Applications of electrochemistry

Similar documents
Electricity and Chemistry

APPLICATIONS OF ELECTROLYSIS 1.Electrolysis is the chemical decomposition of a substance (electrolyte) by an electric current 2.Electrodes : Anode (

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy.

Electro-refining: How it Works

Electrochemistry Written Response

On-Site Generation Of Disinfectants

carbon anode/+ (1) electrolyte Al 2 O 3 with or dissolved in or solution in cathode/ (1) (steel outer)

QUESTION 1 One difference in the electrode reactions of an electrolytic cell compared to a galvanic cell is:

IGCSE Chemistry: Electrochemistry and Redox Whole Unit Overview

NATIONAL BUSINESS AND TECHNICAL EXAMINATIONS BOARD (GENERAL EDUCATION EXAMINATION) MAY/JUNE 2007 SECTION B CHEMISTRY (ESSAY) TIME: 1 HOUR 40 MINUTES

METALS AND THEIR COMPOUNDS

Explain whether this process is oxidation or reduction.

ZAHID IQBAL WARRAICH

Topic 2.7 EXTRACTION OF METALS. Extraction of Iron Extraction of Aluminium Extraction of Titanium Recycling

BORABU-MASABA DISTRICTS JOINT EVALUATION TEST 2012 Kenya Certificate of Secondary Education (K.C.S.E)

GRADE 10: Chemistry 2. UNIT 10AC.2 11 hours. The chemical industry. Resources. About this unit. Previous learning. Expectations

EXTRACTION OF METALS MARKING SCHEME

Suggest one reason why spoons are electroplated. ... Why is hydrogen produced at the negative electrode and not sodium?

I. PHYSICAL PROPERTIES. PROPERTY METALS NON-METALS 1.Lustre Metals have shining surface. They do not have shining surface.

Sodium, Na. Gallium, Ga CHEMISTRY Topic #2: The Chemical Alphabet Fall 2017 Dr. Susan Findlay See Exercises 7.3 to 7.5.

Batteries. Self contained electrochemical cell. Dry Cell (Flashlight Battery) ! Primary batteries (not rechargeable)

CO forms CO 2. forms. (a) The coke reacts with the oxygen in the air to form carbon dioxide. C + O 2

Chemical reactions and electrolysis

Batteries. Dry Cell (Flashlight Battery) Self contained electrochemical cell. ! Primary batteries (not rechargeable)

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

There s also got to be a wire, but that s kind of taken for granted.

CLEANER PRODUCTION GUIDELINES IN CAUSTIC SODA /CHLOR-ALKALI INDUSTRIES


General Principle of Isolation of Elements (NCERT)

APPLICATIONS OF ELECTROCHEMISTRY

ANSWERS AND MARK SCHEMES. (a) proteins /amino acids 1. (b) nitrate will be used up eventually / will run out 1. (c) (i) (3 16) = 85 1

Extracting Metals by Electrolysis

ICSE-Science 2 (Chemistry) 2004

Boiling point in C. Colour in aqueous solution. Fluorine 188 colourless. Chlorine 35 pale green. Bromine X orange.

Module: 5. Lecture: 28

I. PHYSICAL PROPERTIES PROPERTY METALS NON-METALS

NCERT solutions for Metals and Non Metals

Step 1. Reason. Step 2. Reason. Explain why it is more difficult to produce drinking water from waste water than from water in lakes.

MR. D HR UV AS HE R I.C.S.E. BOA RD PAP ER ICSE

Rusting is an example of corrosion, which is a spontaneous redox reaction of materials with substances in their environment.

TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY. Unit 2 Metals

Page 1 of 15. Website: Mobile:

Aluminium Occurrence

One of the main ores of zinc is zinc blende, ZnS. There are two stages in the extraction of zinc from this ore.

Contact us:

carbon dioxide hydrogen hydrogen chloride oxygen answer... [1] [1]

MT - SCIENCE & TECHNOLOGY - II (72) - SEMI PRELIM - I : PAPER - 5

INTRODUCTION. Installed Capacity: The total installed capacity of the plant for the product will be as per details given below:- PRODUCT:

SAMPLE PAGES PAGES. Extraction of metals from metal oxides. mixture of iron sand and coal are heated as they move down kiln, by force of gravity

CHLOR-ALKALI INDUSTRY

Learn Chemistry. Starter for Ten 9. Redox. Registered Charity Number

GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY

GraspIT AQA GCSE Chemical changes

ICSE-Science 2 (Chemistry) 1996

The forces between iodine molecules are stronger 1. (b) anything in range +30 to It contains ions which can move 1. (f) hydrogen iodine 1 [6]

UNIT- 6 PRINCIPLES AND PROCESSES OF EXTRACTION OF METALS.

