Accucore. Ultimate Core Performance LC Column Technology to Maximize Your Investment. Dave Jarzinski. October 2011

Similar documents
New Core-Shell Technology

AdvanceBio Peptide Mapping

A Brief Overview of HPLC & UHPLC Method Development and Optimization. Dr. Chris Message UHPLC/HPLC Product Specialist Phenomenex

2015 CATALOG. Discover the Advantages of HALO and HALO BioClass Fused-Core Columns

Development of Analysis Methods for Therapeutic Monoclonal Antibodies Using Innovative Superficially Porous Particle Biocolumns

Biotherapeutic Method Development Guide

Columns for Biomolecules BioLC Column Lines

BioHPLC columns. Tim Rice Biocolumn Technical Specialist

Biotherapeutic Method Development Guide

4/4/2013. BioHPLC columns. Paul Dinsmoor Biocolumn Technical Specialist. April 23-25, Size Exclusion BioHPLC Columns

APPLICATIONS TN Overview of Kinetex 2.6 µm Core-Shell Technology

APPLICATIONS TN Overview of Kinetex 2.6 µm Core-Shell Technology

ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS

Evaluation of Sub-2µm Zirconia-PBD Particles for Multi-Modal UHPLC

ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS

Developing Quantitative UPLC Assays with UV

Agilent Prep LC Columns for Small Molecules and Biomolecules MAINTAIN RAPID, RELIABLE SEPARATIONS AS YOU SCALE-UP

Fast and High-Resolution Reversed-Phase Separation of Synthetic Oligonucleotides

Quality-by-Design-Based Method Development Using an Agilent 1290 Infinity II LC

Novel Wide-Pore Superficially Porous Particles for Biomacromolecular Separations

Method Translation in Liquid Chromatography

Combining High Temperature and Small Particles: The Advantages of Zirconia

HPLC to UPLC Method Migration: An Overview of Key Considerations and Available Tools

Fast mass transfer Fast separations High throughput and improved productivity Long column lifetime Outstanding reproducibility Low carryover

The Role of Temperature in HPLC How Column Thermostatting and Mobile Phase Pre-Conditioning Details enable to take full Advantage of It

Performance Characteristics of the Agilent 1220 Infinity Gradient LC system

NISTmAb characterization with a high-performance RP chromatography column

Faster Separations Using Agilent Weak Cation Exchange Columns

Bivalirudin Purification:

Replacing Solvent Gradient HPLC Methods with Temperature Programmed HTLC

Agilent AdvanceBio SEC Columns for Aggregate Analysis: Instrument Compatibility

Performance characteristics of the 1260 Infinity Quaternary LC system

for water and beverage analysis

2012 Waters Corporation 1

Introducition of a new product from Inertsil Series

Gradient Elution. Slide 2

Analysis of amoxicillin and five impurities on the Agilent 1220 Infinity LC System

New Roc LC Columns The Reliable Cornerstone for Your LC Lab

Size Exclusion BioHPLC columns Ion Exchange BioHPLC columns

Inertsil ODS-3 2 µm. Base Silica Physical Properties and Chemical Modification. Base Silica: High Purity Silica Gel % Surface Area: 450 m 2 /g

Chromatographic Workflows for Biopharmaceutical Characterization

AdvancedTools in HPLC methoddevelopment

Using High Temperature HPLC for Improved Analysis in the Pharmaceutical Industry

ACQUITY Arc TM System

Application Note. Authors. Abstract. Introduction. Pharmaceutical

Part III Improving Throughput Through the Use of Elevated Column Temperature

Agilent 1290 Infinity Quaternary LC Support of Columns with 2.1 to 4.6 mm ID to 1200 bar

ChromaNik Technologies Inc.

PARTICLE SIZE CONSIDERATIONS OF

ZORBAX StableBond HPLC Columns

mab and ADC Analysis Shanhua Lin, Ph.D. The world leader in serving science

MAbPac RP Column. High-performance reverse phase chromatography column for monoclonal antibody analysis

A Generic Approach to the Extraction of Multi-functional Drugs using Mixed-mode SPE with LC-MS/MS Analysis

Puzzled About LCMS? Sample. Sensitivity in Mass Spec Analysis. Prep. Adapting LC-UV. Optimizing and Maintaining Your Mass Spec LCMS

Higher Order mab Aggregate Analysis using New Innovative SEC Technology

Multiplexing Two Different Food Residue Methods using HILIC and Reversed Phase Chromatography in the Same LC-MS/MS Run

Reversed-phase Separation of Intact Monoclonal Antibodies Using Agilent ZORBAX Rapid Resolution High Definition 300SB-C8 1.

