Keys to Excellence in the Practice of Process Engineering. An overview by Scott D. Love, P.E. October 2016

Similar documents
Guidelines for Dynamic Modeling of Column Startup Chemstations, Inc.

Delayed Coking Process Design, Operations and Optimization. Canada Coking Conference October 22-26, 2012 Fort McMurray, Alberta

Fluid Mechanics, Heat Transfer, Fluid Mechanics Design Project. Production of Ethanol

OIL TECHNOLOGY PORTFOLIO

Improving Evaporator Reliability for Produced Water Re-Use in Northern Alberta SAGD Facilities

Crude Oil Quality Group (COQG)

Taravosh Jam Design & Engineering Co.

Chapter 10. Flowsheet Analysis for Pollution Prevention. by Kirsten Sinclair Rosselot and David T. Allen

SURFACE PRODUCTION OPERATIONS

White Paper. Impact of Opportunity Crudes on Fouling in Preheat, distillation, and furnace systems

Project Name: Melut Basin Oil Development. Client Name: PDOC, Petrolium. Development Oman Company. EPC: Dodsal. Consultant: Mott MacDonald

HEAVY OIL PRODUCTION ENHANCEMENT UNCONVENTIONAL HEAVY OIL PRODUCTION OPTIMIZATION

Fluid Mechanics, Heat Transfer, Thermodynamics. Design Project. Production of Ammonia

Addressing the Challenges Associated with Canadian Crudes

Technical Information Paper. (R)FCC Slurry Oil Filtration

Fluid Mechanics, Heat Transfer, and Thermodynamics Fall Design Project. Production of Dimethyl Ether

vapour leaving from the top and routed to gas treatment diluted bitumen leaving from the middle produced water leaving from the bottom

Measurement Schematics & Facility Delineation Requirements Required by September 11, 2014

GTC TECHNOLOGY. GT-UWC SM How a Uniting Wall Column Maximizes LPG Recovery. Engineered to Innovate WHITE PAPER

Experimental Investigation on the Effect of Parameters Influencing the Performance of a Horizontal Styrene-Water Separator

AFPM 2018 Operations & Process Technology Summit

Field Data From Oil in Water Polishing of Produced Water for Discharge and Reinjection with Osorb Media

Next Generation SAGD Produced Water Treatment Technology Development. ESAA Watertech 2012 Banff, Alberta April 12, 2012

OTC PP. Measuring Oil in Water: A Sanity Check Lew Brown, Mason Ide, and Peter Wolfe, Fluid Imaging Technologies, Inc.

1. Refinery Operations 1 2. Mechanical Maintenance and Inspection 3. Instrumentation and Electrical Maintenance 4. Refinery Management

PROCESS OPERATIONS. Introduction to Operations. Diagrams for the Operating Unit. Revised 11/30/18 1

GT-LPG Max SM. Maximizing LPG Recovery from Fuel Gas Using a Dividing Wall Column. Engineered to Innovate

Cansolv Technologies Inc.

Corrosion monitoring solution for sour water stripping units

Sour water stripping (SWS)

Integrated Utilization of Offshore Oilfield Associated Gas

Unit 5. Crude Oil Desalting

Fundamentals of Refinery Catalytic Processes

Cansolv Technologies Inc. Air and Waste Management Association South Coast AQMD May 14, Rick Birnbaum

NEW CONTROL SYSTEM DETECTS DESALTER PROBLEMS BEFORE UPSETS OCCUR Gary Fransen Agar Corporation Prepared for presentation at The AICHE 2004 Spring

FCCU NO x Reduction - SCR Retrofit. October Vice President of Engineering KTI Corporation

CORROSION AND FOULING IN SULFURIC ACID ALKYLATION UNITS

KLM Technology Group

driller s >>> 18 here october 2009 an international magazine from alfa laval

BMA-System Desalter Interface Control Application Sheet

Solidification: A New Approach to Zero Liquid Discharge (ZLD) in the SAGD Industry

Next Generation of Filtration Technology

INTERNATIONAL ASSOCIATION OF PLUMBING AND MECHANICAL OFFICIALS IAPMO GUIDE CRITERIA FOR

Continuous Corrosion and Erosion Monitoring in Geothermal Power Facilities

CASALE COAL-BASED METHANOL SYNLOOPS

Tap a new oil well! FLOTTWEG DECANTERS and TRICANTERS for oil sludge treatment

Fluid Mechanics, Heat Transfer, and Thermodynamics Design Project. Production of Acrylic Acid

Nathan A. Hatcher and Ralph H. Weiland, Optimized Gas Treating Inc., USA, discuss the fate of ammonia in refinery amine systems.

