» LiNi 0.5 x Co 2x Mn 0.5 x O 2 Æ º

Similar documents
ELECTROLESS PLATING Cu ON Mo POWDER AND ITS REACTION MECHANISM

Crystallization Behaviour of the Si-Al-Zr-O Amorphous Bulk

Effect of Combined Additives of CaF 2 -Y 2 O 3 on Microstructrue and Thermal Conductivity of AlN-BN Composite Ceramics

Formation Mechanism of TaC by Tantalum-contained Resin Precursor

Separation and recovery of Ni, Co and Mn from spent lithium-ion batteries

ÅÔ½ß (electrochemical noise EN)

¾Å ÒÅ º Sm 0.15 Gd 0.05 Ce 0.8 O 1.9

Synthesis and electrochemical properties characterization of. batteries

Journal of Inorganic. Materials ² Û: X(2006) Journal of Inorganic Materials Jul., 2006

ÃÞ Al-Zn(7%)-Sn(0.1%)-Ga(0.015%) NaCl ι 2% CrO 3 +5% H 3 PO 4

prepared by a hydroxide coprecipitation method* Co 1/3 Mn 1/3

Effect of ZrO 2 on Crystallization and Phase Transformation in Lowtemperature Processed BaO-Al 2 O 3 -SiO 2 Glass-ceramics

Al 2 O 3 coating for improving thermal stability performance of manganese spinel battery

SiC Ð Æ

Ce(NO 3 ) g/l KMnO g/l HF 2 ph ÓÞ

Electronic Supplementary Information (ESI) Self-assembly of Polyoxometalate / Reduced Graphene Oxide

ELECTRONIC STRUCTURE OF DIFFERENT REGIONS AND ANALYSIS OF STRESS CORROSION MECHANISM OF Al Zn Mg Cu ALLOYS


Centre for Nanomaterials Research Institute of Science Universiti Teknologi MARA Shah Alam, Selangor, Malaysia

AlCrTaTiNi/(AlCrTaTiNi)N ÖÞ

Improvement of High-Voltage Electrochemical Performance of Surface Modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 Cathode by La 2 O 3 Coating

Nirosta 4003 T4003 Ö. Vol.32 No Ö 4 Journal of Chinese Society for Corrosion and Protection Apr. 2012

LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries

Supporting Information for. Pseudocapacitive layered birnessite sodium manganese dioxide for

FRICTION AND WEAR PROPERTIES OF Ni FREE Zr BASED BULK METALLIC GLASSES IN SIMULATED BODY FLUID

Electronic Supporting Information. Synthesis of single crystalline hexagonal nanobricks of

High energy all-solid-state lithium batteries with

Plasma-enhanced Low-temperature Solid-state Synthesis of

Department of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea

HYDROGEN INDUCED DELAYED FRACTURE BEHAV- IOR OF A LOW CARBON Mn B TYPE ULTRA HIGH STRENGTH STEEL SHEET AFTER HOT STAMPING

Wind Energy And Wind Power Technology (2) By ZHANG ZHI YING?ZHAO PING?LI YIN FENG DENG

Supplementary Information

Ñ ³ PtRu/MWCNTs Þ PtRuNi/MWCNTs

Ultrasonic enhanced electroless copper plating on microporous polyurethane foam

0.18«S 0.034«P 0.035, Si 0.3, Mn0.55, Ô Fe. Vol.30 No ½ 8 Þ Journal of Chinese Society for Corrosion and Protection Aug.