Chromatography column for therapeutic protein analysis

New Stable Chemically Bonded Carbon Stationary Phases for HPLC

The Agilent 1260 Infinity BioInert Quaternary Pump. Scope of a low-pressure mixing UHPLC pump with Bio-Inert Capabilities

Monoclonal Antibody Analysis on a Reversed-Phase C4 Polymer Monolith Column

EVOLUTE ABN FOR EXTRACTION OF DRUGS FROM BIOLOGICAL FLUIDS

EASY-Spray Columns. Guidance for column set up and installation Tips to maximize column lifetime

HPLC Peak Focusing Facilitated by Independent Mobile Phase Pre-heating

Thank you for joining us! Our Webinar will begin shortly Principles of SPE: Troubleshooting Techniques

Confident Pesticides Analysis with the Agilent LC/Triple Quadrupole and TOF/QTOF Solutions

Simple Techniques for Improving the Isolation of Synthetic Peptides Jo-Ann Jablonski Principal Scientist Waters Corporation

Preparative Purification of Corticosteroids by HPLC; Scalability and Loadability Using Agilent Prep C18 HPLC Columns Application

Improving Sensitivity in Bioanalysis using Trap-and-Elute MicroLC-MS

Quantification of genotoxic "Impurity D" in Atenolol by LC/ESI/MS/MS with Agilent 1200 Series RRLC and 6410B Triple Quadrupole LC/MS

A Comparison of Compendia Normal Phase LC Methods Run Under Supercritical Fluid Chromatography Conditions

Discovery BIO Wide Pore

Fast, Low Pressure Analysis of Food and Beverage Additives Using a Superficially Porous Agilent Poroshell 120 EC-C18 Column

Kromasil Eternity Designed for long life

Automated Scouting of Stationary and Mobile Phases Using the Agilent 1290 Infinity II Method Development Solution

Applications of 2D-LC in Pharmaceutical Analysis

Barry Boyes 1,2, Tim Langlois 1, Brian Wagner 1, Stephanie Schuster 1 and Joe DeStefano 1

HALO BioClass Gives You the Right Column for Every Situation

mabs and ADCs analysis by RP

Improving Retention Time Precision and Chromatography of Early Eluting Peptides with Acetonitrile/Water Blends as Solvent B

Application Note. Author. Abstract. Pharmaceuticals. Detlef Wilhelm ANATOX GmbH & Co. KG. Fuerstenwalde, Germany mau

Peptide Mapping. Hardware and Column Optimization

Investigating Miniaturization in

A highly sensitive and robust 150 µm column to enable high-throughput proteomics

HICHROM. Chromatography Columns and Supplies. LC COLUMNS ES Industries. Catalogue 9. Hichrom Limited

Strategies for Phospholipid Removal using Polymer-based SPE

Alltech Associates Applied Science Ltd. Carnforth, Lancashire, UK, LA5 9XP. Tel: +44 (0)

Analysis of biomolecules by SEC and Ion-Exchange UPLC

Automatic Combination of Orthogonal Separation Modes for Multiple Components in Mixtures

On-Line. User s Guide SPE CARTRIDGES. for Rapid Cleanup and Extraction of Analytes

Application Note. Biopharma. Authors. Abstract. James Martosella, Phu Duong Agilent Technologies, Inc Centreville Rd Wilmington, DE 19808

Practical Applications of Method Translation Using the Agilent Method Translation Tool. eseminar and Workshop

Automation for Improving the Workflows for LC-MS/MS. Francois Espourteille, Ph.D. Manager, Applications

Temperature and ph Stability of a New High Temperature C18 Polydentate Silica Column

High-Throughput LC/MS Purification of Pharmaceutical Impurities

Optimization of the Effective Separations for Peptides and Proteins Using High Durable Packing Materials for HPLC. YMC CO., LTD.

See. Beyond HALO. and Sigma-Aldrich Biotechnology. Advanced Materials Technology. Ascentis. Express

Comparison Guide. Comparison Data on Commonly Used C18 Phases TO C18 REVERSED P HASE HPLC COLUMNS. Stationary Phase Specifications

A Guide To Speeding Up Your Separation

Romain Laverriere Tatiana Pachova HPLC

Transcription:

Accucore Ultimate Core Performance LC Column Technology to Maximize Your Investment Dave Jarzinski Thermo Fisher Scientific Account Manager Greater Boston/Cambridge & North Phone: 978-408-1576 Email: dave.jarzinski@thermofisher.com October 2011

Fast Chromatography - Understanding the Drivers Analytical Scientist want Speed 62% Resolution 23% Sensitivity 7% Other 8% FAST CHROMATOGRAPHY 2

Accucore - Core Enhanced Technology TM Solid Core Particles 2.6µm diameter particles with a solid core generate high speed, high resolution separations without excessive backpressure Advanced Bonding Technology Optimised phase bonding creates a series of high coverage, robust phases Tight Control of Particle Diameter Enhanced selection process keeps particle size distribution to a minimum and produces high efficiency columns Automated Packing Process - Enhanced automated procedures ensure that all columns are packed with the highest quality 3

Particle Evolution Higher Efficiency 1960 1970 1980 1990 2000 2010 Pellicular particles, 50μm 4

Resolution Equation R s = 1 0. 5 4 N α α 1 1 k' + k' Efficiency Particle size / packing Selectivity Retention (Chemistry) Factor (Surface area) 5

The Theory Van Deemter Equation HETP = A + B u + C u m + C u s Eddy Diffusion Longitudinal Diffusion 6

A Term - Eddy Diffusion or Multiple Paths The A term depends on; Quality of the packing (better packing smaller A term) Particle size (smaller the particle the smaller is the A term) 7

Core Enhanced Technology Eddy Diffusion Fully Porous Particles D 90/10 ~ 1.5 Core Enhanced Technology D 90/10 ~ 1.1 8

