Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Similar documents
Chapter 55: Ecosystems

Chapter 55: Ecosystems

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://

Chapter 3 Ecosystem Ecology. Monday, May 16, 16

ECOSYSTEMS. Follow along in chapter 54. *Means less important

Chapter 3 Ecosystem Ecology

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems.

Chapter 3 Ecosystem Ecology. Reading Questions

Ecosystems and the Biosphere Outline

Chapter 34 Nature of Ecosystems. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter

Ecosystems: What Are They and How Do They Work?

We share the Earth. Ecology & Environmental Issues

Chapter 54. Ecosystems. PowerPoint Lectures for Biology, Seventh Edition. Neil Campbell and Jane Reece

Ch. 4 Ecosystems. Biology I Loulousis

The Biosphere Chapter 3. What Is Ecology? Section 3-1

13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment.

Ecosystems and Nutrient Cycles Chapters 3

Chapter 4. Ecosystems

1. Energy to do work 2. Raw material to build/repair things (nutrients)

Ecosystem Ecology for Wildlife Scientists. Don White, Jr., Ph.D.

Ecosystems. Physical Laws Law of Conservation of Energy - Energy can not be created or destroyed, only transformed. Chapter 55: Ecosystems. Fig. 55.

MILLER/SPOOLMAN 17 TH LIVING IN THE ENVIRONMENT. CHAPTER 3 Ecosystems: What Are They and How Do They Work?

Ecosystems: What Are They and How Do They Work? Chapter 3

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

Chapter 3 Reading/Homework Quiz

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

3 3 Cycles of Matter Slide 1 of 33

What Keeps Us and Other Organisms Alive?

Elements essential for life also cycle through ecosystems.

Photosynthesis and cellular respiration A. photosynthesis the process of converting carbon dioxide and water into glucose and oxygen

Section 3 1 What Is Ecology? (pages 63 65)

3 3 Cycles of Matter

13.5. Cycling of Matter. Water cycles through the environment.

Biogeochemical Cycles. {Living World

Summary. 3 1 What Is Ecology? 3 2 Energy Flow. Name Class Date

5/6/2015. Matter is recycled within and between ecosystems.

Chapter 24 Lecture Outline

Autotrophs vs. Heterotrophs

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment.

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

EQ: How are nutrients recycled throughout the environment?

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE

Unit 2: Ecology. Chapters 2: Principles of Ecology

TERRESTRIAL ECOLOGY PART DUEX. Biogeochemical Cycles Biomes Succession

What does each part of the equation mean? q=cm T

3 3 Cycles of Matter. EOC Review

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

BIOL 300 Foundations of Biology Summer 2017 Telleen Lecture Outline. Ecology and Ecosystems

CYCLES OF MATTER NATURAL WORLD

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem?

Nutrient Cycling & Soils

Objectives: Define the term biogeochemical cycles. Compare and contrast how carbon, phosphorus, nitrogen, and water cycle through the environment.

Chapter 55 Ecosystems

Ecosystem. Ecosystems. Consumers. Simple Ecosystem Model. Trophic Levels. Food Chain marsh hawk

LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN. Ecosystems: What Are They and How Do They Work?

AP Biology. Ecosystems

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements.

Ecosystem Ecology: Part 1. September 22, 2014 Mr. Alvarez

Ecology, the Environment, and Us

Ecosystems Full of Matter, Energy, and Entropy

Acid Rain rain with a ph below 5.6; primarily due to the release of nitric and sulfuric oxides into the air from the burning of fossil fuels.

an ecosystem is a community of different species interacting with one another and with their nonliving environment of matter and energy

Name Hour. Section 3-1 What Is Ecology? (pages 63-65) Interactions and Interdependence (page 63) 1. What is ecology?

Chapter 13 Principles of Ecology DAY ONE

Bio 112 Ecology: Final Study Guide

Ecosystems and Restoration Ecology

4/13/2015. The Biosphere

Bio 112 Ecology: Final Practice Exam Multiple Choice

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

Chapter 2. Table of Contents. Section 1 Organisms and Their Releationships. Section 2 Flow of Energy in an Ecosystem. Section 3 Cycling of Matter

Ecosystems & Energy Chapter 5

Ecosystems. Chapter 55. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Interactions in Ecosystems I. Ecosystem. Interactions in Ecosystems I. Ecosystem

UNIT 1 SUSTAINING ECOSYSTEMS

CHAPTER. Evolution and Community Ecology

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Energy. Ecosystem. 2. Energy Transfers. 1. Energy Production. Food Chains. 2. Energy Transfers 9/13/2015. Capacity or ability to do work

COMMUNITY ECOLOGY. Interspecific Interactions. Ecosystems unit

Human Biology. Chapter 23 Global Ecology and Human Interferences Lecture Outline. Sylvia S. Mader Michael Windelspecht

Interest Grabber. Levels Within Levels

Summary. 3-1 What Is Ecology? 3-2 Energy Flow Chapter 3 The Biosphere. Class. Name

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Ecosystems. Studying Organisms In Their Environment. Division Ave. High School AP Biology. organism. population. community. ecosystem.