Insert flexibility into your hydrogen network Part 2

FCC Spent Catalyst Stripper Technology

Managing the Catalysts of a Combustion Turbine Fleet

Media Filtration of Produced Water in Polymer Flood Applications


MPPE Benefits. 1 Very High Separation Performance Reduction factor 1,000,000 times = % removal if required

is a paradigm shift in produced water treatment technology occurring at SAGD facilities?

Process Integration in Petroleum Refineries

CORROSION AND FOULING IN SULFURIC ACID ALKYLATION UNITS

WE CREATE IMPOSSIBLE ABOUT US. KASRAVAND is a DESIGN and MANUFACTURING Company

PILOT PLANT PROGRAM FOR UPGRADING HEAVY OILS BY HYDROPYROLYSIS

Corrosion Monitoring Solutions for Hydroprocessing Units

The Use of Walnut Shell Filtration with Enhanced Synthetic Media for the Reduction and/or Elimination of Upstream Produced Water Treatment Equipment

Walnut Shell Filter Reuse Potential

Questions. Downdraft biomass gasifier. Air. Air. Blower. Air. Syngas line Filter VFD. Gas analyzer(s) (vent)

Membrane Separation of XBs from Wastewater with

PETE 203: Properties of oil

Di ti agnos cs & O ti p i m t za ittion of of Pollution Control Systems y Dan Bemi MEGTEC Systems I nc Inc.

Difficult CEMS Applications at Refineries & Chemical Plants

THE NEXT GENERATION IN SAND MANAGEMENT

TiPSS TECHNOLOGY. Pressurized CPI (pcpi) WATER TECHNOLOGIES

Controlling NOx and other Engine Emissions

Bolt-On Thermal Maintenance System in new SRU challenges old design rules

Dilution centrifuging of bitumen froth from the hot water process for tar sand

Case Studies of Optimizing and Troubleshooting FCC Reactors and Regenerators

Innovative Engineering Solutions

ECO-FRIENDLY LNG SRV: COMPLETION OF THE REGAS TRIAL

Fluid Mechanics, Heat Transfer, and Thermodynamics. Design Project. Production of Acetone

Addition of Static Mixers Increases Treating Capacity in Central Texas Gas Plant

Chemical Sales and Service

WASTE WATER TREATMENT REFINERIES

Innovative Engineering Solutions

Distillation Operation, Control, Design and Troubleshooting Course for Maintenance Personnel

WWT Two-Stage Sour Water Stripping

June 12, Dear Valuable Customer:

Simple Solutions for Removing Moisture, even with Strong Emulsions, from Oils up to ISO VG 1000

Separations and Reaction Engineering Spring Design Project. Production of Acetone

SOLID-LIQUID SEPARATION TECHNOLOGY FOR REMOVING CONTAMINANT FINES FROM WATER SCRUBBING, CLARIFIER EFFLUENTS AND GREY WATER PAPER NUMBER

Fate of Ammonia in Refinery Amine Systems

SPE/PS-CIM/CHOA PS2005-XXX

Reducing FCC Turnaround Costs Focus on Speed & Safety. Brent Dell Sr. Technical Engineer

Reducing FCC Turnaround Costs Focus on Speed & Safety. Brent Dell Sr. Technical Engineer

Reformer Model-Based Inferential Properties embedded in APC

Topsøe Methanol Technology for Coal Based Plants

Cansolv Technologies Inc. Alberta NOx and SOx Control Technologies Symposium April 9, Rick Birnbaum

Improved Efficiency of Solid Trap Installed in Brine Injection Pipeline of Leyte Geothermal Production Field, Philippines

APPLICATION REVIEW CHECKLIST LAND PROTECTION DIVISION HAZARDOUS WASTE PROGRAM OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY TECHNICALLY ADMIN.