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide

Vol.30 No Í 4 Journal of Chinese Society for Corrosion and Protection Apr ĐÅ : TG174 Ú : A ²Ù : «

(1) J = DC. Vol.31 No Journal of Chinese Society for Corrosion and Protection Jun Æ ¼ : TG457 Ó«Ç : A ¼ :

The Effects of LaF 3 Coating on the Electrochemical Property of Li[Ni 0.3 Co 0.4 Mn 0.3 ]O 2 Cathode Material

School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai , PR China

EFFECT OF CARBON COATING ON CATHODE ACTIVE MATERIAL OF LiFe0.9Ni0.1PO4 FOR LITHIUM BATTERY

Supporting information

Effect of Al5Ti1B master alloy on microstructures and properties of AZ61 alloys

doi: /j.jallcom

Supporting Information P2-Type Na x Cu 0.15 Ni 0.20 Mn 0.65 O 2 Cathodes with High Voltage for High-Power and Long-Life Sodium-Ion Batteries

Double-Network Nanostructured Hydrogel-Derived. Ultrafine Sn Fe Alloy in 3D Carbon Framework for

Vol.30 No Journal of Chinese Society for Corrosion and Protection Apr. 2010

Supplementary Figure 1. Crystal structures of conventional layered and Li-rich layered manganese oxides. a, The crystal structure of rhombohedral

Urchin-like V 2 O 3 /C Hollow Nanospheres Hybrid for High-Capacity and Long-Cycle-Life Lithium Storage

1 Introduction. Key words: hydrogen storage alloy; electrodeposition; La-Mg-Ni alloy; electrochemical properties

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4

Design and Comparative Study of O3/P2 Hybrid Structures for

School of Materials Science and Engineering, South China University of Technology,

Journal of The Electrochemical Society, A1134-A /2004/151 8 /A1134/7/$7.00 The Electrochemical Society, Inc.

Supporting Information for. A Water-in-Salt Electrolyte for Potassium-Ion Batteries

Supplementary Figure 1. SEM images of LiCoO 2 before (a) and after (b) electrochemical tuning. The size and morphology of synthesized LiCoO 2 and

High power nano-limn 2 O 4 cathode materials with high-rate pulse discharge capability for lithium-ion batteries

Dispersion stability of nano-tungsten disulfide particulates

Mitigative Capacities of Plant Disposition Types and Space Types on. Urban Heat Island Effect. LU & Bo WANG b

Supporting Information

Supplementary Information

Supplementary Information

Supporting Information

Supporting Information. Amorphous Red Phosphorus Embedded in Highly Ordered. Mesoporous Carbon with Superior Lithium and Sodium Storage.

In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries

Electronic Supplementary Information

Supporting Information

CH 3 COOHÆCH 3 COONH 4 ¾ CH 3 COONa«¾É

Supporting Information

CRT-541 Card Dispenser Machine

Effect of Calcination Temperature of Size Controlled Microstructure of LiNi 0.8 Co 0.15 Al 0.05 O 2 Cathode for Rechargeable Lithium Battery

The Influence of Different Ball-Milling Dispersants on the Structure and Performance of Li 3 V 2 (PO 4 ) 3 /C Composites

Supporting Information

An Analysis of Desulfurization and Regeneration Reaction Rates of Zinc Titanate Sorbent

Supporting Information

Supporting Information

Supplementary Information

Supporting information. batteries

Fabrication of 1D Nickel Sulfide Nanocrystals with High

FABRICATION AND ELECTROCHEMICAL CHARECTARIZATION OF THE CR2032 COIN CELLS USING THE DEVELOPED PURE AND CARBON COATED

MXene-Bonded Activated Carbon as a Flexible. Electrode for High-Performance Supercapacitors

EFFECT OF Ti AND Nb MICRO ALLOYING ON THE MICROSTRUCTURE OF THE ULTRA PURIFIED 11%Cr FERRITE STAINLESS STEELS

Supporting Information

c s f o r e r P p e r e s n o h t e ir l i f o o e i l a s r f ti L h o B t a r t e i s K w A s b a t ct. In d u iton 117

Supplementary Information

Wind Energy And Wind Power Technology (2) By ZHANG ZHI YING?ZHAO PING?LI YIN FENG DENG