AP Biology. Ecosystems

Studying organisms in their environment

Ecology Part 2. Living Environment

BIOLOGY. Ecosystems and Restoration Ecology CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

THE CYCLING OF NUTRIENTS

Biogeochemical Cycles. Nutrient cycling at its finest!

Studying organisms in their environment

What is Ecology? Abiotic (non-living) Biotic (living)

Ecology Review. Name: Date: Period:

Niche and Habitat a species plays in a community. What it does all

NUTRIENT CYCLES REVIEW

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

COMMUNITIES & ECOSYSTEMS. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted

What is Ecology? Includes land, air, and water as well as life. Living organisms are NOT distributed uniformly throughout the biosphere.

Transcription:

Chapter 3 Ecosystem Ecology

Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract the deforestation. What is the president s goal?

Module 6 The Movement of Energy After reading this module you should be able to explain the concept of ecosystem boundaries. describe the processes of photosynthesis and respiration. distinguish among the trophic levels that exist in food chains and food webs. quantify ecosystem productivity. explain energy transfer efficiency and trophic pyramids.

Ecosystem boundaries are not clearly defined Some ecosystems, such as a caves and lakes, have very distinctive boundaries. However, in most ecosystems it is difficult to determine where one ecosystems stops and the next begins. Even though it is helpful to distinguish between two different ecosystems, ecosystems interact with other ecosystems. Biosphere The region of our planet where life resides; the combination of all ecosystems on Earth.

Ecosystem Boundaries See Activity Large and small ecosystems. (a) The Greater Yellowstone Ecosystem includes the land within Yellowstone National Park and many adjacent properties. (b) Some ecosystems are very small, such as a rain-filled tree hole that houses a diversity of microbes and aquatic insects.

In your own words, keep it simple What is Photosynthesis? Why is it important? What is Cell Respiration? Why is it important?

Photosynthesis captures energy and respiration releases energy Producer An organism that uses the energy of the Sun to produce usable forms of energy. Also known as Autotroph. Photosynthesis The process by which producers use solar energy to convert carbon dioxide and water into glucose. Cellular respiration The process by which cells unlock the energy of chemical compounds. Aerobic respiration The process by which cells convert glucose and oxygen into energy, carbon dioxide, and water. Anaerobic respiration The process by which cells convert glucose into energy in the absence of oxygen.

Photosynthesis and Respiration * Photosynthesis and respiration. Photosynthesis is the process by which producers use solar energy to convert carbon dioxide and water into glucose and oxygen. Respiration is the process by which organisms convert glucose and oxygen into water and carbon dioxide, releasing the energy needed to live, grow, and reproduce. All organisms, including producers, perform respiration.

Energy captured by producers moves through many trophic levels Consumer An organism that is incapable of photosynthesis and must obtain its energy by consuming other organisms. Also known as Heterotroph. Herbivore A consumer that eats producers. Also known as Primary consumer. Carnivore A consumer that eats other consumers. Secondary consumer A carnivore that eats primary consumers. Tertiary consumer A carnivore that eats secondary consumers. Trophic levels The successive levels of organisms consuming one

Trophic Levels Simple food chains. A simple food chain that links producers and consumers in a linear fashion illustrates how energy and matter move through the trophic levels of an ecosystem. (a) An example of a terrestrial food chain. (b) An example of an aquatic food chain.

Trophic levels Food web A complex model of how energy and matter move between trophic levels. Scavenger An organism that consumes dead animals. Detritivore An organism that specializes in breaking down dead tissues and waste products into smaller particles. Decomposers Fungi and bacteria that convert

Trophic Levels A simplified food web. Food webs are more realistic representations of trophic relationships than simple food chains. They include scavengers, detritivores, and decomposers, and they recognize that some species feed at multiple trophic levels. Arrows indicate the direction of energy movement. This is a real but somewhat simplified food web; in an actual ecosystem, many more organisms are present. In addition, there are many more energy movements.