C Term - Resistance to Mass Transfer (s) The C term depends on: Differences in diffusion path in the silica pores Fully Porous Particle Core Enhanced Technology Particle 9

Core Enhanced Technology Packed Bed Porous Silica Core Enhanced Technology 10

Core Enhanced Technology - Efficiency 20.0 Height Equivalent Theoretical Plate 15.0 10.0 5.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Linear velocity of mobile phase (mm/s) Accucore 2.6µm 5µm 3µm <2µm Highest efficiency and lowest rate of efficiency loss with flow rate with Core Enhanced Technology 11

Core Enhanced Technology Low Pressure 1000 Pressure (bar) 900 800 700 600 500 400 300 200 100 0 600 bar limit HPLC pressure limit Columns: 100 x 2.1 mm Mobile phase: H 2 O / ACN (1:1) Temperature: 30 C 0 200 400 600 800 1000 Flow rate (µl/min) Accucore RP-MS 2.6µm <2µm 3µm 5µm Pressures below 600 bar over optimum flow rate range with Core Enhanced Technology 12

Kinetic Plots Allows for fairer comparisons of analytical systems Van Deemter just compares pure separation ability Incorporates time of analysis Analysts want FASTER chromatography Van Deemter plots do not specify the time of analysis Incorporates pressure limitations of systems Van Deemter does not account for a pressure limitation on system 13

Kinetic Plot Efficiency & Speed 0.0300 t 0 /N (s) 0.0030 Time required to obtain a set efficiency Efficiency increasing N opt 0.0003 1,000.00 10,000.00 100,000.00 1,000,000.00 Accucore RP-MS 2.6um 5um 3um <2um Highest plate generation rate with Core Enhanced Technology N (/) 14

Impedance Devised by Knox and Bristow in 1977 Defines the resistance a compound has to moving down a column relative to the performance of that column Allows for pressure to be incorporated Often plotted with a reverse axis Mimics van Deemter plot Minimum value optimum conditions Often plotted as a dimensional form t/n 2 t 0 or t r both used E = Pt N 2 η 15

Core Enhanced Technology Low Impedance 100,000 10,000 Impedance 1,000 0.10 1.00 10.00 Linear velocity of mobile phase (mm/s) Accucore RP-MS 2.6µm 5µm 3µm <2µm Lowest impedance (best combination speed, efficiency and low pressure) of with Core Enhanced Technology 16

Core Enhanced Technology Features & Benefits Features More uniform particle sizing Better packing of particles Reduced pore depth Reduced mass transfer effects in mobile phase Benefits More Efficient Chromatography Allows the use of low pressure systems Competitive Edge Bar for bar gives better separations than porous materials 17

Faster than Fully Porous 5 and 3µm Rs = 2.64 5µL injection Fully porous 5µm, 150 x 4.6 mm ΔP = 59 bar Method Transfer Calculator: www.thermoscientific.com/crc Gradient and flow rate: Fully porous 5 μm 150 x 4.6 mm Rs =1.96 Rs = 2.50 Rs = 1.64 1µL injection 1µL injection 1µL injection ΔP = 23 bar Fully porous 5µm, 100 x 2.1 mm ΔP = 97 bar Fully porous 3µm, 100 x 2.1 mm ΔP = 218 bar 35 60 %B in 10.0 min 1000 µl/min solvent used 17 ml Fully porous 5 μm, 100 x 2.1 mm 35 60 %B in 6.7 min 210 µl/min solvent used 2.4 ml Fully porous 3 μm, 100 x 2.1 mm 35 60%B in 4.0 min 350 µl/min solvent used 2.4 ml Accucore RP-MS 2.6 μm, 100 x 2.1 mm 35 60 %B in 3.5 min 400 µl/min solvent used 2.4 ml ACCUCORE 2.6µm, 100 x 2.1 mm 0 1 2 3 4 5 6 7 8 9 10 Minutes -100 Reduced analysis time and solvent costs 18

More Peak Capacity than Fully Porous 5 or 3µm 5µm,100 x 2.1 mm 240 Gradient: 65 95%B in 2.1 min, 220 95% B for 0.4 min Flow rate: 400 μl/min 3µm, 100 x 2.1 mm ACCUCORE 2.6µm, 100 x 2.1 mm Normalised peak capacity 180 160 140 120 100 80 60 40 20 0 Accucore 2.6µm 3µm 5µm 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Minutes Higher peak capacity more peaks can be separated per injection 19

More Sensitive than Fully Porous 5 and 3µm S/N = 368 S/N = 399 S/N = 169 5µm, 100 x 2.1 mm 3µm, 100 x 2.1 mm mau Gradient and flow rate: 5μm, 100 x 2.1mm 35 60 %B in 6.7 min 210 µl/min 3μm, 100 x 2.1mm 35 60 %B in 4.0 min 350 µl/min Accucore RP-MS 2.6μm, 100 x 2.1mm 35 60 %B in 3.5 min 400 µl/min ACCUCORE 2.6µm, 100x2.1mm 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Minutes Higher S/N ratios detection and quantitation of low level impurities 20