A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme electrolyte

Temperature dependence on reaction of CaCO 3 and SO 2 in O 2 /CO 2 coal combustion

Three-dimensional graphene-based hierarchically porous carbon. composites prepared by a dual-template strategy for capacitive

Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-type Solid-state Li Batteries

Jing Xu, Haodong Liu, Ying Shirley Meng. S (15) DOI: doi: /j.elecom Reference: ELECOM 5505

Electroless copper plating on microcellular polyurethane foam

SUPPORTING INFORMATION. A Rechargeable Aluminum-Ion Battery Based on MoS 2. Microsphere Cathode

Effect of Aluminum Doping on the Stability of Lithium-Rich Layered Oxide Li[Li 0.23 Ni 0.15 Mn 0.52 Al 0.10 ]O 2 as Cathode Material

Comparison of Material Properties of LiCoO 2 Doped with Sodium and Potassium

Supplementary Information

8-9% n. a. n. a. n. a n. a. n. a. n. a n. a. n. a. n. a. n. a.

Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency

An Ultrafast Rechargeable Lithium Metal Battery

College of Chemistry and Material Engineering, Jiangnan University, Wuxi , China

Transcription:

«22 «5 Æ Ç Vol. 22, No. 5 2007 À 9 ³ Journal of Inorganic Materials Sep., 2007 Ç : 1000-324X(2007)05-0873-06» LiNi 0.5 x Co 2x Mn 0.5 x O 2 Æ º ÔÒ Ó Ð Ó Ñ ( Ï 410083) Æ Ã Ç ÊÉ É Ni 0.5 xco 2xMn 0.5 xco 3(x=0.075, 0.1, 1/6) ß Ñ Æ LiNi 0.5 xco 2xMn 0.5 xo 2(x=0.075, 0.1, 1/6), LiNi 0.5 xco 2xMn 0.5 xo 2 À Ó Æ Ç À ¾ SEM ¹ LiNi 0.5 xco 2xMn 0.5 xo 2 Â Ð Õ Í É Á Ï Ð Õ Ø XRD ¹ LiNi 0.5 xco 2xMn 0.5 xo 2 Í» Ì Æ Ç À ²» LiNi 0.5 xco 2xMn 0.5 xo 2 É Æ ÓË À 0.2C ³ 2.7 4.3V ÆκРLiNi 0.425Co 0.15Mn 0.425O 2 Ƴ 145mAh g 1 LiNi 0.4Co 0.2Mn 0.4O 2 150mAh g 1 LiNi 1/3 Co 1/3 Mn 1/3 O 2 158mAh g 1, Ë 50 LiNi 0.425Co 0.15Mn 0.425O 2 Ó LiNi 0.4Co 0.2Mn 0.4O 2 ¾³¹ 3% LiNi 1/3 Co 1/3 Mn 1/3 O 2 Æ ¾ Ñ ¹ É Ñž ÑÆ LiNi 0.5 xco 2xMn 0.5 xo 2 Ë ² TM912 µ A Synthesis and Electrochemical Performance of Spherical LiNi 0.5 x Co 2x Mn 0.5 x O 2 ZHU Yong-Jun, LI Xin-Hai, WANG Zhi-Xing, YANG Zhi, HU Qi-Yang (School of Metallurgical Science and Engineering, Central South University, Changsha 410083, China) Abstract: Spherical LiNi 0.5 x Co 2x Mn 0.5 x O 2 (x=0.075, 0.1, 1/6) powders were synthesized from the co-precipitated carbonate precursor, Ni 0.5 x Co 2x Mn 0.5 x CO 3 (x=0.075, 0.1, 1/6). The effects of the Co content on the physics and electrochemical performance of LiNi 0.5 x Co 2x Mn 0.5 x O 2 were investigated. The SEM images of LiNi 0.5 x Co 2x Mn 0.5 x O 2 show that the spherical material consists of many primary particles, which sizes increase with the content of Co increasement. The results of X-ray powder diffraction show that all LiNi 0.5 x Co 2x Mn 0.5 x O 2 are pure phase materials with layered structures. The electrochemical tests indicate that the discharge capacities of LiNi 0.5 x Co 2x Mn 0.5 x O 2 increase and the cycle performances become better with the content of Co increasing. Under the charge/discharge conditions of 0.2C rate and voltage range of 2.7 4.3V, the discharge properties of spherical LiNi 0.425 Co 0.15 Mn 0.425 O 2, LiNi 0.4 Co 0.2 Mn 0.4 O 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 are 145,150 and 158 mah g 1, respectively. The discharge capacity fadings for LiNi 0.425 Co 0.15 Mn 0.425 O 2 and LiNi 0.4 Co 0.2 Mn 0.4 O 2 are less than 3%, however, there is no fade for that of LiNi 1/3 Co 1/3 Mn 1/3 O 2 after 50 cycles. The results of AC impedance show that the impedance decreases with the content of Co increasing. Key words: Li-ion battery; cathode material; spherical; LiNi 0.5 x Co 2x Mn 0.5 x O 2 ¾¹ 2006 09 05, ¾¹ 2006 11 09 ÎÈ (1982 ), ½ ²Å ³ ½ Å E-mail: csuzyj@163.com