Energy Production From Hydrogen Co-Generated In Chlor-Alkali Plants By The Means Of Pem Fuel Cells Systems

Unit 5 Review Electrolytic, Electrochemical Cells, Corrosion, & Cathodic Protection

Chemistry Test Paper

ENVIRONMENTAL ENGINEERING LECTURE 3: WATER TREATMENT MISS NOR AIDA YUSOFF

MR. D HR UV AS HE R I.C.S.E. BOA RD PAP ER ICSE-2005

Chapter 5. Oxidation Reduction Chemistry

1. Which of the given statements about the reaction below are incorrect?

ELECTROCHEMISTRY: ELECTROPLATING

Chapter 3 Metals and Non-metals

Q1. From the following list of substances, choose the substances which meet the description given in parts (i) to (v) below :

Topic 9 National 4 Chemistry Summary Notes. Metals and Alloys. Materials

Corrosion Control and Cathodic Protection Data Sheet

GENERAL PRINCIPLES AND PROCE ISOLATION ISOL ELEMENTS

Electrochemistry. The Extraction of Aluminium from Bauxite Electrolysis of Molten Aluminium Oxide

A. Lemon juice makes the water more conducting as it conducts electricity. But when the lemon juice is not added to it, the conductivity will be low.

not to be republished NCERT GENERAL PRINCIPLES AND PROCE ISOLATION ISOL ELEMENTS Unit I. Multiple Choice Questions (Type-I)

Materials are all substances and include metals, ceramics and plastics as well as natural and new substances.

GraspIT AQA GCSE Chemical changes

Group A Good Earth School Naduveerapattu Chemistry Worksheet Class X Metallurgy (1) Name a metal which has the following properties.

Iron filings (Fe) 56g IRON + SULPHUR IRON SULPHIDE

On-Site Sodium Hypochlorite Generation Equipment

UNIT-I ELECTROCHEMISTRY PART-A

CHEMNIUM NACLO SODIUM HYPOCHLORITE GENERATOR

Chapter 12 Reactivity of Metals 12.1 Different Reactivities of Metals Recall an experiment performed in F.3

3 Metals and Non-Metals

Edexcel GCSE Chemistry. Topic 4: Extracting metals and equilibria. Obtaining and using metals. Notes.

CHEMISTRY. SECTION I (40 Marks) Attempt all questions from this Section

New Technologies for Hypo Production

Industrial processes. Examples of calcination processes include the following:

Only a small concentration of this Sodium Hypochlorite is required to combat marine fouling, 0.1 to 0.3 ppm.

Extraction of metals

Reactivity Series. Question Paper. Cambridge International Examinations. Score: /39. Percentage: /100

DURATION: 1 hour 30 minutes

Corrosion and Corrosion Protection

CHEMISTRY. SCIENCE Paper 2. (Two hours) You will not be allowed to write during the first 15 minutes.


DURATION: 1 hour 30 minutes

Sn 2+ (aq) + 2 Ag + (aq) Sn 4+ (aq) + 2 Ag(s),

Thermodynamics and Electrode Potential ME Dr. Zuhair M. Gasem

Oxidation and Reduction

Distribution Review. Corrosion Control. Corrosion Control Vocabulary. American Water College 1. Corrosion Control Training Objectives

Extracting and using metals. ores. native. Only the most unreactive metals such as gold and platinum are found as native metals.

KULLEĠĠ SAN BENEDITTU Boys Secondary, Kirkop

Today! Demonstrations of Redox Chemistry! Electrochemistry! electrons moving about! equilibrium with a control knob! The disappearing Aluminum Rod!