Lower Backpressure than Fully Porous sub-2µm Sub 2µm, 100 x 2.1 mm Flow rate: 500 μl/min Mobile phase: A - Water; B Acetonitrile Accucore RP-MS 2.6µm, 100 x 2.1 mm Accucore RP-MS 2.6 µm, 100 x 2.1 mm Sub 2 µm, 100x2.1mm Maximum pressure (bar) 171 338 0.0 0.5 1.0 1.5 2.0 2.5 Minutes Equivalent performance, lower pressure (50% lower) 21

UHPLC Systems Not Required Dwell volume: 100 µl Column: Accucore RP-MS 2.6µm, 100 x 2.1 mm Dwell volume: 800 µl Accela 1250 Gradient: 65 95 % B in 2.1 min 95 % B for 0.4 min Flow rate: 400 µl/min Surveyor 0.00 1.00 2.00 3.00 4.00 Minutes Dwell volume: 1000 µl Accela 1250 Surveyor Agilent 1100 Agilent 1100 Run time (min) 2.5 3.0 3.5 0 0.5 1 1.5 2 2.5 3 3.5 Accucore can deliver performance on a number of different systems min Average PW (1/2 Height) 0.02 0.02 0.04 22

Equivalent Loading Capacity to Fully Porous sub-2µm 2,500,000 Columns: Accucore RP-MS 2.6µm,100 x 2.1mm <2µm,100 x 2.1mm R² = 0.9998 2,000,000 R² = 0.9993 Effect of Loading - Accucore Peak area 1,500,000 1,000,000 500,000 R² = 0.9721 Normalised Value 1.2 1 0.8 0.6 0.4 As N Tr A s T r 0.2 0 0 0.5 1 1.5 2 2.5 Load on column (µg) <2µm Accucore 2.6μm Competitor 0 Load on Column (µg) No loss in performance with 2µg loaded on a 2.1mm ID Accucore column 23

Accucore Evaluation for Metabolite Profiles Courtesy of: Anila Desai - Scientist

ESI+ LC-MS Profile of a Drug Hypersil Gold, 50 x 2.1, 1.9 micron ESI + LC-MS Profile of a Drug / Hypersil Gold, 50 x 2.1, 1.9 micron ESI + LC-MS Profile of a Drug / Hypersil Gold, 50 x 2.1, 1.9 micron RT: 0.06-6.97 100 50 5.22 TIC (RT 5.22) Relative Abundance 0 100 50 0 100 50 0 100 50 0.25 0.64 0.44 2.15 2.40 2.58 2.95 1.03 1.77 3.40 4.13 4.58 4.88 5.54 6.07 6.93 5.32 2.40 4.55 0.88 2.58 2.92 3.50 4.66 1.42 2.13 2.29 3.32 4.13 4.88 5.54 6.24 6.61 4.36 3.03 1.03 1.51 2.10 2.45 2.92 3.32 3.81 4.77 5.25 5.93 6.58 4.61 M1 Oxidation (RT 4.55) M2 Hydrolysis of X (RT 4.36) M3 Glucuronidation (RT 4.61) 0 100 50 0 100 50 0 0.59 0.44 0.64 1.77 1.57 1.79 2.45 2.58 2.66 3.74 3.89 4.13 5.22 5.73 5.90 6.44 5.40 4.52 2.92 3.71 5.22 3.58 2.61 3.92 2.01 2.53 4.95 6.02 6.41 6.90 4.39 2.21 2.77 3.42 3.68 2.55 3.29 3.76 4.63 5.27 5.40 5.99 6.61 1 2 3 4 5 6 Time (min) M4 O+Glucuronidation (RT 4.52) M5 O+SO 3 H (RT 4.39) 25

RT: 0.02-7.33 Relative Abundance 100 50 0 100 50 0 100 50 0 100 50 0 100 50 0 100 50 0 0.10 0.49 0.25 0.05 0.25 0.79 ESI+ LC-MS Profile of a Drug Accucore RP-MS, 50 x 2.1, 2.6 micron 2.08 2.27 2.63 2.93 3.56 1.59 4.13 4.41 4.97 5.88 6.93 7.07 1.37 2.27 1 2 3 4 5 6 7 Time (min) Decrease in retention time while keeping same resolution 4.02 26 4.64 4.97 4.13 2.63 2.08 2.98 3.56 5.86 1.87 4.41 5.48 3.69 2.70 0.98 1.51 1.89 2.19 3.13 4.23 4.82 5.13 5.53 5.97 6.65 4.15 0.83 0.10 0.88 1.23 1.47 6.93 6.77 TIC (RT 4.64) M1 Oxidation (RT 4.02) 7.02 6.77 1.89 2.16 2.29 3.08 3.64 3.97 4.33 4.71 5.21 5.29 5.94 6.63 7.12 4.95 4.18 2.06 2.45 2.47 2.70 3.23 3.95 4.31 5.08 5.48 5.83 6.79 4.05 1.65 2.86 3.59 3.84 2.27 4.67 4.71 5.94 7.07 5.51 6.08 M2 Hydrolysis of X (RT 3.69) 7.18 M3 Glucuronidation (RT 4.15) M4 O+Glucuronidation (RT 4.18) M5 O+SO 3 H (RT 4.05)