874 Æ Ç 22 1 ÄÀ Ø LiCoO 2 Ò ¼ ØÆ ²Ð Á ÛÚ À Þ Ú ÀÇ «Ò ±Ô Á«Â ««LiCoO 2 ±À Á Ø Ý «Ò ± Á Ò Î Ò Ù [1]. LiCoO 2 ¼ÒÀÎ LiNiO 2 Ø Ôº ¼ «ºÛ Û É± LiNiO [2] 2, Ô LiNiO 2 º Jahn-Teller ÇÌÅÁ [3]. ¹Ì ÀÎ LiMn 2 O 4 À Á ½ LiMnO 2 «É Å Ï ÌÝ Mn 3+ Å Û ³ À [1,4]. Ýß Â «Âº º ÞÊ À ÌÅ Á Å Û Â Đ «Ohzuku Ð À ¼ ¹ Ã Ø α-nafeo 2 À Î LiNi 0.5 Mn 0.5 O 2 º 2.5 4.3V Ú 150mAh g 1 «De-Cheng Li Æ ½ Ê LiNi 0.425 Mn 0.425 Co 0.15 O 2 º 3.0 4.6V, 0.5C Ú º 150mAh g 1, º Æ À Ì Å Á [5]. LiNi 0.5 Mn 0.5 O 2 Đ Ç Ô µ Ú Ò ÌÅÁ [5,6]. Ohzuku  Рº Õ Õ Ø Ø LiNi 1/3 Mn 1/3 Co 1/3 O 2 º 2.5 4.6V, Ø 0.125C 225mAh g 1. º 20C º 150mAh g 1 Ø Ò Å Æ Ì Å Á [7]. º º Li + Ù / LiMn 1/3 Co 1/3 Ni 1/3 O 2 À Î LiMnO 2 LiNiO 2 Ô LiCoO 2 ¼ «±Æ LiCoO 2 LiNiO 2 Ô LiNi 0.5 Co 0.5 O 2 Þ 2.99 10 10 cm 2 s 1 6.59 10 13 cm 2 s 1 4.3 10 12 cm 2 s 1, Ò Å Co Ú Ø À Li + Þ Â [2,8]. Õ LiNi 0.5 x Co 2x Mn 0.5 x O 2 ¼  ºÔĐ Å Ê Ô ± Ò ÉÁ ÌÅÁ ÅÆ Ô Ê Đ Âº Ò Ê Ò Ý ß Þ Đ LiNi 0.5 x Co 2x Mn 0.5 x O 2» µæá ØÇ Ý Ï Ø Â Đ º» Ô ÐÛĐÄ «Ø Á µæá ÅÆ» À Øʼ À Ò [2,9 11], ± Ø Ò Đ» À Ø Â Đ º ¼ Á Ô É Á É «ËÊ ½ Ê ÒĐ Ø Ni 0.5 x Co 2x Mn 0.5 x CO 3 (x=0.075 0.1 1/6), Đ ¼ Ø À» Ø LiNi 0.5 x Co 2x Mn 0.5 x O 2 (x=0.075 0.1 1/6). 2 Á 2.1 ¼ Ni 0.5 x Co 2x Mn 0.5 x CO 3 Ê» NiSO 4 6H 2 O CoSO 4 6H 2 O MnSO 4 4H 2 O ± 0.425:0.150:0.425, 0.4:0.2:0.4 Ô 1/3:1/3:1/3 Å Õ Ã 2mol L 1 Æ 2mol L 1 Na 2 CO 3 ¹ ± µ  500r min 1 ¹ Ò µ Ñ º 50 C ¹ Ñ» Ø Ni 0.425 Co 0.15 Mn 0.425 CO 3 Ni 0.4 Co 0.2 Mn 0.4 CO 3 Ô Ni 1/3 Co 1/3 Mn 1/3 CO 3, Ï Â Ò Å º 80 C Þ Ni Co Mn Ø Ä «2.2 ¼ LiNi 0.5 x Co 2x Mn 0.5 x O 2 Å Ø Ni 0.5 x Co 2x Mn 0.5 x CO 3 º Ñ Ï Li Õ Æ ± 1:1 Å Li 2 CO 3, Ø µđº 900 C Ý 12h, Ê LiNi 0.5 x Co 2x Mn 0.5 x O 2. 2.3 XRDÅ SEM É Ï É XRD À Î º Ó D/max-A X ¹ Ó ( ± É). JEOL È À JSM-5600LV ¾ Ï Ë «2.4  «ÍÌ Ê Á Í Õ Ù Ç Õ (PVDF) À Í 90: 6: 4 Ø Ø N- ß ÛÑ (NMP) Æ Ê º º 140 C ½ĐÊ Ø Ø ( Â) 1.0mol L 1 LiPF 6 /EC+DMC( 1:1) Ý Â Celgarg 2300  Š063048 ½ «Ó ( Ð ) É ÌÅÁ «Ý / ÝϽ É Ï» 2.7 4.3V.

