Addressing the Challenges of Systems Engineering Estimation

Similar documents
SEER for Systems Engineering Webinar February 24, Copyright Galorath Incorporated 1

Economic Impact of Reuse on Systems Engineering

Systems of Systems Cost Estimation Solutions

COSYSMO: A Systems Engineering Cost Model

Factors Influencing System-of-Systems Architecting and Integration Costs

System Cost Modeling Using Proxy Estimation and COSYSMO

Synthesis of Existing Cost Models to Meet System of Systems Needs

COSYSMO: COnstructive SYStems Engineering Cost MOdel. Ricardo Valerdi USC Annual Research Review March 11, 2002

COSYSMO-IP COnstructive SYStems Engineering Cost Model Information Processing. Headed in a new direction

COSYSMO: A Systems Engineering Cost Model

Hardware Oriented Applications of SEER-IT. SEER User Conference 2009

Reducing Risk and Uncertainty in COSYSMO Size and Cost Drivers: Some Techniques for Enhancing Accuracy

Software Technology Conference

SEER for IT Detailed Overview

Methodology for the Cost Benefit Analysis of a Large Scale Multi-phasic Software Enterprise Migration

Enabling Repeatable SE Cost Estimation with COSYSMO and MBSE

Systems Engineering for Software Intensive Projects Using Agile Methods

Improving The Collective Acquisition Outcome: DCMA, Industry Panel

Normalizing the ISBSG Software Benchmark

A Proposed Community Roadmap for Advancing the Practice of Model-Based Systems Engineering in Government Programs and Enterprises

Evolving Lockheed Martin s Engineering Practices Through the Creation of a Model-centric Digital Tapestry

Comparing Traditional and Agile Systems Engineering. Phyllis Marbach, Boeing 2 February 2016

SYSTEMS MODELING AND SIMULATION (SMS) A Brief Introduction

NPS Total Ownership Cost Models

Organization Profile

Lee Fischman & Karen McRitchie Galorath Incorporated. 100 North Sepulveda Blvd, Suite 1801 El Segundo, CA USA

M3 Playbook Guidance. 1.1 Establish Initial Customer PMO and Processes. Human Resources (HR)/Staffing Plan

PSM. Practical Software and Systems Measurement A foundation for objective project management. COSYSMO Requirements Volatility Workshop

TOPIC DESCRIPTION SUPPLEMENT for the SYSTEMS ENGINEERING SURVEY DESCRIPTION

User s Guide. Galorath Incorporated

Systems Characterization: An Approach to Modernizing Disparate Legacy Systems

Aerospace Vehicle Systems Institute

On the Use of Architectural Products for Cost Estimation

COSOSIMO Parameter Definitions Jo Ann Lane University of Southern California Center for Software Engineering

Value of Systems Engineering. Kerri Polidore, Systems Engineer ARDEC- Systems Engineering Infrastructure

Methodology for Selecting the Preferred Networked Computer System Solution for Dynamic Continuous Defense Missions

Use of the Air Force HSI Requirements Pocket Guide to Improve Writing and Interpretation of Human-Centered Requirements

Software Maintenance, Sustaining Engineering, and Operational Support

SCRUM : Managing Development on Heterogeneous Systems

Overview of SAE s AS6500 Manufacturing Management Program. David Karr Technical Advisor for Mfg/QA AFLCMC/EZSM

Breakout Session 1: Business Cases and Acquisition Strategies Outbrief Marilee J. Wheaton TRW S&ITG Session Chair.

Increasing Bid Success Through Integrated Knowledge Management

Project Management by Functional Capability. NDIA CMMI Technology Conference and User s Group November 15, 2007

OEM-Supplier-Vendor, Deploying Standards and Associated Requirements

BAE Systems Insyte Software Estimation

A Resource Estimation Framework for System Acquisition using a Hybrid Cost Estimation Approach

Published on: January 2014 Author: Ravindra Kulkarni Address:

Virtual Integration for Model Based Safety Assessment of Complex Systems

System Cost Modeling and SysML Integration

CAD Data Migration & Management for Legacy Programs

Applying Software Architecture Principles in a DoD Acquisition

The 12 th Annual Systems Engineering Conference

Transition from SW-CMM to CMMI : The Benefits Continue!

Advancing Systems Engineering. Systems Development (MBSD) Conference April, 2010

IBM Software Services for Lotus To support your business objectives. Maximize your portal solution through a rapid, low-risk deployment.