Some ecosystems are more productive than others Gross primary productivity (GPP) The total amount of solar energy that producers in an ecosystem capture via photosynthesis over a given amount of time. Net primary productivity (NPP) The energy captured by producers in an ecosystem minus the energy producers respire.

Ecosystem Productivity Gross and net primary productivity. Producers typically capture only about 1 percent of available solar energy via photosynthesis. This is known as gross primary productivity, or GPP. About 60 percent of GPP is typically used for respiration. The remaining 40 percent of GPP is used for the growth and reproduction of the producers. This is known as net primary productivity, or NPP.

Open ocean 125 65.0 24.4 Continental shelf 5.2 360 5.6 Estuary 0.3 1,500 1.2 Algal beds and reefs 0.1 2,500 0.9 Upwelling zones 0.1 500 0.1 Extreme desert, rock, sand, ice 4.7 3.0 0.04 Desert and semidesert scrub Tropical rain forest 3.5 3.3 90 2,200 0.9 22 Savanna 2.9 900 7.9 Cultivated land 2.7 600 9.1 Boreal forest (taiga) 2.4 800 9.6 Temperate grassland 1.8 600 5.4 Woodland and shrubland 1.7 700 3.5 Tundra 1.6 140 0.6 Tropical seasonal forest 1.5 1,600 7.1 Temperate deciduous forest 1.3 1,200 4.9 Temperate evergreen forest 1.0 1,300 3.8 Swamp and marsh 0.4 2,000 2.3 Lake and stream 0.4 250 0.3 Key Marine 0 10 20 30 40 50 60 0 500 1,000 1,500 2,000 2,500 0 5 10 15 20 25 Percentage of Earth s net primary production Terrestrial Freshwater (on continents)

Calculating GPP A forest has NPP of... 1.4 kilogram Carbon/meters 2 /year and The rate of cellular respiration of... 2.4 kilogram Carbon/meters 2 /year NPP = GPP - cellular respiration

* Microorganisms and other detritivores Tertiary consumers Secondary consumers Detritus Primary consumers Primary producers Key Heat Chemical cycling Sun Energy flow Energy Flow Through Ecosystems& Matter Cycles Within Ecosystems

The efficiency of energy transfer affects the energy present in each trophic level Biomass The total mass of all living matter in a specific area. Standing crop The amount of biomass present in an ecosystem at a particular time. Ecological efficiency The proportion of consumed energy that can be passed from one trophic level to another. (usually 5-20%, average 10%) Trophic pyramid A representation of the distribution of biomass, numbers, or energy among trophic levels.

Using the Pyramid of Energy, complete the table below Hawks Foxes Rabbits Grass 100,000 kcal Between Trophic Levels Percentage of Energy Efficiency Energy in kcals that moves to the next trophic level? Calculation Rounded Answer Grass to Rabbits 12% Energy Efficiency Rabbits to Foxes 1,680 Foxes to Hawks 8% Energy Efficiency

Ecosystem Efficiency Most Susceptible to Extinction? Trophic pyramid for the Serengeti ecosystem. The amount of energy that is present at each trophic level is shown in joules (J). The pyramid assumes 10 percent ecological efficiency, but efficiencies can range from 5 to 20 percent across different ecosystems. For most ecosystems, graphing the numbers of individuals or biomass within each trophic level would produce a similar pyramid.

Module 6 Do Module 6 AP Review Questions Discuss

Module 7 The Movement of Matter Tertiary consumers Microorganisms and other detritivores Secondary consumers Detritus Primary consumers Primary producers Key Heat Chemical cycling Energy flow Sun

Module 7 The Movement of Matter After reading this module you should be able to describe how water cycles within ecosystems. explain how carbon cycles within ecosystems. describe how nitrogen cycles within ecosystems. explain how phosphorus cycles within ecosystems. discuss the movement of calcium, magnesium, potassium, and sulfur within ecosystems.

The hydrologic cycle moves water through the biosphere Biogeochemical cycle The movements of matter within and between ecosystems. Hydrologic cycle or Water Cycle The movement of water through the biosphere.

The Hydrologic Cycle The Sun is the engine of the water cycle The hydrologic cycle. Water moves from the atmosphere to Earth s surface and back to the atmosphere.

The Hydrologic Cycle Transpiration The release of water from leaves during photosynthesis. Evapotranspiration The combined amount of evaporation and transpiration. Runoff Water that moves across the land surface and into streams and rivers. Human activities effect the water cycle!

Do The Math

The carbon cycle moves water between air, water, and land Carbon cycle The movement of carbon around the biosphere.

