Research Article Investigation of Properties of Silk Fiber Produced in Ethiopia

Similar documents
Silkworm Production and Constraints in Eastern Tigray, Northern Ethiopia

International Journal of Science, Environment and Technology, Vol. 7, No 5, 2018,

Nalanda Silk Spinning Training Process

Research Article Development of Glass/Jute Fibers Reinforced Polyester Composite

India continues to be the second largest

Evaluation of some promising strains of Eri Silkworm, Samia ricini in climatic condition of Vidarbha Region of Maharashtra

Feed consumption rate and feeding frequencies of Eri and Mulberry silkworm at Melkassa Agricultural Research Center, Ethiopia

Extraction of Natural Silk Fibre from Cocoons of Argema mimosae (Lepidoptera: Saturniidae)

SUMMARY AND CONCLUSIONS

Assessment of Value Chain of Sericulture Products in Amhara Region, Ethiopia

Apart from the marvelous mulberry silk,

Sci. Technol. Arts Res. J., April-June 2015, 4(2): Study on Silkworm Bed Cleaning Frequency during Larval Growth Period

LEARN * DREAM * AWAKEN* DISCOVER * ENLIGHTEN * INVESTIGATE * QUESTION * EXPLORE

Journal home page: RESEARCH ARTICLE

FOOD PLANT VARIETAL EFFECT ON THE REARING AND GRAINAGE OF MUGA SILKWORM, ANTHERAEA ASSAMENSIS HELFER, N. Ibotombi Singh* and Dulal Goswami

ASSESSMENT OF THE VOLUMETRIC ATTRIBUTES OF ERI SILKWORM (PHILOSAMIA RICINI) REARED ON DIFFERENT HOST PLANTS

CHAPTER - 3 FIBRE TO FABRIC

ASSIGNMENT. for. January and July 2012 Sessions

Research Letter Properties of Reinforced Concrete Steel Rebars Exposed to High Temperatures

Evaluation of castor hybrids / varieties employing growth and yield characters for exploitation in seed production and ERI silkworm rearing

ORGANIC SERICULTURE FOR BIVOLTINE PRODUCTION

A comparative study on morphology and rearing performance of Samia ricini and Samia canningi crossbreed with reference to different food plants

Leaf mineral composition of castor genotypes and its relationship with productivity of eri silkworms (Samia Cynthia ricini B.)

EFFECT OF COCOON CHARACTERS, COPULATION AND OVIPOSITION DEVICES ON THE GRAINAGE PERFORMANCE OF SAMIA CYNTHIA RICINI (BOISDUVAL)

Research Article Development and Performance Assessment of the High-Performance Shrinkage Reducing Agent for Concrete

Study of thirty-one economically important traits in twenty silkworm Bombyx mori varieties

IMPACT OF VARIETAL FEEDING ON SAMIA RICINI DONOVAN IN SPRING AND AUTUMN SEASON OF UTTAR PRADESH

Research Article A Study of the Quench Sensitivity of 6061-T6 and 6069-T6 Aluminum Alloys

The recent Sericultural situation in Greece Aspects and prospects

Fiscal and Environmental Barriers in Silk Reeling and Wet Processing Sectors

Research Article Water Permeability Characteristics of Normal Strength Concrete Made from Crushed Clay Bricks as Coarse Aggregate

Nutritive Effects of Leaf Position of Mulberry Plant Morus alba on Silkworm Bombyx mori L. Performance

FEEDING EFFICIENCY OF ERI SILKWORM Philosamia ricini (H.) REARED ON DIFFERENT CASTOR GENOTYPES

American International Journal of Research in Formal, Applied & Natural Sciences

Research Article The Study for Saving Energy and Optimization of LED Street Light Heat Sink Design

The organizations and companies dealing with sericulture development in Bulgaria are the Sericulture Experiment Station in Vratza, Agricultural

Impact of sericulture industry on Jammu and Kashmir Economy: (With Special reference to District Baramulla)

IDENTIFICATION OF BIVOLTINE BREEDS AND HYBRIDS OF THE MULBERRY SILKWORM, BOMBYX MORI L. Ravindra Singh* and D. Gangopadhyay

RECIPROCAL EFFECT IN HYBRIDS BETWEEN UNIVOLTINE AND MULTIVOLTINE BREEDS OF THE SILKWORM, BOMBYX MORI L.