RT: 0.04-6.93 100 50 ESI+ LC-MS Profile of a Drug Accucore C18, 50 x 2.1, 2.6 micron 4.44 TIC (RT 4.44) Relative Abundance 0 100 50 0 100 50 0 100 50 0 100 0.05 0.49 0.34 0.83 0.05 0.69 1.59 2.00 2.21 2.47 2.68 3.06 3.82 4.28 4.66 4.82 5.38 5.97 6.33 4.82 1.37 3.84 2.21 1.70 2.00 3.95 2.55 2.91 3.41 4.05 5.11 5.70 6.08 6.87 3.48 2.68 1.59 1.78 2.47 3.11 4.41 4.46 5.43 5.92 6.31 4.02 6.64 M1 Oxidation (RT 3.84) M2 Hydrolysis of X (RT 3.48) 6.76 6.76 1.97 2.11 2.42 3.13 3.61 4.53 5.14 5.43 5.76 6.62 4.84 4.05 M3 Glucuronidation (RT 4.02) 50 0 100 50 0 0.15 0.44 0.79 0.98 3.16 2.68 2.47 3.23 3.89 4.48 1.81 2.26 5.00 5.54 6.00 6.42 6.76 3.95 2.42 4.44 1.54 2.21 3.06 3.33 4.53 4.95 5.89 5.97 6.28 1 2 3 4 5 6 Time (min) Decrease in retention time while keeping same resolution 27 M4 O+Glucuronidation (RT 4.05) M5 O+SO 3 H (RT 3.95)

Retention Time Comparison Metabolite Profiles 5.5 5 4.5 Retention Time 4 3.5 HypersilGOLD 50x2.1; 1.9um Accucore RP-MS 50x2.1; 2.6um Accucore C18 50x2.1; 2.6um 3 28

Long Column Lifetime Stability at extremes of ph Stability at elevated temperature Packed bed ruggedness 29

Reproducible Chromatography - Batch-to-Batch Accucore C18 Test 1 - Hydrophobic Interactions HS SS HBC EV419 1.76 1.41 0.18 EV422 1.77 1.41 0.19 EV435 1.75 1.40 0.18 EV442 1.77 1.40 0.18 EV436 1.77 1.41 0.19 EV446 1.76 1.40 0.18 Average 1.76 1.41 0.18 %RSD 0.32 0.36 2.98 Fully characterised primary and secondary interactions 30

Reproducible Chromatography Run-to-Run 4.4000 Rosuvastatin Retention 4.3000 4.2000 M i n u t e s 4.1000 4.0000 3.9000 3.8000 3.7000 3.6000 3.5000 0 500 1000 1500 2000 2500 Injection ~2,400 injections on Accucore column with TLX system no change in retention 31

Accucore Column Stability Low ph 40 35 Column Stability at ph < 2 ph 1.8 (0.1% TFA) Retention Factor 30 25 20 15 10 Acetaminophen p-hba o-hba Amitriptyline Nortriptyline DIPP DNPP 30,000 column volumes (5.5 days) 5 0 0 5000 10000 15000 20000 25000 30000 35000 Column Volumes Accucore columns are stable at low ph 32

Accucore Column Stability High ph ph 10.5 (0.1% ammonia) Retention Factor 30,000 column volumes (5.5 days) Accucore columns are stable at high ph 33

Accucore Column Stability Elevated Temperature 9 8 Column Stability at 70 C Mobile phase: MeOH/H 2 O (65:35) Flow rate: 0.4 ml/min Column temperature: 70 C 7 Run time: 5 min Retention Factor 6 5 4 3 Phenol Butylbenzene o-terphenyl Pentylbenzene 2 1 0 0 2000 4000 6000 8000 10000 Column Volumes 9,000 column volumes (400 injections) Accucore columns are stable at high temperature 34

Accucore Column Stability Ruggedness Accucore RP-MS 2.6µm 100x 2.1mm ID Mobile Phase: 60/40 ACN/H 2 O Flow Rate: 400 µl/min Injection Volume: 1 µl Column Temp: 30 C Accucore RP-MS 2.6µm 100x 2.1mm ID Mobile Phase A: Water (0.05% TFA) Mobile Phase B: Acetonitrile (0.05% TFA) Wash: H 2 O (0.05% TFA) Injection Volume: 1 µl Column Temperature: 30 C Efficiency (o-xylene) Asymmetry (o-xylene) 4,000 + isocratic test injections with no decrease in performance 6,000 + fast gradient injections with no change in retention 35

Accucore HPLC Columns Proof of Concept Ultimate Core Performance Fast Separations High Peak Capacity Increased Sensitivity Lower Pressure Loading Capacity Wide Selectivity Reproducible Chromatography Long Lifetime Maximize Your Investment Increase sample throughput and decrease solvent costs Separate and identify more peaks Detect trace amounts Use existing HPLC instruments or prolong the life of UHPLC instruments Analyze a wide range of concentrations Use the right column for your analysis Have confidence in your separations Use columns for longer 36

Theory & Practice Conclusion Ultimate Core Performance to Maximize Your Investment Rugged and reproducible solid core particles Fast separations with superb resolution Low backpressures Core Enhanced Technology 37

Accucore Evaluation Chris Singleton Biogen Idec Email: chris.a.singleton@biogenidec.com 14 Oct 2011

Outline Isocratic and gradient evaluation on C18 Multiple analyte evaluation on aq Temperature effect on aq separations Selectivity comparison between columns 39