50 Years of PSA Technology for H2 Purification

Many in situ bitumen producers face a challenge how to recapture

Dynamic Imaging Principle OIW/WIO Analysis

SHORT COURSES Process Operations Technology ADD POT PICTURES

Managing FCC Reliability and Run Lengths

Transcription:

Keys to Excellence in the Practice of Process Engineering An overview by Scott D. Love, P.E. October 2016

Outline What is excellence? How do I learn about my process? Learning examples Summary Questions?

What makes an excellent process engineer? Responsible for: An operating process, or The process design of a nascent process Has a comprehensive mental picture of the process How it fits into overall plant / facility Understands all its intricate details Heat and material balance Physical elements (equipment and control system) Chemical & phase changes (including thermodynamics and kinetics of each) Baseline and fouled operating states Startup, shutdown, and upset operating conditions Hazards and engineering controls that mitigate them Operating procedures (both documented and actual)

In other words, the expert process engineer: Has a synthesized understanding of the whole process that enables immediate and effective troubleshooting of problematic process performance.

How does the process engineer learn about his or her process along the way to becoming excellent? Chemical engineering curricula provide the basic tools for understanding Fluid flow, mass and heat transfer, chemistry, thermodynamics Once on the job, look to process-specific resources for detailed understanding: Plant Block Flow Diagrams (BFD) Process Flow Diagrams (PFD) Piping & Instrumentation Diagrams (P&ID) Equipment specification sheets and vendor as-built detailed drawings Plot plan drawings The plant (yes, you should actually walk through the physical plant, both when it is running and when it is shut down for maintenance!) Plant operator interactions find out how the process is actually operated. Process safety information including MOC documentation

Does learning ever end? NO! Great process engineers learn something new (and potentially useful!) every day. Excellence is having a synthesized and comprehensive mental picture of the process Use what you know to put new information in context (that s what synthesis is all about) In interactions with others (e.g. operators): Trust, but verify Process operating data (T, P, flow rate, compositions) is good, and more is better but don t lose the big picture in the face of all the data that may be available. Process engineers are paid to become experts on their process!

And now, learning your process. Typical progression of detail (BFD, PFD, P&ID ) From an operating process perspective: Equipment internal details matter (FCC fluid bed) From a process design perspective: Process stream details matter (solids purge) Timing matters (residence time for diluents) Sample point locations matter (mixed phase) Sample test methods matter (oil in water)

Flow sheet detail Block Flow Diagram best place to start, how does my process fit into the larger plant? No detail, shows only major connections and each process only as a box. Process Flow Diagram Major equipment, minimal detail (e.g. heat exch) Major lines (normal process flow only) may be keyed to a heat & mass balance report Only critical or unique parts of control scheme Typically only one or just a few per process

Flow sheets (continued) Piping and Instrumentation Diagram All interconnecting piping (including startup and shutdown) may be keyed to heat & mass bal. report Control scheme (challenge for advanced control elements) Line numbers per piping specification (separate document) showing line size and metallurgy Some equipment detail (number of trays in towers, heat exchanger duties and configurations, vessel sizes, etc.) May be dozens or even hundreds of sheets per process

Equipment Details (FCC) A young process engineer in the early 80 s was assigned to a Fluid Catalytic Cracker unit within a crude oil refinery. Unit was designed and built in 1960 and documented detail was scant. Continued catalyst losses and catalyst flow problems increased need to understand what process instrumentation was telling him about the conditions within the unit. A maintenance shutdown provided the opportunity to physically identify, measure, and validate locations of critical pressure and differential pressure taps within the unit.

Equipment Details (FCC) cont. Corrected pressure tap locations enabled accurate assessment of catalyst flows and distribution within the unit a success! Key to success the process engineer took the initiative to work with Operations and Maintenance personnel for safe personal access to unit during maintenance shutdown period.

