Mutating Asn-666 to Glu in the O-helix region of the taq DNA polymerase gene

Similar documents
Recitation CHAPTER 9 DNA Technologies

Conversion of plasmids into Gateway compatible cloning

7.1 Techniques for Producing and Analyzing DNA. SBI4U Ms. Ho-Lau

Journal of Experimental Microbiology and Immunology (JEMI) Vol. 6:20-25 Copyright December 2004, M&I UBC

Polymerase chain reaction

Data Sheet Quick PCR Cloning Kit

Cat # Box1 Box2. DH5a Competent E. coli cells CCK-20 (20 rxns) 40 µl 40 µl 50 µl x 20 tubes. Choo-Choo Cloning TM Enzyme Mix

Cold Fusion Cloning Kit. Cat. #s MC100A-1, MC101A-1. User Manual

Amplified segment of DNA can be purified from bacteria in sufficient quantity and quality for :

DNA Technology. Asilomar Singer, Zinder, Brenner, Berg

YG1 Control. YG1 PstI XbaI. YG5 PstI XbaI Water Buffer DNA Enzyme1 Enzyme2

HE Swift Cloning Kit

GenBuilder TM Plus Cloning Kit User Manual

GenBuilder TM Plus Cloning Kit User Manual

Chapter 10 (Part II) Gene Isolation and Manipulation

Problem Set 8. Answer Key

Construction of Glycine Oxidase Mutant Libraries by Random Mutagenesis, Site Directed Mutagenesis and DNA Shuffling Tao Zhan1, 2*

Polymerase Chain Reaction PCR

GenBuilder TM Cloning Kit User Manual

pgm-t Cloning Kit Cat. # : GVT202 Size : 20 Reactions Store at -20

ProductInformation INTRODUCTION TO THE VECTORETTE SYSTEM

California Institute of Technology. Directed evolution. Dr. F.H. Arnold s lab

NZYGene Synthesis kit

Hetero-Stagger PCR Cloning Kit

3 Designing Primers for Site-Directed Mutagenesis

NAME TA SEC Problem Set 3 FRIDAY March 5, Problem sets will NOT be accepted late.

MUTAGENESIS OF THE PROMOTER OF THE OIL PALM HOMOGENTISATE GERANYLGERANYL TRANSFERASE GENE (HGGT) BY PCR-DRIVEN OVERLAP EXTENSION

Creating pentr vectors by BP reaction

Design. Construction. Characterization

Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 8: DNA Restriction Digest (II) and DNA Sequencing (I)

Antisense RNA Targeting the First Periplasmic Domain of YidC in Escherichia coli Appears to Induce Filamentation but Does Not Affect Cell Viability

Construction of a Mutant pbr322 Using Site-Directed Mutagenesis to Investigate the Exclusion Effects of pbr322 During Co-transformation with puc19

The Polymerase Chain Reaction. Chapter 6: Background

Table of Contents. i. Insertion of DNA fragments into plasmid vector...4. ii. Self-circularization of linear blunt-ended DNA...4

Lecture Four. Molecular Approaches I: Nucleic Acids

Efficient Multi-site-directed Mutagenesis directly from Genomic Template.

Molecular Cell Biology - Problem Drill 11: Recombinant DNA

Manipulation of Purified DNA

Supplementary Information

KOD -Plus- Mutagenesis Kit

B. Incorrect! Ligation is also a necessary step for cloning.

Fun with DNA polymerase

Fast and efficient site-directed mutagenesis with Platinum SuperFi DNA Polymerase

PCR in the Classroom. UC Davis - PCR Workshop Friday, September 26, 2003

igem LMU- Munich Munich Cloning procedure

Fast-Link DNA Ligation Kits

XXII DNA cloning and sequencing. Outline

CHAPTER 9 DNA Technologies

peco TM -T7-nGST, Eco cloning Kit User Manual (Patent pending)

NEW PARADIGM of BIOTECHNOLOGY - GENET BIO. GeNet Bio Global Gene Network

Computational Biology 2. Pawan Dhar BII

PrimeSTAR Max DNA Polymerase

DNA Replication. DNA Replication. Meselson & Stahl Experiment. Contents

Overview: The DNA Toolbox

Classic cloning with pask-iba and pexpr-iba vectors

PRODUCT INFORMATIOIN DNA blunting and Ligation

Bootcamp: Molecular Biology Techniques and Interpretation

Chapter 9 Genetic Engineering

Highly efficient one-step PCR-based mutagenesis technique for large plasmids using high-fidelity DNA polymerase

