NCMA TEK TEK 19-5A FLASHING DETAILS FOR CONCRETE MASONRY WALLS

Similar documents
Commercial Flashing Details

NCMA TEK RESIDENTIAL DETAILS FOR HIGH WIND AREAS. TEK 5-11 Details (2003)

Water Penetration Resistance - Design and Detailing

CONCRETE MASONRY VENEERS TEK 3-6C

2002 Advanced Building Products, Inc., P.O. Box 98, Springvale, Maine TEL: ; FAX: ; WEBSITE:

WeatherSmart Air Barrier Installation Guide

INSTALLING WATER-RESISTIVE BARRIERS & FLASHING

DIVISION 04 MASONRY. Section Title Number MASONRY Maintenance of Masonry Masonry Mortaring Masonry Accessories

KARRIER PANEL - BRICK

Masonry movement joints

HYBRID CONCRETE MASONRY CONSTRUCTION DETAILS. TEK 3-3B Construction (2009) Related TEK: 14-9A

MASONRY. masonry wall construction. chapter 10 SUBJECT

Technical Notes 11B - Guide Specifications for Brick Masonry, Part 3 Rev [Feb. 1972] (Reissued Sept. 1988) INTRODUCTION

A n c h o r a g e. M o v e m e n t. M o i s t ur e A SYSTEMS APPROACH TO THE DESIGN AND EXECUTION OF MASONRY CAVITY AND VENEER WALL SYSTEMS

Ultra Wall System. CAD Detail Sets

Water Penetration Resistance Design and Detailing

ALLOWABLE STRESS DESIGN OF CONCRETE MASONRY LINTELS. TEK 17-1C Structural (2009) Related TEK: Uniform load. Triangular load. Concentrated loads

DENVER PUBLIC SCHOOLS DESIGN AND CONSTRUCTION STANDARDS This Standard is for guidance only. SECTION MORTAR AND MASONRY GROUT

BUILDING ENVELOPE DESIGN GUIDELINES APPENDIX 3

DESIGN TIPS TECHNICAL BULLETIN #47 FLASHING, WEEP HOLES AND RELATED ANCHORAGE [1 of 8]

WALL SYSTEMS ( Ref: The Building Illustrated, Ching, Francis DK )

EIFS Rain Control EIFS. Face Sealed Perfect Barrier. Beware of EIFS: They must be done correctly They leak at joints Avoid moist sensitive substrate

Design Tips Technical Bulletin #47

Accommodating Expansion of Brickwork

Design Tips Technical Bulletin #47

Stone and Masonry Veneer

SECTION UNIT MASONRY SYSTEM

A. JANDRIS & SONS Guide Specifications in CSI Format SECTION CONCRETE UNIT MASONRY

Design and Construction Standards SECTION REINFORCED UNIT MASONRY

AIA Disclaimer Notice

The better way to build TM. Installation Manual NAILBASE PANELS

SECTION SELF-ADHERING SHEET FLASHING

ELEVATION FOR DETAIL REFERENCE ONLY

DIVISION 04 MASONRY CAST STONE. A. Design Considerations. 1. Cast stone shall comply with ASTM C1364, Standard Specification for Cast Stone.

Senergy Platinum CI Stucco Typical details for an impact resistant cement plaster stucco system featuring Neopor GPS Plus Rigid Insulation Board

Anchor bolts ASTM F1554, Gr. 36 Wide flange beams ASTM A992, Fy = 50 ksi Misc. structural steel ASTM A36, Fy = 36 ksi

Light-Metal Roof Edge, Raised

CAVITY WALLS. Design Guide for Taller Cavity Walls

Brick Masonry. Best Practices Guide

Framing Methods Structural Components

Table 3. Detailed Comparison of Structural Provisions of IRC 2000 and 1997 NEHRP (Continued)

MASONRY DETAILING SCHOOL OF ARCHITECTURE AND PLANNING: MIT. Shelf Angles. Image by MIT OCW.

12 - V0 CFP-12 PANEL INDEX. Delta Series CONCEALED FASTENED PANELS BUILDING PRODUCTS VERTICAL PANELS

Details for Exterior Brick Masonry Veneer Supported by Metal Plate Connected Wood Trusses

SECTION FLEXIBLE FLASHING SYSTEM FOR MASONRY VENEER

50948-RHN Putney. 06 January This document includes: F30. Accessories/ sundry items for brick/ block/ stone walling. Code Section Revision Dated

ROOF DETAIL RD-16 CONSTRUCTION DOCUMENTS - PHASE / PENNSYLVANIA HOUSING FINANCE AGENCY/ MAY 22, 2017 MURRAY ASSOCIATES ARCHITECTS, P.C.