Process Stream Details Important? At a significant facility in Alberta, Canada objective was to yield synthetic crude made from produced bitumen Production fluid is 75% condensed steam and 25% bitumen. This fluid is blended with diluent with the intent of making a mixture of bitumen and diluent that is less dense than water (and meets pipeline minimum density specification). Primary phase separation by gravity settling.

Process Stream Details Matter Original process design assumed no solids in produced fluid. No solids handling in primary separation vessels No solids handling in slop treater vessel In fact, produced fluid contains significant portion of sub-micron sized neutrally buoyant solids (oil sand particles amalgamated with bitumen components) Solids-stabilized emulsions in primary separators recycled and grew in volume, eventually sent off site slop treater vessel filled with solids and abandoned

Process Stream Details Matter Eventually, solids handling (sand jet and discharge ports) added to primary separator vessels Obviously, post-project fixes were much more expensive than building needed capabilities into original design.

Timing Matters In the same bitumen production facility Diluent is added to the produced fluid with the objective of blending with the bitumen portion of that fluid (~25%) Bitumen portion of that fluid is immiscible second phase in fair-sized non-homogenous blobs Diluent and demulsifier addition done immediately upstream of primary separation vessels less than 5 seconds of mix time (although there is a static mixer) There is evidence of incomplete mixing of diluent with bitumen Solids from vessel are extremely sticky glued with nondiluted bitumen

Timing Matters Longer residence time of mixing would allow more complete mixing of diluent with bitumen Longer residence time of mixing would allow proper induction time for chemical demulsifier to have its full effect While this could have been accounted for fairly easily in the initial design, retrofit would be extremely problematic.

Sample Point Locations Facility offshore China producing producing conventional biodegraded shallow oil. Complex crude oil chemistry and resultant difficult phase separation led to choice of disk stack centrifuges for final phase separation (sales oil) and produced water deoiling. Produced water deoiling seen as already proven technology (used in Norwegian North Sea facilities) Sample points in process MUST represent bulk stream within process!

Sample Point Locations Initial reports of treated produced water quality were troubling (specification for maximum oil in water was very low, initial values were much higher) Inspection of facility showed sample points were not going to yield representative samples Sample points from top of pipes would allow free oil to accumulate on top of water Length of sample lines required much higher purge volume than operators or safety would allow

Sample Point Locations Detailed report provided to facility management with concerns and recommendations. No actions taken due to high cost of revamping sample points after project completion Combination of the presence of immiscible second liquid phase and the extremely low concentration of it specified should have triggered much better follow-through by process engineers on the project.

Sample Test Methods At the same facility offshore China: All maritime authorities have maximum specification for oil in water (OIW) of produced water discharged to the ocean Typical maximum 25 to 30 ppm Result highly dependent on test method specified US EPA specifies method 1664 Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-Polar Material) by Extraction and Gravimetry.

Sample Test Methods At this facility, the hexane extracts from samples (arguably not representative see previous section) were checked for infrared light absorbance compared to some standard. For this crude oil and its associated produced water, there were an abundance of water-soluble polar compounds present. Hexane extracts showed these compounds as oil in water Values from water samples before and after centrifugation showed no change Centrifugation (and any other physical process) works only on separating immiscible liquid phases by their differing densities Conclusion by operators was that centrifugation was ineffective EPA method was not suitable for offshore use

Sample Test Methods Approximately 30 representative produced water sample sets (centrifuge feed and centrate) were collected and express-shipped to an onshore domestic laboratory for testing using the EPA method 1664. 29 of thirty sample sets showed significant reduction in OIW and outlet values less than 30 ppm suitable for overboarding. Thus, the process worked as designed! (but the operators would continue to struggle with the only test method they could do)

Summary Learn all you can about your process from existing documentation. Visit the process face to face and put the physical plant into context with the flowsheet documentation. Locate sample points and major sensor locations Observe operators taking samples Interact with operators ask questions about their procedures Learn how the critical lab tests are done and their significance in light of what is important to your process. For capital projects, follow the process from conception through detailed design and construction to minimize issues with sample point locations and residence time concerns.