COSYSMO: Constructive Systems Engineering Cost Model

Integrating Legacy Software: Lessons and Hurdles

Best Practices for Technology Renewal in Banking Institutions

Isight and Fiper. Automate Design Exploration and Optimization. Isight

Lockheed Martin Benefits Continue Under CMMI

SEER for Hardware Electronics and Systems Extended Capabilities

STATEMENT OF WORK SMALL SPACECRAFT PROTOTYPING ENGINEERING DEVELOPMENT & INTEGRATION (SSPEDI) Space Solutions (SpS)

CMMI A-Specification. Version 1.7. November, For CMMI Version 1.2. This document is controlled by the CMMI Steering Group.

Affordability Analysis: The Role Process, Cost and ROI Modeling In Improved Program Performance SEI October 2012

Digital Twin Digital Thread in Aerospace David Riemer

Alternatives to Optimize Gas Processing Operations

Engineered Resilient Systems Tradespace Enabled Decision Making

DESIRED OUTPUTS MATERIALS TO BRING 7/30/2010

INTEGRATION of PROJECT MANAGEMENT and SYSTEMS ENGINEERING

Managing Systems Engineering Processes: a Multi- Standard Approach

EXPLORING SD&PM USAGE FOR Work-in- Process

COSYSMO-IP COnstructive SYStems Engineering Cost Model Information Processing. Headed in a new direction. Workshop Outbrief

Introduction to Cost Estimation - Part I

Building a CMDB You Can Trust in a Complex Environment

Lessons Learned from Development of Large-Scale Rules-Based System

Product Documentation SAP Business ByDesign February Business Configuration

Available online at ScienceDirect. Procedia Computer Science 36 (2014 )

Integration of Software Intensive Systems

Integrated Model Framework for Concept Development

Building on the Microsoft Power Platform. Daniel Weinmann

SoSECIE: Systems of Systems Architecture Approach for Lifecycle Digital Environments

Integrating Systems Engineering and Test & Evaluation in System of Systems Development

Abstract. Global Product Data Interoperability Summit 2018

Comter Systems, Inc. GSA Schedule 70: 35F-0323L

Atrenne Computing Solutions

Independent Verification and Validation (IV&V)

Promoting Preferred Parts Initiatives and Parts Data Sharing. PSMC Spring Meeting LMI McLean, VA April, 2013

The Method Framework for Engineering System Architectures (MFESA)

Welcome and Overview: USC-CSE Affiliates Workshops

Keywords: Cloud Computing, Cost Modelling, Uncertainties, Long-Term Digital Preservation.

A Framework of the New-Typed Equipment Maintenance Support Information Management System

Program Lifecycle Methodology Version 1.7

Digital Thread and Industry 4.0

Leading Indicators of Systems Engineering Effectiveness. Leading Indicators of Systems Engineering Effectiveness

Automated GUI Interactions on System Verification

Version 0.75 of the Proposed INCOSE Competency Framework

Headquarters U.S. Air Force. Building CERs & SERs for Enterprise Resource Planning (ERP) Programs

NDIA 18 th Annual Systems Engineering Conference The Application of Systems Modeling in support of Trade Studies 10/28/2015

Demystifying the Worlds of M&S and MBSE

Model Based Systems Engineering using SysML. 4th MODPROD Workshop on Model-Based Product Development. February 10, 2010

Transcription:

Addressing the Challenges of Systems Engineering Estimation Karen McRitchie/Kathy Kha, Galorath Incorporated 2016 Copyright Galorath Incorporated 1

ABSTRACT Cost is a crucial factor in evaluating the viability of a project prior to its implementation. Though there are many factors that go into the overall cost of a project, we know that we can reduce costs through the front loading of systems engineering efforts. SEER-SYS (SEER for Systems Engineering) is a robust modeling environment that assists users in being able to make better upfront decisions regarding the systems engineering of a project. This presentation will discuss: Issues and problems regarding systems engineering estimation seen by our user base Gaining a better understanding of systems engineering costs The background and research that has gone into development 2016 Copyright Galorath Incorporated 2

Why estimate systems engineering effort? Research has shown that adequate SE effort on the frontend leads to a lower likelihood of cost overruns Honour, E.C., Understanding the Value of Systems Engineering, Proceedings of the INCOSE International Symposium, Toulouse, France, 2004. 2016 Copyright Galorath Incorporated 3

The Systems Engineering Estimating Conundrum Systems Engineering can be reasonably estimated as a percentage of contractor and/or subsystem costs. This is sometimes called a tax model SEER-H System Level Cost model uses this approach The tax approach requires a potentially time consuming estimate often based on an assumed design approach before systems engineering effort can be estimated This fueled demand for a standalone, organic systems engineering estimation capability 2016 Copyright Galorath Incorporated 4 4

What is SEER-SYS? Shorthand name for SEER for Systems Engineering Offers the core COSYSMO systems engineering model and much more Core COSYSMO API and Interfaces Robust Modeling Environment SEER-SYS Project Data Capture Knowledge Bases Risk & Reporting 2016 Copyright Galorath Incorporated 5