DIVISION 04 MASONRY. Number MASONRY Maintenance of Masonry Masonry Mortaring Masonry Accessories

DIVISION 04 MASONRY. Number MASONRY Maintenance of Masonry Masonry Mortaring Masonry Accessories

DIVISION 04 MASONRY. Number MASONRY Maintenance of Masonry Masonry Mortaring Masonry Accessories

PERM-A-BARRIER VPS. Product Description. Product Data Sheets. Self-adhering vapor permeable air and water barrier membrane

WHATEVER THE CHALLENGE, PHILLIPS HAS YOU COVERED.

Building Envelope Enclosures That Work, What Owners Want!

Brick Veneer / Wood Stud Walls

TECHNICAL SPECIFICATIONS

Acrocrete Platinum CI Stucco Typical details for an impact resistant cement plaster stucco system featuring Neopor rigid insulation board

Composite / Veneer Units. Precision...1. Split Face... 2

EXTERIOR WALLS. exterior wall systems, cladding w/ masonry. chapters SUBJECT

Insulation. First Revison October DC14 Drainage Mat INSTALLATION GUIDE FOR RESIDENTIAL & COMMERCIAL APPLICATIONS

SUBJECT: NEW 2000 INTERNATIONAL RESIDENTIAL CODE (IRC) DATE:

Pebbletex Wall System Class PB Exterior Insulation and Finish System providing a primary moisture barrier. Typical Details

INSULATED CONCRETE MASONRY UNITS Section 04220

AcroWall-ES System. Class PB Exterior Insulation and Finish System providing a primary moisture barrier. Typical Details

Technical Notes 28 - Anchored Brick Veneer, Wood Frame Construction Rev August 2002

Contents. 1.1 Introduction 1

Finestone Platinum CI Stucco Typical details for an impact resistant cement plaster stucco system featuring Neopor rigid insulation board

Concrete Block Machines Typical Fixed Block Machine

ELEVATION FOR DETAIL REFERENCE ONLY

Product Brochure. Masonry Drainage and Ventilation Products

GCP APPLIED TECHNOLOGIES PERM-A-BARRIER VPL 50

Senturion TM I Wall System

3. Aesthetic Groove. 5. Window Head (Flush) 6. Window Head (Recessed) 7. Window Jamb Detail (Flush) 8. Window Jamb Detail (Recessed)

SC-01 Cross-Section. Cement Board Substrate Master Wall Mesh and Base Coat Superior Finish

MID-RISE DESIGN & CONSTRUCTION

Design No. HI/BP PERIMETER FIRE BARRIER SYSTEM Hilti, Inc. ASTM E 2307 Table 1

Magnum Board Coatings

The better way to build TM. Installation Manual FOUNDATION SIPs & FROST WALLS SIPs

SECTION UNIT MASONRY

Acrocrete Platinum CI Stucco Ultra Typical details for a premium impact and puncture resistant rain screen design cement plaster stucco system

TYPICAL ROOF CONDITION LAYOUT

1.02 STANDARD REFERENCES: The following standard specifications shall apply to the Work of this Section as indicated:

Exterior Brick Masonry Veneer Supported by Metal Plate Connected Wood Trusses (MPCWT) Design Guide Revised 11/17/2016

WARRANTY PROVIDER ACCEPTED A REFERENCE GUIDE OF TYPICAL RAINSCREEN WALL AND WINDOW DETAILS

FACE CFP - HORIZONTAL PANELS - OPTION 'B'

ROOF DETAILS RD-0 CONSTRUCTION DOCUMENTS - AGENCY/ FEBRUARY 13, 2017 MURRAY ASSOCIATES ARCHITECTS, P.C.

1 Exam Prep Architectural Sheet Metal Manual Tabs and Highlights

Perm-A-Barrier VPS (Vapor Permeable Sheet)

Hunter Xci Polyiso Installation Guide

BRICK CONSTRUCTION DETAILS

SECTION WOOD FRAMING. A. Includes But Not Limited To 1. Furnish and install wood framing and blocking as described in Contract Documents.

Exterior Brick Masonry Veneer Supported by Metal Plate Connected Wood Trusses (MPCWT) Overview Revised 11/17/2016

Polyiso Used As An Air Barrier

Architectural Technology V 1 MASONRY

Parapet Walls What Are They Good For?