The Carbon Cycle The carbon cycle. Producers take up carbon from the atmosphere via photosynthesis and pass it on to consumers and decomposers. Some inorganic carbon sediments out of the water to form sedimentary rock while some organic carbon may be buried and become fossil fuels. Respiration by organisms returns carbon to the atmosphere and water. Combustion of fossil fuels and other organic matter returns carbon to the atmosphere.

The nitrogen cycle includes many chemical transformations Macronutrient One of six key elements that organisms need in relatively large amounts: nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur. Limiting nutrient A nutrient required for the growth of an organism but available in a lower quantity than other nutrients. Nitrogen cycle The movement of nitrogen

The Nitrogen Cycle Nitrogen fixation A process by which some organisms can convert nitrogen gas molecules directly into ammonia. Nitrification The conversion of ammonia (NH 4+ ) into nitrite (NO 2 ) and then into nitrate (NO 3 ). Assimilation The process by which producers incorporate elements into their tissues.

The Nitrogen Cycle Mineralization The process by which fungal and bacterial decomposers break down the organic matter found in dead bodies and waste products and convert it into inorganic compounds. Ammonification The process by which fungal and bacterial decomposers break down the organic nitrogen found in dead bodies and waste products and convert it into inorganic ammonium (NH 4+ ). Denitrification The conversion of nitrate (NO 3 ) in a series of steps into the gases nitrous oxide (N 2 O) and, eventually, nitrogen gas (N2), which is emitted into the atmosphere.

The Nitrogen Cycle The nitrogen cycle. The nitrogen cycle moves nitrogen from the atmosphere and into soils through several fixation pathways, including the production of fertilizers by humans. In the soil, nitrogen can exist in several forms. Denitrifying bacteria release nitrogen gas back into the atmosphere.

The phosphorus cycle moves between land and water Phosphorus cycle The movement of phosphorus around the biosphere. Algal bloom A rapid increase in the algal population of a waterway. Hypoxic Low in oxygen.

The Phosphorus Cycle The phosphorus cycle. The phosphorus cycle begins with the weathering or mining of phosphate rocks and use of phosphate fertilizer, which releases phosphorus into the soil and water. This phosphorus can be used by producers and subsequently moves through the food web. In water, phosphorus can precipitate out of solution and form sediments, which over time are transformed into new phosphate rocks.

Calcium, magnesium, potassium, and sulfur also cycle in ecosystems Sulfur cycle The movement of sulfur around the biosphere.

The Sulfur Cycle The sulfur cycle. Most sulfur exists as rocks. As these rocks are weathered over time, they release sulfate ions (SO 4 2 ) that producers can take up and assimilate. This assimilated sulfur then passes through the food web. Volcanoes, the burning of fossil fuels, and the mining of copper put sulfur dioxide (SO 2 ) into the atmosphere. In the atmosphere, sulfur dioxide combines with water to form sulfuric acid (H 2 SO 4 ). This sulfuric acid is carried back to Earth when it rains or snows.

Module 8 Responses to Disturbances After reading this module you should be able to distinguish between ecosystem resistance and ecosystem resilience. explain the insights gained from watershed studies. explain the intermediate disturbance hypothesis.

Ecosystems are affected differently by disturbance and in how well they bounce back after the disturbance Disturbance An event, caused by physical, chemical, or biological agents, resulting in changes in population size or community composition. Resistance A measure of how much a disturbance can affect flows of energy and matter in an ecosystem. Resilience The rate at which an ecosystem returns to its original state after a disturbance. Restoration ecology The study and implementation

Watershed studies help us understand how disturbances affect ecosystem processes Watershed All land in a given landscape that drains into a particular stream, river, lake, or wetland.

Watershed Studies Watershed. A watershed is the area of land that drains into a particular body of water.

Intermediate levels of disturbance favor high species diversity Intermediate disturbance hypothesis The hypothesis that ecosystems experiencing intermediate levels of disturbance are more diverse than those with high or low disturbance levels.

Intermediate disturbance hypothesis. (a) In general, we expect to see the highest species diversity at intermediate levels of disturbance. Rare disturbances favor the best competitors, which outcompete other species. Frequent disturbances eliminate most species except those that have evolved to live under such conditions. At intermediate levels of disturbance, species from both extremes can persist. (b) An example of the intermediate disturbance in the number of algal species observed in response to different amounts of herbivory by marine snails. When few or many snails are present, there is a low diversity of algal species, but when an intermediate density of snails are consuming algae, the snails cause an intermediate amount of disturbance and a higher diversity of algal species can persist in the ecosystem.