4. Analysing genes II Isolate mutants*

Polymerase Chain Reaction

Combinatorial Evolution of Enzymes and Synthetic pathways Using

Gateway Cloning Protocol (Clough Lab Edition) This document is a modification of the Gateway cloning protocol developed by Manju in Chris Taylor's lab

Purification and Sequencing of DNA Guides from Prokaryotic Argonaute Daan C. Swarts *, Edze R. Westra, Stan J. J. Brouns and John van der Oost

NCERT. 2. An enzyme catalysing the removal of nucleotides from the ends of DNA is: a. endonuclease b. exonuclease c. DNA ligase d.

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY.

Amplification Products for PCR and RT-PCR

BIOTECHNOLOGY : PRINCIPLES AND PROCESSES

cdna Cloning and Sequence Analysis of Rice Sbe1 and Sbe3 Genes

CSS451 Spring 2010 Polymerase Chain Reaction Laboratory

Fast-Link DNA Ligation Kits

The GeneEditor TM in vitro Mutagenesis System: Site- Directed Mutagenesis Using Altered Beta-Lactamase Specificity

Chapter 8: Recombinant DNA. Ways this technology touches us. Overview. Genetic Engineering

Laboratory #7 PCR PCR

Supporting Information

Genetics and Genomics in Medicine Chapter 3. Questions & Answers

The Expression of Recombinant Sheep Prion Protein (RecShPrPC) and its Detection Using Western Blot and Immuno-PCR

Computational Biology I LSM5191

Mutagenesis PCR I (Multiple Site Directed Mutagenesis)

P HENIX. PHENIX PCR Enzyme Guide Tools For Life Science Discovery RESEARCH PRODUCTS

Recombinant DNA recombinant DNA DNA cloning gene cloning

Lab Book igem Stockholm Lysostaphin. Week 8

BSCI410-Liu/Spring 06 Exam #1 Feb. 23, 06

AGRO/ANSC/BIOL/GENE/HORT 305 Fall, 2017 Recombinant DNA Technology (Chpt 20, Genetics by Brooker) Lecture outline: (#14)

Te c htips. Simple Approaches for Optimization of RT-PCR TECH TIP 206

An estimate of the physical distance between two linked markers in Haemophilus influenzae

Table of Contents. I. Description...2. Components...2. Storage...2. Features...2. V. General Composition of PCR Reaction Mixture...

pgm-t Cloning Kit For direct cloning of PCR products generated by Taq DNA polymerases For research use only Cat. # : GVT202 Size : 20 Reactions

Molecular Techniques Third-year Biology

Molecular Biology Techniques Supporting IBBE

Experiment (5): Polymerase Chain Reaction (PCR)

Phosphorothioate-based BioBrick cloning (Potsdam) Standard

BS 50 Genetics and Genomics Week of Oct 24

FROM EXPERIMENTS IN BACTERIAL GENETICS AND GENE TECHNIQUE

CHAPTER 5 PTP-1B CLONING AND RECOMBINANT PROTEIN EXPRESSION. Recombinant DNA technology has revolutionized molecular biology and

Learning Basic Laboratory Skills

Ready_to_use Fast Seamless Cloning Kit. User Manual

Biotechnology. Biotechnology is difficult to define but in general it s the use of biological systems to solve problems.

Appendix A. Introduction to PCR

Chapter 6 - Molecular Genetic Techniques

Transcription:

Research in Pharmaceutical Sciences, April 2010; 5(1): 15-19 Received: Oct 2009 Accepted: Jan 2010 School of Pharmacy & Pharmaceutical Sciences 15 Isfahan University of Medical Sciences Original Article Mutating Asn-666 to Glu in the O-helix region of the taq DNA polymerase gene H. Mir Mohammad Sadeghi, R. Rajaei, F. Moazen, M. Rabbani and A. Jafarian-Dehkordi * Department of Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, University of Medical Sciences, Isfahan, I.R.Iran. Abstract Taq DNA polymerase is widely used in laboratories and for this reason many investigators have focused their attention on understanding the role of various regions and amino acids in this enzyme. O-helix is a part of taq polymerase suggested to play an important role in the enzyme fidelity. The influence of Asn666 in this helix on the enzyme function has never been investigated, and therefore by using nested PCR, a portion of taq DNA polymerase gene containing Asn666Glu mutation was amplified. This DNA was digested with Eco RI restriction enzyme to confirm the presence of Asn666Glu mutation. After digesting this product and the wild type taq-pet-15b plasmid with NheI and BamHI restriction enzymes, they were ligated and used for the transformation of E. coli DH5α competent cells. The obtained colonies were screened for the presence of the mutated taq polymerase gene using EcoRI, NdeI and BamHI restriction enzymes. In conclusion, with the use of the obtained recombinant plasmid it is possible to study the role of this amino acid on taq DNA polymerase function. Keywords: Taq DNA polymerase; Mutation; Recombinant plasmid INTRODUCTION Polymerase chain reaction is a widely used technique for the amplification of DNA for the cloning, identification and other laboratory purposes. In this reaction, taq DNA polymerase plays an important role, and its activity and fidelity can significantly influence the obtained results. Structurally, this enzyme can be divided into three segments: the N terminus which is stretched from amino acids 1-290, the inverting segment from amino acids 291-419 and the C-terminus which is from amino acids 420-832 (1). The active site is suggested to face the O-helix region of the enzyme (Fig. 1) and Asp-785, Glu-786, and Asp-610 are present in the catalytic site of all DNA polymerase I family (2). It is suggested that Arg-659 and Lys-663 in the O-helix region are crucial in enzyme activity and mutations of these amino acids have dramatically decreased the taq polymerase enzyme activity (1). It is also shown that mutations of Phe-667 (1), Tyr-671 (2), and Ile- Fig. 1. Schematic representation of the O-helix present in the C-terminal of the taq DNA polymerase (4). 665 (3) in this region have decreased the fidelity of the enzyme. Therefore, it seems that due to the important function of the O-helix region of the taq polymerase enzyme in its activity and fidelity, by mutating amino acids in this region and altering hydrophobicity and polarity of these amino acids important *Corresponding author: Abbas Jafarian-Dehkordi Tel. 0098 311 792 2625, Fax. 0098 311 668 0011 Email: jafarian@pharm.mui.ac.ir

H. Mir Mohammad Sadeghi et al. / RPS 2010; 5(1): 15-19 information regarding the function of the enzyme can be obtained. Since no data are available regarding the role of Asn-666 in the enzyme activity, we designed the present study to produce an expression vector containing mutated Asn666Glu taq polymerase gene, in order to investigate the effect of this mutation on the enzyme function. MATERIALS AND METHODS Bacterial strains and plasmids The E. coli DH5α strain used in this study was purchased from Cinnagen (Tehran, Iran). Oligonucleotide primers were synthesized by Faza biotech (Tehran, Iran). Taq polymerase was purchased from BioRon (Tehran, Iran). DNA ligase, DNA molecular size marker, HindIII Digested λdna, and all restriction enzymes were from Fermentas (Tehran, Iran). High Pure PCR Template Preparation Kit and QIA quick Gel Extraction Kit were obtained from Roche and Qiagen, respectively. All other chemicals were from Merck (Tehran, Iran). Primer design To produce Asn666Glu mutation, the Asn codon (aac) had to be changed to Glu codon (gaa). This replacement would create an Eco RI restriction site and thus making it easier to screen for the DNA sequences containing this mutation. Therefore, two complimentary primers containing this mutation were designed using WDNASIS program (Hitachi. Software Engineering Co., Ltd., Japan): FM: 5- CAAGACCATCGAATTCGGGGTCC-3 RM: 5-GGACCCCGAATTCGATGGTCTTG-3 Two primers were also designed against DNA regions in the pet-15b plasmid near the multiple cloning site: FpET: 5 ATAGGGGAATTGTGAGCGG-3 RpET: 5 GGGGTTATGCTAGTTATTGC-3 For the nested primers, two sequences inside the taq polymerase gene were selected: Ftaq: 5- CCCAACCTCCAGAACATCC-3 Rtaq: 5 GGACGGGCATGTTGAAGG-3 Nested PCR The method of nested PCR was used for the introduction of the desired mutation (5) in the taq DNA polymerase gene. For the first step PCR, in one tube FM and RpET primers (2.5 M each) and in another tube FpET and RM primers (2.5 M each) were used. Into each tube 50 ng of the wild type recombinant taq-pet- 15b vector (6) was added as the template followed by 0.5 mm (each) deoxyribonucleotide triphosphate and 10X-PCR buffer (containing 2 mm MgCl 2 ) in a total volume of 50 µl reaction mixture. The thermocycling profile was as follows: initial denaturation at 94 o C for 5 min; 35 repeated cycles of 94 o C for 1 min, 55 o C for 2 min, and 72 o C for 3 min; and a final extension of 72 o C for 20 min. The PCR product was analyzed using 0.8% agarose gel electrophoresis. The DNA bands were then extracted from the gel using QIA quick Gel Extraction Kit (Qiagen, Germany) and the obtained DNA fragments were mixed and 50 ng of this mixture was used for the second step PCR (nested PCR). For this step, the reaction mix and PCR conditions were similar to the first step except for the primers in that Ftaq and Rtaq (2.5 M each) were used instead. Afterwards, to confirm the presence of mutation, digestion of the PCR product was performed with EcoRI restriction enzyme (1 h, 37 o C). Ligation and transformation The product of the nested PCR and the wild type recombinant taq-pet-15b vector were digested with NheI and BamHI restriction enzymes (1 h, 37 o C). The digested insert and vector were isolated from agarose gel and then ligation was performed with T4 DNA Ligase (Fermentas, Germany) at 16 ºC overnight in a water bath. Before ligation, the vector was dephosphorylated by treatment with calf intestinal alkaline phosphatase (Roche, Germany) to remove 5 -terminal phosphate and to prevent recircularization of the plasmid. The ligated DNA was used for the transformation of E. coli DH5α competent cells using heat shock method (6). Plasmid preparation was performed on the obtained colonies using High Pure Plasmid Isolation Kit (Roche, Germany) and the 16