Accucore C18, 2.1mm*50mm A: 20mM ammonium formate +0.1% formic acid B: Acetonitrile +0.1% formic acid TIC of +MRM (3 pairs): from Sample 1 (isocratic_accucore_01) of AccuCore eval FINAL.wiff (Turbo Spray) Max. 7.3e5 cps. 0.65ml/min 1µL injection 7.3e5 7.0e5 6.5e5 6.0e5 Protryptyline 0.54 0.66 Dibucaine Shimadzu HPLC 5.5e5 5.0e5 MS/MS detection Intensity, cps 4.5e5 4.0e5 3.5e5 3.0e5 Mebendazole 2.5e5 2.0e5 1.5e5 0.48 45 seconds 1.0e5 5.0e4 0.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 Time, min 40

Accucore C18, 2.1mm*50mm 0.65ml/min 1µL injection Shimadzu HPLC MS/MS detect 30 C Time %B 0.1 15 1.1 95 1.8 95 1.85 15 2.4 15 Same mobile phases as previous slide Chlorpheniramine Mebendazole Amitryptyline Loperamide Intensity, cps 2.9e5 2.8e5 2.6e5 2.4e5 2.2e5 2.0e5 1.8e5 1.6e5 1.4e5 1.2e5 1.0e5 8.0e4 6.0e4 4.0e4 2.0e4 TIC of +MRM (5 pairs): from Sample 2 (gradient_accucore_21) of AccuCore eval FINAL.wiff (Turbo Spray) 1.00 Max. 2.9e5 cps. 0.0 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 Time, min 1.18 1.28 DPCPX 1.37 1 min 27 sec 41

Outline Isocratic and gradient evaluation on C18 Multiple analyte evaluation on aq Temperature effect on aq separations Selectivity comparison between columns 42

Accucore aq, 2.1mm*50mm 0.65ml/min 1µL injection Shimadzu HPLC MS/MS detect 30 C Time %B 0.1 20 1.20 90 1.8 90 1.85 20 2.4 20 Same mobile phases as previous slide 1.09e6 1.05e6 1.00e6 9.50e5 9.00e5 8.50e5 8.00e5 7.50e5 7.00e5 6.50e5 Intensity, cps 6.00e5 5.50e5 5.00e5 4.50e5 4.00e5 3.50e5 3.00e5 2.50e5 2.00e5 1.50e5 1.00e5 5.00e4 TIC of +MRM (6 pairs): from Sample 3 (gradient_accucore_aq_30c_01) of AccuCore eval FINAL.wiff (Turbo Spray) 0.00 Chlorpheni -ramine Mebendazole 0.98 Protryptyline 1.12 1.21 Amitryptyline Max. 1.1e6 cps. 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 Time, min 1.27 DPCPX 1.36 1.42 Loperamide 43

Outline Isocratic and gradient evaluation on C18 Multiple analyte evaluation on aq Temperature effect on aq separations Selectivity comparison between columns 44

0.65ml/min 1µL injection Shimadzu HPLC MS/MS detect 30 C Time %B 0.1 20 1.20 90 1.8 90 1.85 20 2.4 20 Accucore aq, 2.1mm*50mm 1.09e6 1.05e6 1.00e6 9.50e5 9.00e5 8.50e5 8.00e5 7.50e5 7.00e5 6.50e5 Intensity, cps 6.00e5 5.50e5 5.00e5 4.50e5 4.00e5 3.50e5 3.00e5 2.50e5 2.00e5 1.50e5 1.00e5 5.00e4 XIC of +MRM (6 pairs): 278.0/117.2 Da ID: Amitryptyline from Sample 3 (gradient_accucore_aq_30c_01) of AccuCore Max. eval 8.1e5 FINAL.wiff cps. (... 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 Time, min 1.27 45

0.65ml/min 1µL injection Shimadzu HPLC MS/MS detect 35 C Time %B 0.1 20 1.20 90 1.8 90 1.85 20 2.4 20 Accucore aq, 2.1mm*50mm 1.10e6 1.05e6 1.00e6 9.50e5 9.00e5 8.50e5 8.00e5 7.50e5 7.00e5 6.50e5 Intensity, cps 6.00e5 5.50e5 5.00e5 4.50e5 4.00e5 3.50e5 3.00e5 2.50e5 2.00e5 1.50e5 1.00e5 5.00e4 XIC of +MRM (6 pairs): 278.0/117.2 Da ID: Amitryptyline from Sample 4 (gradient_accucore_aq_35c_01) of AccuCore Max. eval 8.3e5 FINAL.wiff cps. (... 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 Time, min 1.25 46

0.65ml/min 1µL injection Shimadzu HPLC MS/MS detect 40 C Time %B 0.1 20 1.20 90 1.8 90 1.85 20 2.4 20 Accucore aq, 2.1mm*50mm XIC of +MRM (6 pairs): 278.0/117.2 Da ID: Amitryptyline from Sample 5 (gradient_accucore_aq_40c_01) of AccuCore Max. eval 8.4e5 FINAL.wiff cps. (... 1.20e6 1.15e6 1.10e6 1.05e6 1.00e6 9.50e5 9.00e5 8.50e5 1.24 8.00e5 7.50e5 7.00e5 6.50e5 6.00e5 5.50e5 5.00e5 4.50e5 4.00e5 3.50e5 3.00e5 2.50e5 2.00e5 1.50e5 1.00e5 5.00e4 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 Time, min Intensity, cps 47