5 LiNi 0.5 xco 2xMn 0.5 xo 2 Æ ÇÀ 875 CH1660 É Æ Ý ( Ç Ó È À) É Ø Ò Ê» 0.01Hz 100kHz, ±½ Ï Ð Æ 5mV. º 2.7 4.3V Â»Ø 0.2C Ñ ÄÌÅĐÉ ØÒ 4.3V ØÒ Á«3 3.1 ¼ Ni 0.5 x Co 2x Mn 0.5 x CO 3 Ü Ê À Ì É Ë Ê Ê Ni 0.5 x Co 2x Mn 0.5 x CO 3 Ë Ü Û Á Ô Á «Ö 1 Ê Ni 0.5 x Co 2x Mn 0.5 x CO 3 SEM Ö «Ú Ø Ni 0.5 x Co 2x Mn 0.5 x CO3 Ø À Ö Å Ú º 15µm Ú Å º ½ ³ Æ Ç»» 2.0g cm 3, Ø Ú Ø Ø À» Ò LiNi 0.5 x Co 2x Mn 0.5 x O 2. 3.2 LiNi 0.5 x Co 2x Mn 0.5 x O 2 É Ö 2 ϼ LiNi 0.5 x Co 2x Mn 0.5 x O 2 SEM Ö ÚØ Ø Ni 0.5 x Co 2x Mn 0.5 x CO 3 Ø LiNi 0.5 x Co 2x Mn 0.5 x O 2 Ø Æ Ø ÖÅ Ä ÑÐÖÅÙ «À Ú SEM Ö Ú Æ(a) Ö Â ÑÐÖÅ (c) Ö Â ÑÐ ÖÅ ÓÚ (e) Ö Â ÑÐÖÅ Ý ³Æ ¾ Ì «SEM Ö º 2x 0.15((b) Ö) Ô 1/3((f) Ö) Ø Öź½ Ñ ÐÖÅ µ (b) Ö Ø ÖÅ ÑÐÖÅ (f) ÖØ ÖÅ ÑÐÖż ÓÚ 2x 0.2 (d) Ö Ø Öź½ ÑÐÖÅ ÀÌÝ Ø ÑÐÖÅ «Ú Đ µ LiNi 0.5 x Co 2x Mn 0.5 x O 2 Ø Ô¹Ñ ÐÖÅ ³Æ Đ ²À Ì ²Ý «Î» Ú 2.2g cm 3, ÊĐÄ» «Ö 3 LiNi 0.5 x Co 2x Mn 0.5 x O 2 XRD Ö «Ö 3 ϼ Ý I 003 /I 104 Ú 1.2, (I 006 + I 012 )/I 101 º Ø LiNi 1/3 Co 1/3 Mn 1/3 O 2 Ý ÀΫÞÒÖ ¹ÚØ ßĐ À (101) (006) (102) (108) (110) ² Ý Ú À ¼ Ò Ø LiNi 1/3 Co 1/3 Mn 1/3 O 2 Đ Ì ÀÎ Â Ä º Ä Â º Ø ¼ LiNi 0.5 x Co 2x Mn 0.5 x O 2 Ø Ô«3.3 Ö 4 0.2C LiNi 0.5 x Co 2x Mn 0.5 x O 2 º 2.7 4.3V ݹ«Ö 4 º º LiNi 0.5 x - Co 2x Mn 0.5 x O 2 Ê Đ µ ÚÆ LiNi 0.425 Co 0.15 Mn 0.425 O 2 145mAh g 1, LiNi 0.4 Co 0.2 Mn 0.4 O 2 150mAh g 1, LiNi 1/3 Co 1/3 Mn 1/3 O 2 158mAh g 1. Ö 5 LiNi 0.5 x Co 2x Mn 0.5 x O 2 º 0.2C Ì Å Ý ¹«Ò Ö Ú Ø Ì Å 50 Ð Đ LiNi 0.425 Co 0.15 Mn 0.425 O 2 Ô LiNi 0.4 Co 0.2 Mn 0.4 O 2 º 3% Ø LiNi 1/3 Co 1/3 Mn 1/3 O 2 «º LiNi 0.5 x Co 2x Mn 0.5 x O 2 ÅÆ ÌÅÁ Ò Ê Đ µ ÌÅÁ À µ Co ÂĐ Æ Á Ni Ô Mn µ À Ì [12], À Î Ý Ò º Ù «Ú Co Õº¹ Ni Å Ã Ð Ç Ni 2+ Å Á Ô¹ Ni 2+ Ni 3+, Ì ÀÎ Ôº Õº Jahn-Teller ºØ +4 Õº ÌÁ Õ 1 Ni 0.5 xco 2xMn 0.5 xco 3 SEM È Fig. 1 SEM photos of the spherical Ni 0.5 xco 2xMn 0.5 xco 3 1: Ni 0.425 Co 0.15 Mn 0.425 CO 3 ; 2: Ni 0.4 Co 0.2 Mn 0.4 CO 3 ; 3: Ni 1/3 Co 1/3 Mn 1/3 CO 3