Assessment of Growth and Performance of Silk Worms (Bombyx mori L.) on Mulberry Leaves at Jimma, South West Ethiopia

SERICULTURE IN EAST AFRICA JAICAF. Japan Association for International Collaboration of Agriculture and Forestry

EFFECT OF ANTIBIOTIC ADMINISTRATION ON GROWTH AND DEVELOPMENT OF SILK GLAND IN MULBERRY SILKWORM (BOMBYX MORI L.)

Available from Deakin Research Online:

PROFESSIONAL ASSISTANCE FOR DEVELOPMENT ACTION (PRADAN)

Journal home page:

RAW SILK PROPERTIES The silk filament or bave forming the cocoon though apparently single is actually composed of two filaments or brins which issue

RAW SILK PROPERTIES The silk filament or bave forming the cocoon though apparently single is actually composed of two filaments or brins which issue

REARING TECHNOLOGY OF ERI SILKWORM (SAMIA CYNTHIA RICINI) UNDER VARIED SEASONAL AND HOST PLANT CONDITIONS IN TAMIL NADU

SYNTHESIS OF PROMISING BIVOLTINE BREED UP1 OF THE SILKWORM (Bombyx mori L.) FOR UTTAR PRADESH

SHORTLISTING OF PROMISING SILKWORM BREEDS AND HYBRIDS OF THE SILKWORM, BOMBYX MORI L. Ravindra Singh* and R. Nirupama

Low Tensile Strength Due to Fragile Points on Silkworm Cocoon Filaments

Selection of the Silkworm Bombyx mori L. Breeding Resource Material

CARLOS ONAN MENDOZA TOVAR Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan

Research Article Span Length Variance Effect on the Fatigue Life of FRP Bridge Deck

EARLY STAGE INDOOR TRAY REARING OF MUGA SILKWORM (ANTHERAEA ASSAMENSIS HELFER) A COMPARATIVE STUDY IN RESPECT OF LARVAL CHARACTERS

DRS 357 RWANDA STANDARD. Silk cocoon production Code of practice. First edition mm-dd. Reference number DRS 357: 2017.

Yield Gaps in Mulberry Sericulture in Karnataka: An Econometric Analysis

Globally, India is the second largest CHAPTER VII THE SERICULTURE & SILK TEXTILES INDUSTRY. annual report

POST GRADUATE DIPLOMA IN SERICULTURE (MULBERRY) (AFFILIATED TO THE UNIVERSITY OF KALYANI) A FIFTEEN MONTH DIPLOMA COURSE

Effect of Drought on the Growth and Development of Mulberry

POST-COCOON SECTOR 4.0 OBJECTIVES 4.1 INTRODUCTION 4.2 RAW MATERIAL - COCOON

MT EDUCARE LTD. GEOGRAPHY Agro-Based Industries and Industries in India STEP UP ANSWER SHEET SUBJECT :

MATERIALS AND METHODS

PROMOTING OF MULTIPLES SILKWORM REARING CROPS IN PATHANKOT DISTRICT OF PUNJAB

Regional Sericulture Training Centre For Asia-Pacific (RSTCAP) Dept. of Sericulture, College of Animal Science

Research Article NTCR Behavior of La-Doped BaBiO 3 Ceramics

XII World Congress of Rural Sociology July 6~11, 2008, Goyang,, Korea Working Group 11 Production Contracts in the Agri-Food System

PROFESSIONAL ASSISTANCE FOR DEVELOPMENT ACTION (PRADAN)

Evaluation of Raw Silk Produced by Bivoltine Silkworm Bombyx mori L. (Lepidoptera: Bombycidae) Races in Kenya

Properties of Industrial Thai Silks Reeled by Hand and by Machine

Development of sericulture chain value: from mulberry to designers in Argentina. Pescio, F ; Marino, P.; Enciso, H.