SEER-SYS Value Added Stand alone parametric estimation model for Systems Engineering costs. Complementary to SEER-H System Level Cost capability Includes costs for Acquisition and Supply, Technical Management, System Design, Product realization, Technical Evaluation Research based on Galorath Systems Engineering research and COSYSMO data. Validated in the field with 3+ years of customer collaboration. Model can estimate at System of Systems level down to box level systems costs. Includes Knowledge Bases which help to preset its parameters to commonly validated ranges. 2016 Copyright Galorath Incorporated 6 6

SEER-SYS Standalone Systems Engineering Estimates 2016 Copyright Galorath Incorporated 7

Built In Risk with Monte Carlo Descriptive inputs drive effort, cost and schedule estimates 2016 Copyright Galorath Incorporated 8

SEER-SYS Knowledge Bases Four Kbase Categories included to provide default parameter settings Environment/Platform System Level Application Acquisition 2016 Copyright Galorath Incorporated 9

Wide Range of Reporting Options Totals, monthly, annual, by phase and labor category 2016 Copyright Galorath Incorporated 10

SEER-SYS Calibration SEER-SYS can be used out of the box Easy estimate vs. actual comparisons Supports local calibrations It does support capture of actual effort and calibration tools Offers both linear model adjustments as well as tuning of core COSYSMO model factors 2016 Copyright Galorath Incorporated 11

Supports Non-Parametric Costs Additional Items for non-parametric estimates Purchased items (licensing, material, etc.) Fixed efforts (200 hours) Duration driven efforts or costs (1 FTE for 3 months) 2016 Copyright Galorath Incorporated 12

Building a Cost Catalog Can be used for standard labor hours or material cost for most anything Organization and content all configurable to user data 2016 Copyright Galorath Incorporated 13

Scenarios Pre-configured WBS patterns may be stored as a scenario Scenarios may be configured with options for the user to select which elements to include The WBS structure will be loaded with the user s tailoring Scenarios can be generated proactively or incidentally Deliberately defining a standard estimation WBS pattern Turning an exemplar estimate into a WBS pattern 2016 Copyright Galorath Incorporated 14

Custom Estimation Relationships Tie costs, hours or quantities to custom expressions 2016 Copyright Galorath Incorporated 15

Includes All The Favorite SEER Features Monte Carlo & Risk Flexible Export Server Mode API Knowledge Bases Scenarios Notes & Attachments Expression Editor 2016 Copyright Galorath Incorporated 16

Galorath Added Research Research and development of a SEER Systems Engineering model began through customer feedback: Demand for a stand-alone systems engineering model Ability to create more detailed and defensible SE estimates Account for issues such as personnel turnover and benefits gained from detailed SE plans, utilization of SysML, etc. Wrap-factor approaches can not reflect these details Alternative ability to estimate SE budget prior to estimating hardware (SEER-H wrap factor approach) 2016 Copyright Galorath Incorporated 17

Research Background Leveraged the COSYSMO model and additional collaboration with industry champions to develop knowledge-bases. Data points included in SEER-SYS come from a range of industries. 2016 Copyright Galorath Incorporated 18

Research Background New data points from contractors and government agencies were used to develop the k-bases in SEER SYS. This data is in addition to the original COSYSMO calibration. Using this additional data, SEER is able to tune estimates based on system level, application, platform, and acquisition method. The use of k-bases to provide industry default parameter settings assist in building more defensible estimates. As new data is collected, k-bases are continually updated and new k-bases are developed 2016 Copyright Galorath Incorporated 19

SEER-SYS Scope SEER-SYS addresses the first four phases of the systems engineering lifecycle (as defined by ISO 15288) Conceptualize Develop Oper Test & Eval Transition to Operation Operate, Maintain, or Enhance Replace or Dismantle 2016 Copyright Galorath Incorporated 20

SEER-SYS Modeling Example Evaluating different design approaches Overall system requirements may be fixed, but design alternatives will introduce solution variances such as: Extent of reuse/legacy Technology licensing requirements Experience levels Etc. 2016 Copyright Galorath Incorporated 21

Defining System Parameters Overall system requirements may be established, regardless of the solution Each solution may differ in terms of difficulty, reuse, and adoption new design adapted design modified design 2016 Copyright Galorath Incorporated 22

Common Attributes Knowledge bases can be used to set up default parameter settings 2016 Copyright Galorath Incorporated 23

Option A - New Design All requirements design are designated as new & nominal difficulty 2016 Copyright Galorath Incorporated 24

Option B Adapted Design Some reuse opportunity, but requires added software upgrades linking inputs into the design alternatives 2016 Copyright Galorath Incorporated 25 25

Option B Adding In Software Costs Used SEER-SEM to estimate software 2016 Copyright Galorath Incorporated 26