CHIMNEYS AND FIREPLACES

ASD OF CONCRETE MASONRY LINTELS BASED ON THE 2012 IBC/2011 MSJC. TEK 17-1D Structural (2011) Related TEK: 14-7C, 14-13B, 17-1C, 17-2A

REINFORCED CONCRETE MASONRY SECTION

The Forum Addendum 1 December 29, 2016 Rome Georgia (Ballroom and Concessions Package) SECTION UNIT MASONRY

MAttheW novesky, ra. Wiss, JaNNey, elstner associates, inc.

Technical Notes 24G - The Contemporary Bearing Wall - Detailing [Dec. 1968] (Reissued Feb. 1987) INTRODUCTION

Transcription:

NCMA TEK National Concrete Masonry Association an information series from the national authority on concrete masonry technology FLASHING DETAILS FOR CONCRETE MASONRY WALLS TEK 19-5A Water Penetration Resistance (2008) Keywords: cavity filter, cavity walls, construction details, corner flashing, end dams, flashing, moisture, parapet flashing, single wythe walls, splicing flashing, vents, weep holes INTRODUCTION At critical locations throughout a building, moisture that manages to penetrate a wall is collected and diverted to the outside by means of flashing. The type of flashing and its installation may vary depending upon exposure conditions, opening types, locations and wall types. This TEK includes typical flashing details that have proven effective over a wide geographical range. The reader is also encouraged to review the companion TEK 19-4A Strategies for Concrete Masonry Walls (ref. 1) which addresses the effect of moisture on masonry, design considerations, flashing materials, construction practices, and maintenance of flashing. CAVITY WALLS For cavity walls, as illustrated in Figure 1, the cavity typically ranges from a minimum of 2 in. to a maximum of 4 ½ in. (25 to 114 mm) wide, with a minimum of a 1 in. (25 mm) clear airspace if rigid insulation is placed in the cavity. Cavities wider than 4 ½ in. (114 mm) are permitted only if a detailed analysis is performed on the wall ties per the International Building Code and Building Code Requirements of Masonry Structures (refs. 2, 3) The 1 in. (25 mm) clear airspace works only if the mason takes precautions to insure that mortar will not bridge the airspace. Such precautions would include beveling the mortar 2 in. (51 mm) min. to 4 1 2 in. (114 mm) max. cavity 1 in. (25 mm) min. clear airspace Concrete masonry veneer Wall ties Cavity filter or other mortar collection device Weep holes or partially open head joints at 32 in. (813 mm) o.c. max Brick ledge or foundation bed away from the cavity or drawing a piece of wood up the cavity to collect mortar droppings. If precautions are not taken, it is suggested that a wider airspace be utilized, i.e. 1½ to 2 in (38 to 51 mm). Also when using glazed masonry veneer, a 2 in. (51 mm) minimum airspace is recommended with air vents provided at the top and bottom of the wall because of the impermeable nature of the unit. Proprietary insulated drainage boards or mats are available that provide an unobstructed Vapor retarder (per local practice) Figure 1 Cavity Walls at Foundations Closed cell rigid insulation 16 x 96 in. (406 x 2,438 mm) between wall ties Tuck flashing into mortar joint (alternative, provide sealant at top of flashing or use self adhering flashing) TEK 19-5A 2008 National Concrete Masonry Association (replaces TEK 19-5)