Implementation of a Lean Model for Carrying out Value Stream Mapping in a silk Reeling process Industry

A Impact Study on Sericulture Production Technologies by the Farmers of Bidar District in Karnataka, India

Central Sericultural Research and Training Institute, Central Silk Board, Pampore, Jammu & Kashmir

SILK INDUSTRY: NEED TO BECOME COMPETITIVE. the commercially known varieties of silk. Varieties

Reviving the Sericulture Industry In Indonesia

Dr. Sumendra Nath Gogoi M.Sc. (Botany), Ph.D.

PERIYAR UNIVERSITY PERIYAR PALKALAI NAGAR SALEM

Sericulture An Ideal Enterprise for Sustainable Income in Erode District of Tamil Nadu

THE IMPACT OF MULBERRY SERICIN SOAP PRODUCTION ON HUMAN WELL-BEING AND SERICULTURAL ECOSYSTEM SERVICES IN THAILAND

Performances of F 2 and backcross populations in silkworm, Bombyx mori under high temperature

EVALUATION OF EGG PRESERVATION SCHEDULES FOR BIVOLTINE BREEDS OF THE MULBERRY SILKWORM, BOMBYX MORI L.

International Journal of Business and Administration Research Review, Vol. 2 Issue.10, April- June, Page 50

Research Article Feasibility Studies on Underwater Laser Surface Hardening Process

Development of digital moisture meter for jute fibre and its products

ECONOMICS OF DIFFERENT SCALES OF REARING AND COST BENEFIT RATIO

FOR OFFICIAL USE ONLY

Global best practices for higher cotton productivity- Can India adopt and improve?

Biodegradable Polymers for Medical Applications

PREPARATION AND PROPERTIES OF COTTON STALK BARK FIBER

GOOD PRACTICES FOR THAI SILK YARN PRODUCTION

Challenges of commodity value chain development towards improving the competitiveness of agricultural commodity in Africa

CHAPTER 3 COMPARISON OF MULBERRY AND ERI SILK FIBROIN SCAFFOLDS FOR TISSUE ENGINEERING APPLICATIONS

annual report CHAPTER VII THE SERICULTURE & SILK TEXTILES INDUSTRY

Evaluation of Corrosion Growth on SS304 Based on Textural and Color Features from Image Analysis

Research Article Behaviour of NiTi SMA Helical Springs under Different Temperatures and Deflections

Biology and behaviour of the silkworms

To Study Mechanical Behavior of Composites based on Re- Reeling Mulberry Silk Waste with Unsaturated Polyester Resin.

กรมหม อน ไหม. Globally Important Agricultural Heritage System (GIAHS) Nongsung District Mukdahan Province

Research Article An Advanced Process of Condensation Performance Evaluation by BIM Application

Transcription:

Hindawi Materials Volume 217, Article ID 7691797, 5 pages https://doi.org/1.1155/217/7691797 Research Article Investigation of Properties of Silk Fiber Produced in Ethiopia Ayano Koyrita Banale Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia Correspondence should be addressed to Ayano Koyrita Banale; ayubanale@gmail.com Received 27 January 217; Revised 12 April 217; Accepted 2 May 217; Published 28 May 217 Academic Editor: Tong Lin Copyright 217 Ayano Koyrita Banale. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The atmospheric conditions and other facilities to rear silk filaments are good in Ethiopia. In,, and Kombolcha silk rearing is started with good progress. The quality of the cocoons produced in the country is not determined in relation to commercial silk produced in major silk producing countries. So far there was no information available about the basic properties of silk filaments produced. In this research paper, the different physical properties of the eri and mulberry cocoon and their filaments were evaluated. Eri cocoons have shell ratio of approximately 14%, average fiber fineness of 3 dtex, and average weight of 3.2 3.3 g, while mulberry cocoons have raw silk ratio of 13-14%, average fiber fineness of 2 dtex, and average weight of 1.5 g. Even though the method of rearing, handling, and harvesting of the cocoons is poor, the physical properties of the silk produced in Ethiopia fall within the limits of commercial silk produced in major silk producing countries. 1. Introduction Silk is very soft, lustrous, smooth, strong, and durable than any natural or artificial fiber. The industrial and commercial uses of silk contributed to the silkworm promotion all over the world especially in developing nations [1]. Ethiopia s bimodal rainfall pattern, ambient temperature, and other agro-ecological factors provide a fertile ground for mulberry and caster seed cultivation and silkworm production [2]. Sericulture development of both eri and mulberry silkworms has been introduced into the country very lately. It was initiated by Melkassa Agricultural Research Centre 2 years ago. However, the technology has been disseminated to beneficiaries since 21. The SNNP Regional Bureau of Agriculture and Rural Development is the first to promote sericulture technology to the rural poor farmers among all the regions. Subsequently related sectors and interested individuals in and around urban areas of, Nazareth, Addis Ababa, Debrezeit, and Bahir Dar are involved in the development silk production program [2]. According to sericulture training guide report (25), considerable quantity of dried cocoons, over 3 kg, was produced both by farmers and investors from which 95% was marketed to Addis. According to Sabahar yearly report, currently the silk production in Ethiopia has increased by almost 2% since 214. Today, Sabahar, the pioneer of local silk, is the only company in the country which produces textiles made of Ethiopian silk for export. Silk products produced in Ethiopia are organic by nature as the plantation for rearing uses natural fertilizers [2]. The favorable conditions of silkworm rearing; rapidly expanding production of silk in the country and the need of organic materials in the world will surely increase the export potentialandlocalutilizationofsilk.however,sofarthereare no postcocoon facilities and no information available about the basic properties of silk filaments produced [2 4]. Unlessbasicpropertiessuchassilkfineness,cocoon weight, shell ratio, cleanness, and uniformity are known, it will be impossible to market such silk or even to go ahead for further value addition through reeling and weaving. The success of this work largely depends on characterizing its silk cocoon in terms of fiber properties as well as laying a foundation for further processing such as reeling and twisting. In this paper, the different physical properties of the eri and mulberry cocoon and their filament were evaluated. Even though the method of rearing, handling, and harvesting of the cocoons is poor, the physical properties of the silk produced in Ethiopia fall within the limits of commercial cocoons produced in major silk producing countries.

2 Materials (a) (b) Figure 1: Cocoons: (a) mulberry and (b) eri. (a) (b) Figure 2: Degummed silk filaments: (a) mulberry and (b) eri. 2. Materials and Methods Samples of eri cocoons were collected from Bahir Dar,, and while samples of mulberry cocoons were collected from and. Longitudinal appearance, silk percentage, fiber fineness, moisture regain, cocoon weight, and quality of cocoons were analyzed using ASTM standard method. Longitudinal appearance of the filaments was studied under projection microscope with magnification power of 125 and 25 with mounting media of liquid paraffin. Two-pan cooking method was used for reeling by manipulating time and temperature within 45 98 C. Alkali gum removal method was used to degum the filaments. 5% sodium carbonate, 1 : 2 material to liquor ratio, 98 Ctemperature of cooking, and 2 hours of degumming were used during degumming. Weight of cocoons, shell, and degummed filaments was measured using electronic weighing balance and appropriate proportions were calculated. Broken filaments were taken from outer layer; filaments were degummed and their linear density was measured on vibroscope (fineness testing machine) with appropriate loads of 2 mg 4 mg for eri silk, while for mulberry silk the filament of 25 m length was taken on the outer layer during reeling. Filaments were degummed and weighed. Linear density was calculated. Moisture content of the fiber was analyzed by SDL Rapid Regain Tester and weighing balance. Ten samples, each weighing 1 gm, were prepared from each type and origin. The oven was heated until the temperature rose to 15 C. One sample was inserted in the oven and its weight was measured after 25 minutes. This was done repeatedly till the weight loss is less than.5%. This is taken as dried sample and moisture content was measured. Sorting of quality cocoons was made by observation. During observation the quality of dirty/impurities, degree of whiteness, size of the cocoon, and hardness of the cocoon were taken into consideration. Those cocoons with defects and with fewer defects are differentiated. 3. Results and Discussions 3.1. Shape and Appearance. When fiber is observed under microscope it is smooth in surface and profile, and sometimes nodes appear. The eri filament is more irregular than mulberry silk. Undegummed eri cocoons are grey, while mulberry silk varies from grey to yellow as shown in Figures 1 and 2. However, degummed fibers were brighter than the undegummed for both varieties.