Transcription:

Applications of electrochemistry Electrochemistry has a number of different uses, particularly in industry. The principles of cells are used to makeelectrical batteries. In science and technology, a battery is a device that stores chemical energy and makes it available in an electrical form. Batteries are made of electrochemical devices such as one or more galvanic cells or fuel cells. Batteries have many uses including in: Interesting Fact: A fuel cell converts the chemical potential energy produced by the oxidation of fuels (e.g. hydrogen gas, hydrocarbons, alcohols) into electrical energy. torches electrical appliances such as cellphones (long-life alkaline batteries) digital cameras (lithium batteries) hearing aids (silver-oxide batteries) digital watches (mercury/silver-oxide batteries) military applications (thermal batteries) In this section we are going to look at a few examples of the uses of electrochemistry in industry. Electroplating The electrolytic cell can be used for electroplating. Definition 1: Electroplating

The process of coating an electrically conductive object with a thin layer of metal using an electrical current. Electroplating occurs when an electrically conductive object is coated with a layer of metal using electrical current. Sometimes, electroplating is used to give a metal particular properties or for aesthetic reasons: corrosion protection abrasion and wear resistance the production of jewellery Figure 1: a) An electroplated piece of aluminium artwork and b) a wax stool electroplated in copper. Electro-refining (also sometimes called electrowinning) is electroplating on a large scale. Copper plays a major role in the electrical industry as it is very conductive and is used in electric cables. One of the problems though is that copper must be pure if it is to be an effective current carrier. One of the methods used to purify copper, is electrowinning (copper ore is processed into impure blister copper, which is then deposited as pure copper through electroplating). The copper electrowinning process is as follows: 1. A bar of impure copper containing other metallic impurities acts as the anode. 2. The cathode is made up of pure copper with few impurities. 3. The electrolyte is a solution of aqueous CuSO4 and H2SO4.

Figure 2: A simplified diagram to illustrate what happens during the electrowinning of copper. 4. When current passes through the cell, electrolysis takes place: The impure copper anode oxidises to form Cu2+ ions in solution. The anode decreases in mass. Cu(s) Cu2+(aq)+2e At the cathode reduction of positive copper ions takes place to produce pure copper metal. The cathode increases in mass. Cu2+(aq)+2e Cu(s) (>99% purity) 5. The other metal impurities do not dissolve (Au(s), Ag(s)) and form a solid sludge at the bottom of the tank or remain in solution (Zn(aq), Fe(aq) and Pb(aq)) in the electrolyte. The chloralkali industry

The chlorine-alkali (chloralkali) industry is an important part of the chemical industry, which produces chlorine andsodium hydroxide through the electrolysis of the raw material brine. Brine is a saturated solution of sodium chloride (NaCl) that is obtained from natural salt deposits. Definition 2: Brine A saturated aqueous solution of sodium chloride. Interesting Fact: Remember that electrolytic cells are used to transform reactants into products by turning electric current into chemical potential energy. The products of the chloralkali industry have a number of important uses: Chlorine is used: to purify water as a disinfectant in the production of: hypochlorous acid (used to kill bacteria in drinking water) paper, food antiseptics, insecticides, medicines, textiles, laboratory chemicals paints, petroleum products, solvents, plastics (such as polyvinyl chloride) Sodium hydroxide (also known as 'caustic soda') is used to: make soap and other cleaning agents purify bauxite (the ore of aluminium) make paper make rayon (artificial silk)

One of the problems of producing chlorine and sodium hydroxide is that when they are produced together the chlorine combines with the sodium hydroxide to form chlorate (ClO ) and chloride (Cl ) ions. This leads to the production of sodium chlorate, NaClO, a component of household bleach. To overcome this problem the chlorine and sodium hydroxide must be separated from each other so that they don't react. There are three industrial processes that have been designed to overcome this problem. All three methods involve electrolytic cells. 1. The Mercury Cell In the mercury-cell (Figure Figure 3): The anode is a carbon electrode suspended from the top of a chamber. The cathode is liquid mercury that flows along the floor of this chamber. The electrolyte is brine (NaCl solution) that is passed through the chamber. When an electric current is applied to the circuit, chloride ions in the electrolyte are oxidised at the anode to form chlorine gas. 2Cl (aq) Cl2(g) + 2e At the same time sodium ions are reduced at the anode to solid sodium. The solid sodium dissolves in the mercury making a sodium/mercury amalgam. Na+(aq) + Hg(l) + e Na(Hg) The amalgam is poured into a separate vessel, where it decomposes into sodium and mercury. The sodium reacts with water in the vessel and produces sodium hydroxide and hydrogen gas, while the mercury returns to the electrolytic cell to be used again. 2Na(Hg) + 2H2O(l) 2NaOH(aq) + H2(g) + Hg(l)