876 Æ Ç 22 Õ 2 LiNi 0.5 xco 2xMn 0.5 xo 2(x=0.075,0.1, 1/6) SEM È Fig. 2 SEM photos of LiNi 1/3 Co 1/3 Mn 1/3 O 2(x=0.075,0.1, 1/6) (a),(b): LiNi 0.425 Co 0.15 Mn 0.425 O 2 ; (c),(d): Li Ni 0.4 Co 0.2 Mn 0.4 O 2 ; (e),(f): LiNi 1/3 Co 1/3 Mn 1/3 O 2 Õ 3 LiNi 0.5 xco 2xMn 0.5 xo 2 XRD Õ Fig. 3 XRD patterns of LiNi 0.5 xco 2xMn 0.5 xo 2 a: LiNi 0.425 Co 0.15 Mn 0.425 O 2 ; b: LiNi 0.4 Co 0.2 Mn 0.4 O 2 ; c: LiNi 1/3 Co 1/3 Mn 1/3 O 2 Õ 4 LiNi 0.5 xco 2xMn 0.5 xo 2 ¹ 2.7 4.3V, 0.2C ÆÜ Fig. 4 Charge-discharge curves of LiNi 0.5 xco 2x- Mn 0.5 xo 2 at 0.2C, in the range of 2.7V to 4.3V