0.65ml/min 1µL injection Shimadzu HPLC MS/MS detect 45 C Time %B 0.1 20 1.20 90 1.8 90 1.85 20 2.4 20 Accucore aq, 2.1mm*50mm XIC of +MRM (6 pairs): 278.0/117.2 Da ID: Amitryptyline from Sample 6 (gradient_accucore_aq_45c_01) of AccuCore Max. eval 9.4e5 FINAL.wiff cps. (... 1.28e6 1.25e6 1.20e6 1.15e6 1.10e6 1.05e6 1.00e6 9.50e5 1.24 9.00e5 8.50e5 8.00e5 7.50e5 7.00e5 6.50e5 6.00e5 5.50e5 5.00e5 4.50e5 4.00e5 3.50e5 3.00e5 2.50e5 2.00e5 1.50e5 1.00e5 5.00e4 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 Time, min Intensity, cps 48

0.65ml/min 1µL injection Shimadzu HPLC MS/MS detect 50 C Time %B 0.1 20 1.20 90 1.8 90 1.85 20 2.4 20 Accucore aq, 2.1mm*50mm XIC of +MRM (6 pairs): 278.0/117.2 Da ID: Amitryptyline from Sample 7 (gradient_accucore_aq_50c_01) of AccuCore Max. eval 9.0e5 FINAL.wiff cps. (... 1.28e6 1.25e6 1.20e6 1.15e6 1.10e6 1.05e6 1.00e6 9.50e5 1.23 9.00e5 8.50e5 8.00e5 7.50e5 7.00e5 6.50e5 6.00e5 5.50e5 5.00e5 4.50e5 4.00e5 3.50e5 3.00e5 2.50e5 2.00e5 1.50e5 1.00e5 5.00e4 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 Time, min Intensity, cps 49

Accucore aq, 2.1mm*50mm 0.65ml/min 1µL injection 1.4e6 1.3e6 1.2e6 XIC of +MRM (6 pairs): 278.0/117.2 Da ID: Amitryptyline from Sample 8 (gradient_accucore_aq_55c_01) of AccuCore Max. eval 9.6e5 FINAL.wiff cps. (... Shimadzu HPLC 1.1e6 MS/MS detect 1.0e6 9.0e5 1.22 55 C Time %B 0.1 20 1.20 90 1.8 90 1.85 20 2.4 20 Intensity, cps 8.0e5 7.0e5 6.0e5 5.0e5 4.0e5 3.0e5 2.0e5 1.0e5 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 Time, min 50

Accucore aq, 2.1mm*50mm 0.65ml/min 1µL injection 1.5e6 1.4e6 1.3e6 XIC of +MRM (6 pairs): 278.0/117.2 Da ID: Amitryptyline from Sample 9 (gradient_accucore_aq_60c_01) of AccuCore Max. eval 9.4e5 FINAL.wiff cps. (... Shimadzu HPLC MS/MS detect 60 C Time %B 0.1 20 1.20 90 1.8 90 1.85 20 2.4 20 Intensity, cps 1.2e6 1.1e6 1.0e6 9.0e5 8.0e5 7.0e5 6.0e5 5.0e5 4.0e5 3.0e5 2.0e5 1.0e5 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 Time, min 1.22 51

1ml/min 1µL injection Shimadzu HPLC MS/MS detect 60 C Time %B 0.1 20 1.20 90 1.8 90 1.85 20 2.4 20 Accucore aq, 2.1mm*50mm XIC of +MRM (6 pairs): 278.0/117.2 Da ID: Amitryptyline from Sample 11 (gradient_accucore_aq_60c_1ml-min_01) of Max. AccuCore 8.6e5 cps. eval F... 1.25e6 1.20e6 1.15e6 1.10e6 1.05e6 1.00e6 9.50e5 9.00e5 0.96 8.50e5 8.00e5 7.50e5 7.00e5 6.50e5 6.00e5 5.50e5 5.00e5 4.50e5 4.00e5 3.50e5 3.00e5 2.50e5 2.00e5 1.50e5 1.00e5 5.00e4 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 Time, min Intensity, cps 52

Accucore aq, 2.1mm*50mm 1ml/min 1µL injection Shimadzu HPLC MS/MS detect 60 C XIC 305.0/221.1 Time %B 0.1 20 1.20 90 1.8 90 1.85 20 2.4 20 Intensity, cps 4.2e5 4.0e5 3.8e5 3.6e5 3.4e5 3.2e5 3.0e5 2.8e5 2.6e5 2.4e5 2.2e5 2.0e5 1.8e5 1.6e5 1.4e5 1.2e5 1.0e5 8.0e4 6.0e4 4.0e4 2.0e4 XIC of +MRM (6 pairs): 305.0/221.1 Da ID: CPDPX from Sample 11 (gradient_accucore_aq_60c_1ml-min_01) of AccuCore Max. 4.2e5 eval cps. FINAL... 1.06 1.8 second peak width at baseline 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 Time, min 53

Outline Isocratic and gradient evaluation on C18 Multiple analyte evaluation on aq Temperature effect on aq separations Selectivity comparison between columns 54