Interesting Fact: Figure 3: The mercury cell. In a mercury cell the sodium dissolves in the liquid mercury to form a liquid amalgam of the two metals. This separates the Cl and Na+ ions. The following animation gives a good demonstration of how a mercury cell works. This method only produces a fraction of the chlorine and sodium hydroxide that is used by industry as it has certain disadvantages: mercury is expensive and toxic some mercury always escapes with the brine that has been used

mercury reacts with the brine to form mercury(ii) chloride the mercury cell requires a lot of electricity although the chlorine gas produced is very pure, mercury has to be removed from the sodium hydroxide and hydrogen gas mixture. In the past the effluent was released into lakes and rivers, causing mercury to accumulate in fish and other animals feeding on the fish. Today, the brine is treated before it is discharged so that the environmental impact is lower. 2. The Diaphragm Cell In the diaphragm-cell (Figure Figure 4): a porous diaphragm divides the electrolytic cell into an anode compartment and a cathode compartment brine is introduced into the anode compartment and flows through the diaphragm into the cathode compartment an electric current is passed through the brine causing the salt's chlorine ions and sodium ions to move to the electrodes Chlorine gas is produced at the anode 2Cl (aq) + 2e Cl2(g) At the cathode, sodium ions react with water forming caustic soda (NaOH) and hydrogen gas. 2Na+(aq) + 2H2O(l) + e 2NaOH(aq) + H2(g) Some NaCl salt remains in the solution with the caustic soda and can be removed at a later stage.

Figure 4: The diaphragm cell. The following animation gives a good demonstration of how a diaphragm cell works. The advantages of the diaphragm cell are: uses less energy than the mercury cell does not contain toxic mercury It also has disadvantages however: the sodium hydroxide is much less concentrated and not as pure the chlorine gas often contains oxygen gas as well the process is less cost-effective as the sodium hydroxide solution needs to be concentrated and purified before it can be used Interesting Fact:

To separate the chlorine from the sodium hydroxide, the two half-cells were traditionally separated by a porous asbestos diaphragm, which needed to be replaced every two months. This was damaging to the environment, as large quantities of asbestos had to be disposed. Asbestos is toxic to humans, and causes cancer and lung problems. Today, the asbestos is being replaced by other polymers, which do not need to be replaced as often, and are not toxic. 3. The Membrane Cell The membrane cell (Figure Figure 5) is very similar to the diaphragm cell, and the same reactions occur. The main differences are: the two electrodes are separated by an ion-selective membrane, rather than by a diaphragm the membrane structure allows cations to pass through it between compartments of the cell but does not allow anions to pass through (this has nothing to do with the size of the pores, but rather with the charge on the ions) brine is pumped into the anode compartment, and only the positively charged sodium ions pass into the cathode compartment, which contains pure water

Figure 5: The membrane cell. The following animation gives a good demonstration of how a membrane cell works. At the positively charged anode, Cl ions from the brine are oxidised to Cl2 gas. 2Cl (aq) Cl2(g) + 2e At the negatively charged cathode, hydrogen ions in the water are reduced to hydrogen gas. 2H2O(l) + 2e H2(g) + 2OH The Na+ ions flow through the membrane to the cathode compartment and react with the remaining hydroxide (OH ) ions from the water to form sodium hydroxide (NaOH). Na+(aq) + OH (aq) NaOH(aq) The chloride ions cannot pass through the membrane, so the chlorine does not come into contact with the sodium hydroxide in the cathode compartment. The sodium hydroxide is removed from the cell. The overall equation is as follows: 2NaCl(aq)+2H2O(l) Cl2(g)+H2(g)+2NaOH(g) The advantages of using this method are:

the sodium hydroxide that is produced is very pure because it is kept separate from the sodium chloride solution the sodium hydroxide has a relatively high concentration this process uses the least electricity of all three cells the cell is cheaper to operate than the other two cells the cell does not contain toxic mercury or asbestos Exercise 1: The chloralkali industry Problem 1: Refer to the flow diagram, which shows the reactions that take place in the membrane cell, and then answer the questions that follow. 1. What liquid is present in the cathode compartment at A? 2. Identify the gas that is produced at B. 3. Explain one feature of this cell that allows the Na+ and OH ions to react at C. 4. Give a balanced equation for the reaction that takes place at C. Practise more questions like this Answer 1: 1. Water and dilute NaOH 2. Chlorine gas