Mutating Asn-666 to Glu in the O-helix region of the taq... recombinant plasmids containing the Asn666Glu were screened by digestion with EcoRI, Bam HI, and NheI restriction enzymes (1 h, 37 o C) (7). RESULTS] Nested PCR To produce a segment of the taq polymerase gene containing the desired mutation, a two-step nested PCR was performed. In the first step, in one tube the forward primer recognizing a sequence in the pet-15b and the reverse primer containing the Asn666Glu mutation were used. In another tube the forward primer containing the mutation and the reverse primer designed against a region of pet-15b were utilized. As shown in Fig. 2A, the PCR product of the first tube was about 2000 bp which is similar to the expected size of 2134 bp. The PCR product obtained in the second tube was about 600 bp which matches the expected size of 584 bp (Fig. 2B). In the second step the obtained PCR products were gel purified and mixed to form the template for the nested PCR. Forward and reverse primers were designed to recognize sequences A sequences inside the amplified PCR products obtained in the first PCR reactions. The DNA band of the nested PCR had the expected size of 526 bp (Fig. 2). Since mutation of the taq polymerase gene should have created an EcoRI restriction site, therefore, digestion with this enzyme should result in two bands of about 250 bps which can be seen in Fig. 3. as expected. Obtaining the mutated recombinant plasmids The PCR product containing the mutation and the wild type taq-pet-15b vector was then digested by two restriction enzymes, BamHI and Nhe I. The digested DNA fragments were then ligated and used for the transformation of the E. coli DH5α competent cells. Subsequently, the plasmids extracted from the obtained colonies were digested with EcoRI (Fig. 4). One of the plasmids having the correct orientation was selected and double digestion with BamHI and Nde I was performed. This digestion should have resulted in the production of a 1767 bp DNA fragment if the orientation of the insert was correct. As can be seen in Fig. 5, this digestion produced the expected fragment. B Fig. 2. The PCR products obtained after the first PCR. These products were electrophoresed on an 0.8% agarose gel. A) Lane 1: DNA molecular weight marker. Lanes 2-3: PCR amplified DNA using FpET and RM primers. B) Lane 1: DNA molecular weight marker. Lane 2: PCR amplified DNA using FM and RpET primers. 17