Typical bonded phases for Reversed-Phase LC Alkyl chain: C18, C8, C4, C1 same selectivity, decreasing degree of hydrophobicity/retention Dispersive interactions Aromatic groups Phenyl, Phenyl-Hexyl, perfluorinated Dipole-dipole, π-π, hydrogen-bonding interactions Other Cyanos, aminos, polar embedded Dipole-dipole, hydrogen-bonding interactions Perfluorinated 55

Phase Characteristics HR HS SS HBC BA C IEX(7.6) AI IEX(2.7) K Pentylbenzene α Butylbenzene / Pentylbenzene α Triphenylene / o-terphenyl α Caffeine / Phenol tf Amitripyline tf Quinizarin α Benzylamine / Phenol tf 4-Chlorocinnamic acid α Benzylamine / Phenol Hydrophobic Interactions Hydrophobic retention Secondary Interactions Base activity Acidic Interactions Acid interaction HR BA AI Hydrophobic Chelation Ion exchange selectivity capacity ph 2.7 HS C IEX (2.7) Steric selectivity Ion exchange capacity (ph 7.6) SS IEX (7.6) Hydrogen bonding capacity HBC 56

Accucore HPLC Columns Phase Details RP-MS Optimized for MS detection, excellent combination of speed and quality of separation Phenyl-Hexyl Unique selectivity for aromatic and moderately polar analytes L11 C18 Optimum retention for non-polar analytes PFP Alternative selectivity to C18, particularly for halogenated analytes aq Compatible with 100% aqueous mobile phases, special selectivity for polar analytes HILIC Enhanced Retention of polar and hydrophilic analytes Guard Columns Available! 57

Accucore Phenyl-Hexyl, 2.1mm*50mm 0.65ml/min 1.7e6 XIC of +MRM (7 pairs): 278.0/117.2 Da ID: Amitryptyline from Sample 2 (Accucore_phenyl-hexyl_001) of Accurcore_selectivity.wiff Max. 2.7e5 cps. (Turb... Loperamide 4µL injection Shimadzu HPLC MS/MS detect 1.6e6 1.5e6 1.4e6 1.3e6 1.2e6 1.1e6 Mebendazole 30 C Time %B 0.15 20 1.20 90 2.0 90 2.05 20 2.70 20 Intensity, cps 1.0e6 9.0e5 8.0e5 7.0e5 6.0e5 5.0e5 4.0e5 3.0e5 2.0e5 1.0e5 Protryptyline Amitryptyline 1.15 DPCPX 0.0 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 Time, min 58

Accucore PFP, 2.1mm*50mm 0.65ml/min 4µL injection Shimadzu HPLC MS/MS detect 30 C Time %B 0.15 20 1.20 90 2.0 90 2.05 20 2.70 20 Intensity, cps 1.7e6 1.7e6 1.6e6 1.5e6 1.4e6 1.3e6 1.2e6 1.1e6 1.0e6 9.0e5 8.0e5 7.0e5 6.0e5 5.0e5 4.0e5 3.0e5 2.0e5 1.0e5 XIC of +MRM (7 pairs): 278.0/117.2 Da ID: Amitryptyline from Sample 4 (Accucore_PFP_001) of Accurcore_selectivity.wiff Max. (Turbo 200.0 Spray... cps. 0.0 DPCPX Mebendazole Protryptyline, amitryptyline and loperamide are highly retained and elute in subsequent injections 1.33 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 Time, min 59

Accucore C18, 2.1mm*50mm 0.65ml/min 4µL injection Shimadzu HPLC MS/MS detect 30 C Time %B 0.15 20 1.20 90 2.0 90 2.05 20 2.70 20 Intensity, cps 1.9e6 1.8e6 1.7e6 1.6e6 1.5e6 1.4e6 1.3e6 1.2e6 1.1e6 1.0e6 9.0e5 8.0e5 7.0e5 6.0e5 5.0e5 4.0e5 3.0e5 2.0e5 1.0e5 XIC of +MRM (7 pairs): 278.0/117.2 Da ID: Amitryptyline from Sample 6 (Accucore_C18_001) of Accurcore_selectivity.wiff Max. (Turbo 2.7e5 Spray) cps. 0.0 Mebendazole Protryptyline Amitryptyline 1.24 Loperamide DPCPX 1.45 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 Time, min 60

Accucore aq, 2.1mm*50mm 0.65ml/min 4µL injection Shimadzu HPLC 1.9e6 1.8e6 1.7e6 1.6e6 1.5e6 XIC of +MRM (7 pairs): 278.0/117.2 Da ID: Amitryptyline from Sample 8 (Accucore_aQ_001) of Accurcore_selectivity.wiff Max. (Turbo 4.3e5 Spray) cps. Mebendazole Loperamide is a late eluter and elutes well after the gradient MS/MS detect 30 C Time %B 0.15 20 1.20 90 2.0 90 2.05 20 2.70 20 Intensity, cps 1.4e6 1.3e6 1.2e6 1.1e6 1.0e6 9.0e5 8.0e5 7.0e5 6.0e5 5.0e5 4.0e5 3.0e5 2.0e5 1.0e5 0.0 DPCPX Protryptyline Amitryptyline 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 Time, min 1.53 61

Quest ions 62