3. This type of cell has an ion permeable membrane that allows the positive Na+ ions to move from the anode compartment to the cathode compartment and interact with the OH ions. 4. Na+(aq)+OH (aq) NaOH(aq) Problem 2: Summarise what you have learnt about the three types of cells in the chloralkali industry by completing the table below: Mercury cell Diaphragm cell Membrane cell Main raw material Mechanism of separating Cl2 and NaOH Anode reaction Cathode reaction Purity

of NaOH produced Purity of Cl2 produced Energy consumption Environmental impact Cost of production Table 1 Practise more questions like this Answer 2: Mercury cell Diaphragm cell Membrane cell Main raw brine brine brine

materia l Mechan ism reduction of Na+ to Na in Hg amalgam use of a porous diaphragm use of a membrane (charge specific) of separati ng Cl2 and NaOH Anode Cl ions Cl2 gas Cl ions Cl2 gas Cl ions Cl2 gas reaction Cathod e reaction Na+ ions 2Na(Hg) 2Na(Hg)+2H2O(l) 2NaOH(aq)+H2(g ) 2Na+(aq)+H2O(l) 2NaOH(l)+H2(g ) 2Na+(aq)+H2O(l) 2NaOH(l)+H2(g ) Purity low purity medium purity high purity of low concentration NaOH Purity of Cl2 high purity mixed with O2 mixed with O2

Energy high less than the low energy consum mercury cell ption Environ high lower than the lower than the mental mercury cell diaphragm and impact mercury cell Cost of expensive expensive, as low production product product must be cost ion purified Table 2 Problem 3: The diagram below shows the sequence of steps that take place in the mercury cell. 1. Name the 'raw material' in step 1.

2. Give the chemical equation for the reaction that produces chlorine gas in step 2. 3. What other product is formed in step 2. 4. Name the reactants in step 4. Practise more questions like this Answer 3: 1. Aqueous sodium chloride (NaCl, brine) 2. 2Cl (aq) Cl2(g)+2e 3. sodium mercury amalgam 4. sodium mercury amalgam and water Problem 4: Approximately 30 million tonnes of chlorine are used throughout the world annually. Chlorine is produced industrially by the electrolysis of brine. The diagram represents a membrane cell used in the production of Cl2gas. 1. What ions are present in the electrolyte in the left hand compartment of the cell? 2. Give the equation for the reaction that takes place at the anode. 3. Give the equation for the reaction that takes place at the cathode and forms a gas.

4. What ion passes through the membrane while these reactions are taking place? 5. Chlorine is used to purify drinking water and swimming pool water. The substance responsible for this process is the weak acid, hypochlorous acid (HOCl). One way of putting HOCl into a pool is to bubble chlorine gas through the water. Give an equation showing how bubbling Cl2(g) through water produces HOCl. 6. A common way of treating pool water is by adding 'granular chlorine'. Granular chlorine consists of the salt calcium hypochlorite, Ca(OCl)2. Give an equation showing how this salt dissolves in water. Indicate the phase of each substance in the equation. (IEB Paper 2, 2003) Practise more questions like this Answer 4: 1. Chloride ions (Cl ) and sodium ions (Na+). 2. 2Cl (aq) Cl2(g)+2e 3. 2H2O(l)+2e H2(g)+2OH (aq) 4. Sodium ions 5. Cl2(g)+H2O(l) HOCl(aq)+HCl(aq) 6. Ca(OCl)2(s) Ca2+(aq)+2OCl (aq) The extraction of aluminium Aluminium is a commonly used metal in industry, where its properties of being both light and strong can be utilised. It is used in the manufacture of products such as aeroplanes and motor cars. The metal is present in deposits of bauxite. Bauxite is a mixture of silicas, iron oxides and hydrated alumina (Al2O3.xH2O). Interesting Fact: Bauxite is a rock that contains a large amount of aluminum oxide (Al2O3) and aluminium hydroxide (Al(OH)3) as well as many other aluminium containing minerals. Bauxite is the richest source of aluminum when compared with any other common rock, and is the best aluminum ore.

Electrolysis can be used to extract aluminium from bauxite. The process described below produces 99% pure aluminium: 1. Aluminium is melted along with cryolite (Na3AlF6) which acts as the electrolyte. Cryolite helps to lower the melting point and dissolve the ore. 2. The carbon rod anode provides a site for the oxidation of O2 and F ions. Oxygen and fluorine gas are given off at the anode and also result in anode consumption. 2O2 (aq) O2(g) + 4e 2F (aq) F2(g) + 2e 3. At the cathode cell lining, the Al3+ ions are reduced and metal aluminium deposits on the lining. Al3+(aq) + 3e Al(s) (99% purity) 4. The AlF3 6 electrolyte is stable and remains in its molten state. The overall reaction is as follows: 2Al2O3(s) 4Al(s)+3O2(g) The only problem with this process is that the reaction is endothermic and large amounts of electricity are needed to drive the reaction. The process is therefore very expensive.