. Background to Market and Technology

Nanofiltration for Safe Drinking Water in Underdeveloped Regions A Feasibility Study

Transcription:

FEDERAL UNIVERSITY OF VIÇOSA DEPARTMENT OF FOREST ENGINEERING LABORATORY OF PULP AND PAPER Membrane treatment of alkaline bleaching effluent on a kraft pulp mill Rafael Quezada, Claudio Mudadu Silva, Leif Nilsson Christian Hoffstedt and Niklas Berling

Outline Introduction Objectives Results Membrane treatment of alkaline bleaching effluent Effects of the (EPO) membrane filtration on the effluent treatment plant Membrane permeate recycling to the bleaching plant Membrane retentate send to black liquor evaporation Conclusions

Effluent generation 1,3 6,0 4 10 15 30 4 7 WOODYARD COOKING BLEACHING DRYNG MACHINE EVAPORATORS 0,5 2,0 Water consumption Bleaching area: 45.000 m 3 /d Total: 65.000 m 3 /d RECOVERY BOILER CAUSTICIZING 1,0 2,0 2,0 4,0 Volume (m 3 /adt)

Membrane treatment Module (EPO) filtrate Membrane Retentate Permeate

Bleaching sequence NaOH D (EPO) D D Pre O2 Pulp D (EPO) D D ClO 2 Acid effluent (EPO) filtrate Alkaline effluent

Objectives Evaluate the membrane treatment of (EPO) filtrates from a kraft pulp mill Specific objectives a) Compare three configurations of membrane to treat alkaline (EPO) filtrate of a kraft pulp mill using pilot plants and determine the best operation conditions; b) Study the effect of the (EPO) filtrate membrane treatment on the effluent treatment plant; c) Evaluate the feasibility of recycling of the UF permeate within the bleaching plant; d) Evaluate the feasibility to send the UF retentate to the black liquor evaporation sector

Membrane treatment of alkaline bleaching effluent

Membrane treatment Experimental set-up Membrane configuration selection (UF, UF + NF, NF) Optimal condition determination Long-term operation

Membrane treatment Pilot plants

Membrane treatment The nanofiltration membranes require a pretreatment to reduce temperature and neutralize ph; In order to select the best option it was considered not only the selectivity but also the costs and operation simplicity; The selected configuration was ultrafiltration; The best condition for higher permeate flux (over 200 L/m 2 h) was 3,0 m/s of cross-flow velocity and 7 bar of TMP, for a COD removal and color of 58% and 91%, respectively.

Effects of the (EPO) UF on the effluent treatment plant

Effects on the ETP Scenario 1 NaOH Pre O2 Pulp D (EPO) D D ClO 2 Permeate Acid effluent Retentate ETP

Effects on the ETP Scenario 2 NaOH Pre O2 Pulp D (EPO) D D ClO 2 Permeate Acid effluent Chemical recovery process Retentate ETP

Effects on the ETP Lab. simulation Biological treatment Tertiary treatment Reference Scenario 1 Effluent with (EPO) UF permeate Scenario 2 Effluent without (EPO) filtrate. UF permeate is recycled

Effects on the ETP Effects of the UF on the Effluent Treatment Plant Parameter Scenario 1 Scenario 2 Softwood Hardwood Softwood Hardwood COD reduction efficiency +10,1% + 9,8 % + 6,0 % + 8,1 % Final color - 9,8 % - 8,0 % -8,3 % - 8,0 % Biological sludge production 0 % 0 % - 20,3 % - 17,1 % Energy consumption 0 % 0 % - 20,3 % -17,1 % Coagulant dosage - 30 % - 37 % - 40 % - 40 % Tertiary sludge production - 28 % - 35 % - 44 % - 46 % (+) Increase; (-) decrease

Membrane permeate recycling to the bleaching plant

Permeate recycling Software simulation (WinGEMS); Steady state model approach; Hot water on the EOP-press is stepwise replaced with permeate from the membrane filtration unit all washing liquor on the press is permeate; Same efficiency assumed at different filtrate concentrations although a different filtrate composition can be expected when recycling the permeate on the EOP-press. EPO permeate available (m 3 /adt) Hot water used on EPOpress (m 3 /adt) Softwood 8,4 5,8 Hardwood 6,2 5,4

CaCO 3 g/adt CaCO 3 g/adt Permeate recycling CaCO 3 formation 200 150 100 (EPO) Stage (EPO) Filtrate Supersaturation limit Softwood campaign 50 0 0 20 40 60 80 100 Hot water on EOP-press replaced with permeate (%) 300 250 200 150 100 50 (EPO) Stage (EPO) Filtrate Supersaturation limit Hardwood campaign 0 0 20 40 60 80 100 Hot water on EOP-press replaced with permeate (%)

Mg(OH) 2 g/adt Mg(OH) 2 g/adt Permeate recycling Mg(OH) 2 formation 250 200 150 100 50 (EPO) Stage (EPO) Filtrate Softwood campaign 0 80 0 20 40 60 80 100 Hot water on EOP-press replaced with permeate (%) 60 40 20 0 (EPO) Stage (EPO) Filtrate 0 20 40 60 80 100 Hot water on EOP-press replaced with permeate (%) Hardwood campaign