2 in. (51 mm) min. to 4 1 2 in. (114 mm) max. cavity 1 in. (25 mm) min. clear airspace Wall ties Cavity filter or other mortar collection device Weep holes or partially open head joints at 32 in. (813 mm) o.c. max Steel shelf angle Min. slope 15 Concrete masonry sill units or precast concrete sill with drip Weeps at 32 in. (813 mm) o.c. 1 1 2 in. (38 mm) min. Air space, 1 in. (25 mm) min. Insulation, as required Wall ties Vapor retarder, per local practice Vapor retarder (per local practice) Figure 2 Cavity Walls at Bond Beam Locations NOTE: Rake out vertical joints where masonry units butt up to window jambs and fill with sealant Figure 3 Cavity Walls at Sills Closed cell rigid insulation 16 x 96 in. (406 x 2,438 mm) between wall ties Tuck flashing into mortar joint (alternative, provide sealant at top of flashing or use self adhering flashing) Reinforced CMU lintel Window Window frame Sealant and backer rod One piece flashing membrane Solid concrete masonry unit or inverted solid bottom lintel unit Sealant (below flashing only) Unit 2 in. (51 mm) thicker than units above and below to support sill drainage path that eliminate the need for a clear airspace (ref. 4). As shown in Figure 1, the flashing in a cavity wall at the intersection of the foundation should be sealed to the exterior faceshell of the backup wythe, project downward to the foundation surface, outward to the exterior face of the wall, and terminate with a sloped drip. Weep holes or open head joints should be located a maximum of 32 in. (813 mm) apart. at lintels and sills (shown in Figures 2 and 3, respectively) is very similar. Although not shown, vents can be installed in the vertical head joints at the top of masonry walls to provide natural convective air flow within the cavity to facilitate drying. Prefabricated flashing boots available for both single and multiwythe walls are shown in Figure 7. SINGLE WYTHE WALLS s in single wythe walls, like cavity walls should be positioned to direct water to the exterior. This is normally accomplished using two narrower units to make up the thickness of the wall and placing flashing between them as shown in Figures 4 and 8. Care should be exercised to insure that surfaces supporting the flashing are flat or are sloping to the exterior. This can be accomplished by using solid units, lintel or closed bottom bond beam units turned upside down similar to Figure 3, or by filling cells of hollow units with mortar or grout. of single wythe walls at lintels, foundations, and bond beams is accomplished in the same manner as shown in Figure 4 while sills are shown in Figure 6. Throughwall flashing is used in many areas of the country as shown in Figure 9. However, the bond-breaking effects of this type of detail need to be evaluated in regard to the structural performance of the wall. Additional information for flashing singlewythe walls, particularly architectural concrete masonry walls, and means for providing a higher level of structural continuity at flashings is contained in TEK 19-2A (ref. 5).

Cavity fill or other mortar collection device 1 in. (25 mm) partially open "L" shaped head joints for weeps at 32 in. (813 mm) o.c., max Stop flashing at inside of faceshell 4 in. (102 mm) unit (solid or filled) to support flashing Hooked shear bar grouted in slab keyway Topping as required Flexible flashing material Grout at location of shear bar Bond beam Mesh or other grout stop device Concrete masonry wall Precast hollowcore slab Bearing strip Hooked bar in wall at shear bar (not required if vertical reinforcement at this location) Metal flashing with drip edge 1 in. min. (25 mm) Figure 4 Single Wythe Walls Figure 5 Two-Piece Detail Min. slope 15 Concrete masonry sill units or precast concrete sill (if longer than 48 in. (1,219 mm) dowel as required) Weep holes 24 in. (610 mm) o.c. 1 1 / 2 in. (38 mm) min. Window frame Sealant 4 in. (102 mm) CMU (solid or filled) to support flashing Sealant (below flashing only) Solid or filled CMU or inverted lintel unit to support flashing NOTE: Rake out vertical joints where masonry units butt up to window jambs and fill with sealant Figure 6 Single Wythe Walls at Sills

Inside corner Outside corner End dam One piece flashing 8 in. (203 mm) CMU (cut) Joist Layout using modular dimensions Seal or solder Figure 7 Prefabricated Boots Figure 8a Isometric of Around End of Joist (ref. 6) Continuous sealant Smooth face unit for top course suggested Cavity filter or other motar collection device Sloping sheet metal coping cap with continuous cleat each side Wood nailer with anchor bolts Attachment strip Counter flashing Grout cores solid at anchor bolts Stop flashing at inside of faceshell (see TEK 19-2A) Cant Parapet flashing Sealant Roofing membrane One piece flashing membrane Weep holes or partially open head joints at 32 in. (813 mm) o.c. max Hollow unit (cut) (refer to isometric detail this sheet) Architectural CMU Figure 8 Single Wythe Walls at Roof/Parapet Intersection (ref. 6)