Materials 3 Table 1: Shell percentage of eri cocoon. Sample of eri silk Cocoon weight (gm) Shell weight (gm) Shell percentage (%) 2.8 29.5 14.2 Bahir Dar 2.2 26.8 13.4 21. 27.7 13.7 Table 2: Silk percentage of mulberry cocoons. Sample of cocoon Cocoon weight (gm) Weight of filament (gm) Raw silk percentage (%) 68.3 9.7 14.2% 36.4 4.5 12.9% 3.2. Silk Percentage. 1 samples, each weighing nearly 2 grams, were prepared; pupa was separated from the cocoons andshellweightwasmeasuredforericocoons.mulberry cocoons were degummed after reeling. Average weights of cocoon, shell, and raw silk were taken as shown in Tables 1 and 2. AscanbeseenfromTables1and2theshellpercentage of eri cocoons is approximately 14% for all the places while rawsilkpercentageofmulberryisbout13-14%.therawsilk percentage of mulberry from is higher than from. Raw silk ratio varies with breed of silk worms and care taken in rearing and mounting. It also varies with the age of cocoons. The trend observed by K. Subramanianan, N. Sakthivel, and S. M. H. Qadri shows that South Indian eri cocoons shell percentage ranges from 1 to 15% [5]. Raw silk percentage of mulberry is 7 1% for multivoltine cocoons, 11 15% for bivoltine cocoons, 16 19% in newly evolved hybrids, and 19 25% in Japanese reeling cocoons [6 8]. This indicates that the shell percentage of Ethiopian eri cocoons is in the range of good quality South Indian cocoons, while mulberry cocoons silk ratio falls in the range of bivoltine cocoons. 3.3. Fiber Fineness. Broken filaments were taken from the outer layer of eri cocoons and linear density was measured on vibroscope after degumming. The filament of 25 m length was taken from outer layer of mulberry cocoons during reeling. Filaments were degummed and weighed. Linear density of thefilamentswascalculated.thedistributionoflineardensity in dtex is shown in Figures 3 and 4. The fiber fineness distribution of eri and mulberry cocoons of all places is shown in smoothened curves in Figures3and4.Themeanvalueofthefiberfinenessforeri silk is 3.9 dtex from Bahir Dar, 2.91 dtex from, and 3.11 dtex from with standard deviations of.32,.29, and.25, respectively, while fineness for mulberry silk is 2.1 dtex from and 2.4 dtex from with standard deviations of.5 and.12, respectively. The eri filament from is found to be finer as compared to Bahir Dar s and s filaments. Mulberry filament is finer than eri filaments. Silk worm varieties are many and the filaments they produce are also diverse in characteristics. Even in the same species, the filaments they produce vary because the 12 1 8 6 4 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 Bahir Dar Fiber fineness (dtex) Figure 3: Fiber fineness distribution in dtex of eri silk from Bahir Daar,, and. 7 6 5 4 3 2 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 Fiber fineness (dtex) Figure 4: Fiber fineness distribution in dtex of mulberry silk from and (note: frequency: number of times it has occurred). environmental conditions and the host plant they could use are different. Fineness of silk fiber varies from 1 dtex to 5 dtex depending on type and place of fibers, while eri and mulberry silk takes fineness ranges of 1 dtex to 3 dtex [9 11]. 3.4. Weight of Cocoon. Sample of cocoons was randomly selected for all types of cocoons. Individual cocoons of the