UF retentate send to black liquor evaporation

Retentate reuse Hardwood Softwood Parameter Weak black Retentate CI Weak black Retentate liquor (kg/h) (kg/h) (%) liquor (kg/h) (kg/h) CI (%) Na 26380 10,28 0,04 35596 11,74 0,03 Ca 65 0,43 0,66 33 0,37 1,13 K 361 0,28 0,08 3379 0,29 0,01 Mg 25,5 0,34 1,33 36,6 0,95 2,59 Mn 8,0 0,16 1,96 4,0 0,05 1,24 Ba 1,59 0,003 0,18 0,22 0,001 0,39 Al 12,7 0,22 1,72 8,8 0,23 2,63 Si 76,3 0,11 0,14 40,2 0,34 0,84 P 55,0 0,06 0,10 16,1 0,06 0,34 Cl 239 0,83 0,35 576 1,25 0,22 SO 4 7415 3,55 0,05 4147 1,79 0,04 CI= Concentration increment of the element on the weak black liquor after adding the (EPO) retentate

Conclusions The treatment of the (EPO) filtrate by tight UF allows an increase on the COD removal efficiency by 10% in the biological treatment plant. It also decreased the color on the treated effluent by approximately 9%; The recycle of the resulting UF permeate in the bleaching area is the best option available for the reuse of this current; It can increase the efficiency of COD reduction in 8%, and 20% reduction in the generation of biological sludge, 45% of tertiary sludge and 40% less coagulant. Water economy: 200 L/s (17.280 m 3 /d)

Conclusions In the hardwood and in the softwood case, 100% replacement of hot water on EPO-press is possible (5,4 m 3 /adt and 5,8 m 3 /adt) Small CaCO 3 (s)-formation in EOP-filtrate above 50% replacement of hot water due to high carbonate content according to equilibrium calculations Supersaturation calculations indicate that the precipitations will not start to form when replacing 100% of the hot water with permeate It is expected that the relation of S/Na 2 remain unchanged after the addition of the retentate to the black liquor stream, therefore the recovery boiler chemical performance will not be affected

FEDERAL UNIVERSITY OF VIÇOSA DEPARTMENT OF FOREST ENGINEERING LABORATORY OF PULP AND PAPER Membrane treatment of alkaline bleaching effluent on a kraft pulp mill Rafael Quezada Reyes Rafael.Reyes@ufv.br

Membrane configuration selectivity PCI modules Cost information Industrial design Membrane performance experiment Characterization of filtrates, permeate and retentate

FEDERAL UNIVERSITY OF VIÇOSA DEPARTMENT OF FOREST ENGINEERING LABORATORY OF PULP AND PAPER Membrane treatment of alkaline bleaching effluent on a kraft pulp mill Rafael Quezada Reyes Rafael.Reyes@ufv.br

MICRO FILTRATION ULTRA FILTRATION NANO FILTRATON REVERSE OSMOSE Diâmetro Poros 0,1-10 m 0,02-0,1 m 500-20.000 Da <500 Da Pressão 70-350 KPa 170-850 KPa 500-1500 KPa 3500-5000 KPa Suspended Solids Bacteria Virus Multivalent ions Monovalent Ions Water Mudado, 2008

PCI B1 Module lenght (m) 1,22 2,44 3,66 Area (m 2 ) 0,88 1,75 2,63

Membrane Temperature Press PCI ESP04 70 75 C Above 8 bar ph 11 11,5 Permeate recuperation 98 99% Permeate flux Area 90 l/m2.h 7.971,6 m2 Lines 3 Steps/Line 7 Modules/steps 146 Investment: $15.000.000 USD Energy: $1.200.000 USD/year (1.485 kw) Membrane: $920.000 USD/year Cleaning: $250.000 USD/year

P1 P2 P3 P4 P5 P6 Permeate 7 R1 R2 R3 R4 R5 R6 Retentate 7 (EPO) filtrate

Permeate flux, L/m 2.h Volumetric concentration factor (VCF)

Raw material Eucalyptus Pine Parameter Na Ca K Mg Mn Ba Al Si P Cl SO 4 Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l Permeate (198 L/s) 666 0,95 12,7 0,09 0,01 0,2 4,8 163,7 Retentate (2 L/s) 1428 59,9 39,18 47 21,71 0,391 30,5 14,9 7,69 115 492,8 D0 filtrate 575 26 33 3,1 1 0,05 0,37 - - - - (EPO) filtrate 625 2,6 7,3 0,6 0,15 0,02 0,26 - - - - D1 filtrate ND ND ND ND ND ND 0,004 - - - - D2 filtrate 381 5,25 4,5 1,1 0,08 0,04 0,31 - - - - Water 150 1,2 1,6 0,3 0,01 0,01 0,31 - - - - Permeate (198 L/s) 694,5 1,36 9,34 0,07 0,005 0,14 8,1 142,7 Retentate (2 L/s) 1630 51,4 40,56 131,8 6,94 0,119 32 46,6 7,6 173 248,3 D0 filtrate 95,2 31,9 31,1 10,5 0,51 0,33 0,45 7,2 - - 790 (EPO) filtrate 603 8,51 11,8 2,2 0,1 0,07 0,2 8,2 - - 250 D1 filtrate 89,7 32,5 34,6 15,9 0,45 0,36 0,69 25,3 - - 370 D2 filtrate 105 15,1 5,1 4 0,09 0,06 0,21 9,3 - - 230 Water 162 3,22 0,6 0,5 0,03 0,01 0,22 4,3 - - -