5 LiNi 0.5 xco 2xMn 0.5 xo 2 Æ ÇÀ 877 Õ 5 LiNi 0.5 xco 2xMn 0.5 xo 2 ¹ 2.70 4.30V, 0.2C ÆË À Ü Fig. 5 Cycle ability curves of LiNi 0.5 xco 2xMn 0.5 xo 2 at 0.2C, in the range of 2.7V to 4.3V Ä Î ½ Á Ñ ÙÈ ÁÒ ĐÐ Ä ÖÐ Ì Æ À Æ [13]. Ô 6 ¾ ÖÐÔ ÜĐ¾ ÖÐÔ «ÉÚ Ã Nyquist ÉÚ Ì 45 ÌÏ ¾ Ñ Ò Î ÖÐÒ Đ ¾ĐÐ º Î Ý Đ Warburg ÖÐ È Ð ³ Öн Ø Ð ³ Î Ñ Ò Ð 4.3V Ð Ö Ð Î ³ Ã Ò É Ú É Ú ¾«Đ Ð ¼ Î Ò ÖÒ Đ º Đ Ð / Á Ë Ã ¼ ¼Î Î É Ú ¾«Ñ ÒÖÐÒ Ñ Ò Đ [13 15], º ³ ± Æ Ö Ð Ñ Ö Ð Ô Ø Ö ÉÚ ÒÎÉÚ Ú È Ð ³ ĐÐ ¼ Ï ¼ÖÐÒ Ñ ÒÖÐ ½ Ö LiNi 0.5 x Co 2x Mn 0.5 x O 2 ÖÐÈ Î Ð ³ ½ Ð ¾ Î Ð ½ Ni 2+ È Đ Đ Ð Ä Ñ Ô 3 LiNi 0.5 x Co 2x Mn 0.5 x O 2 XRD ØÖ È Ð ³ (101) (006) (102) (108) Ò (110) ±ÜĐ ĐРı È Ni 2+ ÒÈ Á Li + ± Đ Ð Ä Æ Å Æ Đ Ð Ø Í Ö Đ Ð º Ò ¼ Î Ò Öº ½ Õ 6 LiNi 0.5 xco 2xMn 0.5 xo 2 ÑÕ Fig. 6 AC impedance of LiNi 0.5 xco 2xMn 0.5 xo 2 (a) Before charged; (b) At 4.3V Ceder µ Å Đ º LiNiO 2 ß LiNi 0.5 Mn 0.5 O 2 Ø ¾ «Ì Î Ä Ni Mn Á º º Ü Đ Ë Í [12] LiNi 0.5 x Co 2x Mn 0.5 x O 2 Û XPS Co Đ Ni, Mn, O Ö Co Ó Ð Ì µ È Ð ÆĐ O, Mn Ò Ni ½ Ë Î µ ĐÐ Î Ø Ô 4 LiNi 0.5 x Co 2x Mn 0.5 x O 2 0.2C ² 2.7 4.3V ¾ Û ÍÌ È Co ³ LiNi 0.5 x Co 2x Mn 0.5 x O 2 Î Đ Ð ÌÎ Ø ² ÑÑ Ä Đ Ð Ò Å ³ Ú Ð ³ Ö Ð ¾ Ñ Ò Ö Ð Ä È Ð ³ ½ 4 ÉÈ µè Ö Þ Ni 0.5 x Co 2x Mn 0.5 x CO 3 (x=0.075, 0.1, 1/6), Ö Þ ÖÏ Æ Ì º Ö LiNi 0.5 x Co 2x Mn 0.5 x O 2 (x=0.075,