4 Materials Table 3: Percent moisture regain of the various silk types. Fiber type Origin Initial weight (g) Average final constant weight (g) % regain 1. 9.5 1.5 Eri silk Bahir Dar 1. 9.1 9.93 1. 9.15 9.79 Mulbery Awasa 1. 9.3 8.5 1. 9.25 9.1 8 7 6 5 4 3 2 1 3 3.5 3.1 3.15 3.2 3.25 3.3 3.35 3.4 3.45 3.5 3.55 3.6 Bahir Dar Cocoon weight (grams) Figure 5: Distribution of cocoon weight in grams for eri silk fiber from Bahir Dar,, and. 12 1 8 6 4 2 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 Cocoon weight (grams) Figure 6: Distribution of cocoon weight in grams for mulberry silk fiber from and. samples selected were weighed on precision weighing balance in grams. The distribution of cocoon weight is given in Figures 5 and 6. Figure 5 and 6 indicate that the mean cocoon weight of eri silk is 3.23 g for Bahir Dar, 3.28 g for, and 3.22 g for, while cocoon weight of mulberry silk is 1.55 g for and 1.52 g for. This shows that there is no significant difference in cocoon weight of thesametypebuterisilkcocoonshavehigherweightthan mulberry cocoons. Cocoon weight of pure breed mulberry varies from 1.5 to 2 g. Eri silk produced in major silk producing countries varies from 2.5 to 3.5 [12 15]. This clearly indicates that the weight of eri cocoons in these places is in the upper limit of the commercial silk produced in major silk producing countries while mulberry silk falls within the pure breeds. Even though thesericultureisnotscientificallyappliedcocoonweightis in the normal range of commercial silk produced in major producing countries. 3.5. Moisture Absorption. Cocoons were degummed before moisture analysis. Ten samples of degummed fibers from eachtypeandoriginwereprepared.eachsamplewasheated repeatedly in oven dryer till the weight loss is less than a difference of.5%. Average value of the regain percentage is given for each type of samples as shown in Table 3. The moisture regain at standard conditions of eri silk was approximately 1% while mulberry silk was approximately 9% [16, 17]. Mulberry raw silk fiber has a moisture regain of 11%, which reduces to about 9% after degumming (at standard atmospheric conditions, 27 C and 65% RH). This is due to the removal of much hygroscopic sericin from the raw silk fiber during the degumming process. Eri silk fibers have about 1% moisture regain values [18, 19]. 3.6. Quality of the Cocoons by Sorting. 2 gram of cocoon was randomly taken for all types of cocoons. Sorting by manual observation, good quality cocoon and poor quality cocoons were identified. Any defected cocoons, having differenceincolor,orbeingsmallerinsizewereconsideredas poor cocoons. By measuring the sorted samples percentage values were obtained. This was made five times and average values of good and poor quality cocoons were calculated as shown in Table 4. As per the guidelines of sorting given, Table 4 indicates that more than 6% of the cocoons observed are good. The poor quality cocoons could be due to the weak method of rearing, handling, and harvesting of the cocoons intheseharvestingareas.alltheplacesusetraditionalhouses for rearing and simple wooden/timber/frames with corn stalk ribs for rearing stages in uncontrolled conditions. They also do not follow a regular leaves feeding but rather provide leaves to worms irregularly. Feed efficiency affects quality of cocoons produced. 4. Conclusion Even though the method of rearing, handling, and harvesting of the cocoons is poor, the quality of cocoons produced in Ethiopia is in the range of commercial silk produced in