Furring single wythe walls at the ends of bar joists which utilize wall pockets for bearing is shown in Figures 8 and 8a. FLASHINGS AT COPINGS AND CAPS Interior Drywall Vapor retarder Cavity filter or other mortar collection device 2 in. (51 mm) min. Concrete slab Isolation joint Metal NOTE: The structural effect of throughwall flashing must be carefully evaluated. Figure 9 Through-Wall 1 4 in. (6.4 mm) gap in flashing Metal Grade Figure 10 Splicing Metal Weep holes or partially open head joints at 32 in. (813 mm) o.c. max. 4 in. (102 mm) lap min. Fully adhere membrane Step 1 Step 2 Membrane Splice Cross Section The type of flashing detail to use on lowsloped roofs will in part depend on the type of roofing membrane being used. As with any flashing detail, the materials used should result in a uniform and compatible design. For example, joining two materials with significantly different coefficients of thermal expansion (such as metal flashing and bitumen roofing membrane) can cause tearing and failure of the joint. Many roofing membranes also shrink as they age. As a result, roofing membranes extending over the top of a parapet may pull the parapet off the wall as the roofing membrane shrinks. Counter flashing provides a solution to these problems as shown in Figure 8. Counter flashing also facilitates the reroofing process by allowing easy removal and access to the flashing membrane fasteners. During placement of the final courses of masonry in parapets, and commencing with the second course below the coping/cap location, a grout stop should be placed over cores so that grout can be placed for the positioning of anchor bolts (Figure 8). In coping installations it is imperative that penetrations of through-wall flashing be tightly sealed to prevent water infiltration. A full mortar bed is required to be placed on the through-wall flashing to allow proper positioning of coping units. Full head joints are placed between the coping units as well as properly spaced control joints. The joints between the coping units should then be raked and a joint sealant applied. Coping units should be sized such that overhangs and a drip reveal are provided on both sides of the wall. Metal caps require wood plates for anchorage, which in turn are usually attached to the wall with anchor bolts. The cap should be sloped to prevent water from draining onto the exposed surface of the masonry and should extend at least 4 in. (102 mm) over the face of the masonry and sealed on both sides. Smooth face or uniform split face CMU should be considered for use under the cap to ensure a relatively tight fit between the masonry and cap that might be hindered by uneven concrete masonry units such as split-face or fluted units. INTERIOR WALL TREATMENTS Concrete masonry walls with an interior treatment may also utilize a through-wall flashing installation of flashings as shown in Figure

9. However, as noted in the figure, through-wall flashings generally create a bond-breaker, which reduces the structural capacity of a masonry wall. This effect should be carefully evaluated before implementing this type of detail particularly in high-wind and seismic areas. As shown in Figure 9, the flashing should project through the wall and be carried up on the interior concrete masonry surface. Furring strips installed to receive the plastic vapor retarder and the interior gypsum board will hold the flashing in position. This procedure permits any water that may penetrate to the interior surface of the concrete masonry wall to drain out at the base of the wall. Weep holes should project completely through the wall thickness. Vents, if used, should project into the core areas only. SPLICING FLASHING When it is necessary to splice the flashing, extra precautions are required to ensure that these discreet locations do not become sources of water penetration. should be longitudinally continuous or terminated with an end dam as shown in Figure 7. The splicing of flashing materials consisting of plastic and rubber compounds is acheived by overlapping the joint a minimum distance of 4 in. (102 mm). The lapped area is then bonded together with adhesive if the flashing material is not self-adhering. Lap splicing of metal flashing is not recommended as it has a different coefficient of thermal expansion than that of concrete masonry. As the temperature fluctuates, the flashing material will expand and contract differently than the masonry material, which can result in sealant failure and a potential point of entry for moisture. A typical flashing splice is detailed in Figure 10. Here, two sections of sheet metal type flashing that are to be spliced are first installed with a ¼-in. (6.4 mm) gap between them to allow for expansion of the flashing. Next, a section of pliable self-adhering membrane (such as rubberized-asphalt) or other pliable membrane set in mastic is fully bonded to the flashing at the location of the gap. REFERENCES 1. Strategies for Concrete Masonry Walls, TEK 19-4A, National Concrete Masonry Association, 2008. 2. International Building Code. International Code Council, 2003 and 2006. 3. Building Code Requirements for Masonry Structures, ACI 530/ASCE 5/TMS 402, reported by the Masonry Standards Joint Committee, 2002 and 2005. 4....Tying the Loose Ends, Masonry Advisory Council, Chicago, IL, 1998. 5. Design for Dry Single-Wythe Concrete Masonry Walls, TEK 19-2A, National Concrete Masonry Association, 2008. 6. Generic Wall Design, Masonry Institute of Michigan, 1998. Disclaimer: Although care has been taken to ensure the enclosed information is as accurate and complete as possible, NCMA does not assume responsibility for errors or omissions resulting from the use of this TEK. NATIONAL CONCRETE MASONRY ASSOCIATION To order a complete TEK Manual or TEK Index, 13750 Sunrise Valley Drive, Herndon, Virginia 20171 contact NCMA Publications (703) 713-1900 www.ncma.org