878 Æ Ç 22 0.1,1/6) Ö LiNi 0.5 x Co 2x Mn 0.5 x O 2 Æ Æ È Ð ³ È ³ Ê ± 2.7 4.3V, 0.2C ² È ¾ LiNi 0.425 Co 0.15 Mn 0.425 O 2 Đ 146mAh g 1, LiNi 0.4 Co 0.2 Mn 0.4 O 2 Đ 150mAh g 1,LiNi 1/3 Co 1/3 Mn 1/3 O 2 Đ 158mAh g 1 ; Ê 50 Ð LiNi 0.425 Co 0.15 Mn 0.425 O 2 Ò LiNi 0.4 - Co 0.2 Mn 0.4 O 2 ½² 3% Ö LiNi 1/3 - Co 1/3 Mn 1/3 O 2 Ê 50 Ð ½ ÖÐ È Ð ³ ÖÐ ½ LiNi 0.425 Co 0.15 Mn 0.425 O 2 Ò LiNi 0.4 Co 0.2 Mn 0.4 O 2 Ç Æ ² LiNi 1/3 Co 1/3 Mn 1/3 O 2 Ý «ÎÐ ±ÀÏ º Ô ÖÓ± Ð LiNi 0.5 x Co 2x Mn 0.5 x O 2 Ð Ò Ï Æ ÜÞ ± [1] Í Ñ (YE Shang-Yun, et al). Å (Chinese Journal of Rare Metals). 2005, 29: 328 335. [2] «Ù (TANG Ai-Dong, et al). ÈÈ (Acta Chimica Sinica), 2005, 63(13): 1210 1214. [3] Ä (CHANG Zhao-Rong, et al). Ã È (Journal of the Chinese Ceramic Society). 2006, 34 (3): 329 333. [4] à (ZHONG Hui, et al). È È (Acta Chimica Sinica), 2004, 62(12): 1123 1127. [5] LI De-Cheng, Hideyuki N, Yoshio M. Electrochimica Acta. 2004, 50: 427 430. [6] Cho T H, Park S M. Journal of Power Sources. 2005, 142 (1 2): 306 312. [7] Yabuuchi N, Ohzuku T. Journal of Power Sources, 2005, 146: 636 639. [8] ß (TANG Hong-Wei). ÙȾ½È Å 2003. [9] HE Xiang-Ming, LI Jian-Jun, CAI Yan, et al. Materials Chemistry and Physics, 2006, 95: 105 108. [10] Å (YING Jie-Rong, et al). È (Journal of Inorganic Materials). 2006, 21 (2): 291 298. [11] Õ ÏÞ (HE Xiang-Ming, et al). Å È (The Chinese Journal of Nonferrous Metals). 2005, 15 (9): 1390 1395. [12] Ì Î (SUN Yu-cheng). ξ½È Å 2004. [13] (ZHAO Yu-juan). Í ÙȾ½È Å 2002. [14] «Ü ˲ (HUANG You-Yuan, et al). ÈÈ (Acta Phys.-Chim.Sin.), 2005, 21 (7): 725 729. [15] Ô (DU Ke). È ß Ó Î ¾½È Å 2003.