H. Mir Mohammad Sadeghi et al. / RPS 2010; 5(1): 15-19 Fig. 3. The PCR products obtained after the second PCR (nested PCR). These products were electrophoresed on an 0.8% agarose gel. Lane 1: DNA molecular weight marker. Lanes 2: nested PCR product. Lane 3: Digestion of the nested PCR product with EcoRI restriction enzyme. Fig. 4. Digestion of the obtained plasmids with Eco RI restriction enzyme. These plasmids were then electrophoresed on an 0.8% agarose gel. Lane 1: DNA molecular weight marker. Lanes 2-10: digested plasmids. Fig. 5. Digestion of the recombinant plasmid with Nhe I and Bam HI restriction enzymes. This plasmid was then electrophoresed on an 0.8% agarose gel. Lane 1: DNA molecular weight marker. Lane 2: Digested plasmid. DISCUSSION The O-helix region of the taq polymerase enzyme has been of interest to many investigators. Tosaka et al. has shown that T664P mutation results in a decreased enzyme fidelity but not activity (8). Mutating other amino acids in this region such as Ile-614 (8-9) and Ala-661 (10) also have resulted in the attenuation of the enzyme fidelity. These data suggest that amino acids located in the O-helix play an important role in the replication of 18

Mutating Asn-666 to Glu in the O-helix region of the taq... DNA by the taq polymerase enzyme and that they influence the proper placement of nucleotides rather than the rate of DNA replication. Understanding the structure-function relationship of the taq polymerase enzyme can help the investigators to create mutated enzyme with higher or lower fidelity. The latter can be of great importance since this property can be used for the production of random mutations in an amplified gene. These mutations, if screened properly, can lead to the production of industrially more favorable proteins. In the present study we decided to mutate Asn666 to Glu. The reasons for selecting this mutation were as follows: first, no one has studied the Asn666 mutations before and therefore this would be the first time that the role of this amino acid on the function of taq DNA polymerase can be studied. Second, change in the charge and polarity of the amino acid occupying position 666 may influence the activity and fidelity of taq DNA polymerase. While Asn is a polar hydrophilic amino acid, Glu is acidic. Therefore, mutating Asn666 to Glu in the O-helix of Taq DNA polymerase and investigating its effect on the function of this enzyme is an important step towards understanding the role of O-helix in the enzyme fidelity and activity. CONCLUSION This is the first report in which a recombinant plasmid having mutated Asn666Glu Taq DNA polymerase gene has been produced. This plasmid can be used in the future experiments for the investigation of the role of Asn666 on the enzyme s function. REFERENCES 1. Ying LI, Kong Y, Korolev S, Waksman G. Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates. Protein Sci. 1998;7:1116-1123. 2. Li Y, Kovolev S, Waksman G. Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J. 1998;17:7514-7525. 3. Suzuki M, Yoshida S, Adam ET, Blank A, Loeb LI. Thermus aquaticus DNA polymerase mutants with altered fidelity interacting mutation in the O-helix. J Biol Chem. 2000;275:32728-32735. 4. Rothwell PJ, Mitaksov V, Waksman G. Motion of the fingers subdomain of Klentaq1 are fast and rate limiting: implications for the molecular basis of fidelity in DNA polymerase. Mol Cell. 2005;19:345-355. 5. Sadeghi HMM, Rabbani M, Jafarian A, Ghafghazi T, Najafzadeh H. Site Directed Mutagenesis of V2 Vasopressin Receptor and its Cloning Using pgem3z Vector. Biotechnol. 2005;4:284-287. 6. Mir Mohammad Sadeghi H, Rabbani M, Moazen F. Amplification and cloning of taq DNA polymerase gene from Thermus aquaticus strains YT-1. Res Pharm Sci. 2006;1:49-52. 7. Sambrook J, Russell W. Molecular cloning: a laboratory manual. 3ed. New York: Cold Spring Harbor Laboratory Press; 2001. 8. Tosaka A, Ogawa M, Yoshida SH, Suzuki M. O- helix mutant T664P of Thermus aquaticus DNA polymerase I. J Biol Chem. 2001;276:27562-27567. 9. Patel PH, Kawate H, Adam E, Ashbach M, Loeb LA. A single highly mutable catalytic site amino acid is critical for DNA polymerase fidelity. J Biol Chem. 2001;276:5044-5051. 10. Suzuki M, Avicola AK, Hood L, Loeb LA. Low fidelity mutants in the O-helix of Thermus aquaticus DNA polymerase I. J Biol Chem. 1997;272:11228-11235. 19