Option C Modified Design Similar linking of requirements, but greater modification and some unused interfaces deleted linking inputs into the design alternatives 2016 Copyright Galorath Incorporated 27

Option C Modified Design Adding in license and simulator costs 2016 Copyright Galorath Incorporated 28

Evaluating Results Summary reports make it easy to compare alternatives in terms of cost & schedule Keep a legacy of alternative estimates choosing which one is used in the totals for cost, risk and summary reporting 2016 Copyright Galorath Incorporated 29 29

Questions Kathy Kha Kathy.Kha@GalorathFed.com (310) 414-3222 x266 2016 Copyright Galorath Incorporated 30

Backup Slides COSYSMO Info 2016 Copyright Galorath Incorporated 31

Research Background The COSYSMO calibration included data points from: Boeing Raytheon Northrop Grumman Lockheed Martin General Dynamics Integrated Defense Systems (Seal Beach, CA) Intelligence & Information Systems (Garland, TX) Mission Systems (Redondo Beach, CA) Transportation & Security Solutions (Rockville, MD) Integrated Systems & Solutions (Valley Forge, PA) Systems Integration (Owego, NY) Aeronautics (Marietta, GA) Maritime Systems & Sensors (Manassas, VA; Baltimore, MD; Syracuse, NY) Maritime Digital Systems/AIS (Pittsfield, MA) Surveillance & Reconnaissance Systems/AIS (Bloomington, MN) BAE Systems SAIC National Security Solutions/ISS (San Diego, CA) Information & Electronic Warfare Systems (Nashua, NH) Army Transformation (Orlando, FL) Integrated Data Solutions & Analysis (McLean, VA) L-3 Communications Greenville, TX SEER-SYS includes additional points from government contractors and government agencies. 2016 Copyright Galorath Incorporated 32

Research Background To ensure that all data points collected included equivalent activities, ANSI-632 was used as a WBS Acquistion and Supply Technical Management System Design Product Realization Technical Evaluation Supply Process Acquisition Process Planning Process Assessment Process Control Process Requirements Definition Process Solution Definition Process Implementation Process Transition to Use Process Systems Analysis Process Requirements Validation Process System Verification Process End Products Validation Process (1) Product Supply (2) Product Acquisition (3) Supplier Performance (4) Process Implementation Strategy (5) Technical Effort Definition (6) Schedule and Organization (7) Technical Plans, (8) Work Directives (9) Progress Against Plans and Schedules (10) Progress Against Requirements (11) Technical Reviews (12) Outcomes Management (13) Information Dissemination (14) Acquirer Requirements (15) Other Stakeholder Requirements (16) System Technical Requirements (17) Logical Solution Representations (18) Physical Solution Representations (19) Specified Requirements (20) Implementation (21) Transition to use (22) Effectiveness Analysis (23) Tradeoff Analysis (24) Risk Analysis (25) Requirement Statements Validation (26) Acquirer Requirements (27) Other Stakeholder Requirements, (28) System Technical Requirements (29) Logical Solution Representations (30) Design Solution Verification (31) End Product Verification (32) Enabling Product Readiness (33) End products validation 2016 Copyright Galorath Incorporated 33

4 Size Drivers 1. Number of System Requirements Counted from system specification 2. Number of System Interfaces Counted from interface control document 3. Number of Business Rules Counted from system spec or mode description document 4. Number of Operational Scenarios Counted from test cases or use cases 2016 Copyright Galorath Incorporated 34

SEER-SYS Sizing Inputs Sizing inputs for easy, nominal and difficult categories Reuse also supported 2016 Copyright Galorath Incorporated 35

Size Driver Weights Easy Nominal Difficult # of System Requirements 0.5 1.00 5.0 # of Interfaces 1.1 2.8 6.3 # of Business Rules 2.2 4.1 11.5 # of Operational Scenarios 6.2 14.4 30.0

Reuse Category Weights 2016 Copyright Galorath Incorporated 37

14 Cost Drivers Problem and Solution Understanding 1. Requirements understanding 2. Architecture understanding 3. Technology Risk 4. Design Decomposition Complexity Product and System Complexity 1. Complexity of Performance Measures 2. Migration Complexity 3. Documentation Level 4. Installations/ Platforms Diversity 2016 Copyright Galorath Incorporated 38

14 Cost Drivers (cont.) Personnel and Team Capabilities 1.Stakeholder Team Cohesion 2.Personnel and Team Capabilities 3.Personnel Experience/ Continuity Development and Productivity Aids 1.Process Capability 2.Multisite Coordination 3.Tool Support 2016 Copyright Galorath Incorporated 39

SEER-SYS Parameters All inputs are expressed as a range, allowing users to model uncertainty in the inputs. 2016 Copyright Galorath Incorporated 40