Materials 5 Table 4: Percentage of good quality cocoons for the various types of cocoons. Fiber type Origin Good quality cocoons in % Bahir Dar 52 Eri silk 64 6 Mulberry silk 68 65 major silk producing countries. The shell percentage of eri cocoons is nearly 14% for all the places, while raw silk ratio of mulberry is bout 13-14%. The mean value of the fiber fineness for eri silk is 3.9 dtex from Bahir Dar, 2.91 dtex from, and 3.11 dtex from, while fineness for mulberry silk is 2.1 dtex from and 2.4 dtex from. The mean cocoon weight of eri silk is 3.23 g for Bahir Dar, 3.28 g for, and 3.22 g for Awash Melkassa cocoons while cocoon weight of mulberry silk is 1.55 g for and 1.52 g for cocoons. More than 6% of the cocoons observed are good. If proper rearing and handling of cocoons are used, it is possible to produce higher quality cocoons. Conflicts of Interest The authors declare that they have no conflicts of interest. References [1] K. Shifa, W. Sori, and E. Getu, Feed Utilization Efficiency of Eri-Silkworm (Samia cynthia ricini Boisduval) (Lepidoptera: Saturniidae) on Eight Castor (Ricinus communis L.) Genotypes, International Innovative and Applied Research, vol. 2, no. 4, pp. 26 33, 214. [2] K. Shifa and Y. Nobuak, Sericulture training guide, Gezahegn Tadesse- Ministry of Agriculture & Rural Development (MARD), Metaferia H/Yimer- Ethiopian Agricultural Research Organization (EARO), Japan International Cooperation Agency (JICA), Addis Ababa, Ethiopia, 25. [3] Sericulture in,jaicaf,eastafrica,march27. [4] A. A. Weldeyohannes, Silkworm Production and Constraints in Eastern Tigray, International Innovation and Scientific Research,vol.1,no.2,pp.517 521,214. [5] K. Subramanianan, N. Sakthivel, and S. m. H. Qadri, Rearing technology of eri silkworm (Samia Cynthia Ricini) under varied seasonal and host plant conditions in Tamil Nadu, International Life Sciences Biotechnology and Pharma Research,vol. 2, no. 2. [6] T. N. Sonwalkar, Hand Book of Silk Technology, 21, Hand book of silk technology, Sonwalkar, Tammanna N,. [7] D. Brahma, A. Swargiary, and B. Dutta, A comparative study on morphology and rearing performance of Samia ricini and Samia canningi crossbreed with reference to different food plants, Entomology and Zoology Studies,vol.3,no.5,pp.12 19, 215. [8] S.Chanda,L.M.Saha,N.K.Das,N.B.Kar,andB.B.Bindroo, Correlation among Shell Percent, Cocoon Yield and Reeling Parameters of Multi Bi Cocoons under Different Agro- Climatic Conditions of West Bengal, International Industrial Entomology,vol.26,no.2,pp.74 8,213. [9] K. M. Babu, Silk Processing, Properties and Applications,213. [1] C. A. Lawrence, Fundamentals of Spun Yarn Technology, 22. [11] V. B. Gupta, R. Rajkhowa, and V. K. Kothari, Physical characteristics and structure of indian silk fibers, Indian fiber and Textile Research,vol.25,pp.14 19,2. [12] M. Lewin, Hand Book of Fiber Science and Technology, vol.4, 1995. [13] K. Subramanian, N. sakthivel, and s. m. h. Qadri, Effect of cocoon characters, copulation and oviposition devices on the grainage performance of samia Cynthia ricinisciences biotechnology and pharma research, International Life Sciences Biotechnology And Pharma Research Hyderabad,vol.1, no. 4. [14] P. Sharma and J. C. Kalita, A comparative study on six strains of eri silk worm (samia ricini; donovan) based on morphological traits, Global Bio-Science and Biotechnology, vol.2, no. 4, 213. [15] K. Subramanian, N. Sakthivel, and S. M. H. Qadri, Effect of cocoon characters, copulation and oviposition devices on the grainage performance of samia cynthia ricini (boisduval), International journal of life science and pharma research, vol.1, no. 4, 212. [16] K. Shifa, E. Getu, and W. Sori, Rearing performance of eri-silkworm (Samia cynthia ricini Boisduval) (Lepidoptera: Saturniidae) fed with different castor (Ricinus communis L.) genotypes, Entomology,vol.11,no.1,pp.25 33,214. [17] H. Argua, Principles of Sericulture translated from Japanese, 1994. [18] A. Basu, Ed., Advances in Silk Science and Technology, Thetextile Institute, 215. [19] A. Teshome, S. K. Raina, F. Vollrath, J. M. Kabaru, J. Onyari, ande.k.nguku, Studyonweightlossandmoistureregain of silk cocoon shells and degummed fibers from African wild silkmoths, Entomology, vol.8,no.5,pp.45 458, 211.

Nanotechnology International Corrosion International Polymer Science Smart Materials Research Composites Metallurgy BioMed Research International Submit your manuscripts at https://www.hindawi.com Materials Nanoparticles Advances in Materials Science and Engineering Scientifica The Scientific World Journal International Biomaterials Nanoscience Coatings Crystallography Ceramics Textiles