By C.F. Chubb Michaud, CWS-VI

Similar documents
Evaporative Condenser Passivation. Cameron Klein Strand Associates, Inc.

1. Scaling. H.O.: H-5/21, KRISHNA NAGAR, DELHI Tel.: , Fax:

Hard water. Hard and Soft Water. Hard water. Hard water 4/2/2012

Reducing Energy & Water In Your Boiler House Charles Astbury Commercial Operations GE Water & Process Technologies

We have softening plant for boiler so water treatment chemicals is not require. We used 90 % condensate water so no need of any chemicals treatment

Presented by: Jeff Freitag, The Water Guy Jon Tiegs, General Manager

Treatment Technologies

Reducing Energy & Water In Your Boiler House Charles Astbury Commercial Operations GE Water & Process Technologies

BOILER FEED WATER AND ITS TREATMENTS

REMOVAL OF HARDNESS BY PRECIPITATION

Boiler Water Chemistry: Getting From the Source to the Boiler Colleen M. Layman, PE

Boiler/Cooling Water Processes and Parameters

SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY COIMBATORE First Year BE/B.TECH ( ) Engineering Chemistry- I

Lecture 1: Introduction

Bucking the Industry Trend. Simple Change to Water System Saves New Jersey Manufacturer $23,000 Annually

Condensate System Troubleshooting andoptimization

Revolution. NON-Chemical Treatment. Technology. for Scale Control. 500 different Applications NON TOXIC FOR POLLUTION PREVENTION AND GREEN TECHNOLOGY

Steamate* technology. superior protection against condensate system corrosion. Water Technologies & Solutions technical bulletin

Water supplied by Marafiq does not meet the process requirements.

Western BLRBAC Review/Refresher of Tappi Water Quality Guidelines and Contamination Procedures for mill boilers operating on high purity water

Process water quality factors

FilterSorb SP3 Treatment Method: Part II

The evolution of high purity water production

Optimizing Steam and Cooling Systems for Reliability and Sustainability. Presented By: Kevin Emery

BOILER WATER TREATMENT FOR KILN DRY OPERATIONS Mike Wieland. Technical Presentation

UNIT-I WATER TECHNOLOGY

How A Vertical Tube Falling Film Evaporator Can Be Used to Deliver the Lowest Total Life Cycle Cost for Alberta Produced Water Treatment

BOILER WATER TREATMENT TECHNOLOGY. DSS HEAD OFFICE - SERPONG May 2008

Acid conductivity basics and some experiences

2. WATER. Wet Processing I (Pretreatment)

Lenntech. Ion Exchange Resin Analysis Kit. DOW Ion Exchange Resins DIRECTOR SM Service

ENVIRONMENTAL ENGINEERING LECTURE 3: WATER TREATMENT MISS NOR AIDA YUSOFF

DW Module 22 Inorganic Removal Basics Answer Key

MEASUREMENT OF SODIUM IN WATER/STEAM CIRCUITS

A-300, A-300E Strong Base Type II Anion Exchange Resin

PRESENTATION OF CONDENSATE TREATMENT

REACTION TANKS WATER PURIFICATION THROUGH SERVICE DEIONIZATION

performance of the ultrapure make-up system at Turkey Point Nuclear Power Plant

WATER CONDITIONING & ENVIRONMENTAL PROTECTION

INDEX FRESH SEMINAR SERIES

Water and impurites Dissolved gases Suspended solids Dissolved solids

CHLOR-ALKALI INDUSTRY

DRAFT July 26, Engineer s Report Water Softening Alternatives for Boyack Road Water Treatment Plant. Town of Clifton Park, New York

Extreme Recovery Membrane Process and Zero Liquid Discharge Low Temperature Crystallization for Treating Scaling Mine Waters

Boiler Water No.1 Test Kit Instruction Manual

UNIT-I WATER TECHNOLOGY

Chemical Analysis of Industrial Water TABLE OF CONTENTS

Lecture 6: Softening

An Introduction to Water Sampling and Testing of Water Systems

FEDI. Fractional Electrodeionization. The evolution of high purity water production

NACE CORROSION 2008 TEG 096X Symposia - Paper 1421

Hardness of Water. (c) Dr. Payal Joshi

Undesirable impurities in boilers. Maximum permissible Cycles of concentration (NC)

Hybrid RO & Softening Birjand Water Treatment Plant

Operation of Hydranautics New ESNA Membrane at St. Lucie West, FL Softening Plant

Environmental Chemistry - Water HL

Irrigation Water Quality for B.C. Greenhouses

IWC ZLD: New Silica Based Inhibitor Chemistry Permits Cost Effective Water Conservation for HVAC and Industrial Cooling Towers

EBD WATER TREATMENT FOR WATER BOILERS AND COOLING TOWERS

Slide 1. Slide 2. Slide 3. Hardness. Concentration is. What s the concentration of red triangles? What s in your pipes? 500 ml

Water softening using caustic soda: privileges and restrictions

Water Quality. CE 370 Lecture 1. Global Distribution of Earth s s Water

Characterization of Boiler Water from Various Industries

WATER SOFTENING. Notes about principles and plants

Boiler Water Treatment Design: The 5 Biggest Mistakes

ION EXCHANGE SYSTEMS

WATER BASICS ENGR. ALBERT SAMUELA KHUN UNNOP TONGYA

Water Conditioning Basics

Eco-Tec Announces RecoPur Super Softening Technology a Produced-Water Treatment Breakthrough

Water Talk. Volume 8, Issue 8 August 2008 Zero Blowdown, Reality or Fantasy? A Critical Look at the Claims and Possibilities

Lecture 18. Soil Acidity, Alkalinity, and Socidity

Soda Ash ( Sodium carbonate) Manufacture

0 50 Very soft Soft Medium Hard

Making feed water for you! Advantage. Protecting any Water Treatment System against. Scaling. a Water Company WAT C H WAT E R

Local Water Contaminants

In looking back at the history of boiler

Membrane Technology: From Manufacture to. May Production

Bushy Park Industrial Complex Bushy Park, South Carolina

INDUSTRIAL SEPARATE BED DEIONIZER. FDI Series. High Purity Industrial Packaged System

Boiler Water No.2 Test Kit Instruction Manual

Water Is Water,,, Or Is It?

Solus* AP - advanced boiler all-polymer internal treatment technology

Water Fit for Use. Avoiding the Unintended Consequences of Good Intentions

Water softening and scale prevention

Membrane Protection Resins Ion Exchange Resins and Reverse Osmosis in Partnership

Guideline for Technical Regulation Volume 2

SCALING IN GEOTHERMAL HEAT PUMP SYSTEMS

Sodium Peroxides (Na 2 O 2 ): Preparation: It is formed by heating the metal in excess of air or oxygen at 300, which is free from

SODIUM SULPHITE BASED WATER TREATMENT PROGRAM FOR CLOSED CHILLED WATER SYSTEMS

Boiler Water - Problems & Solutions

Modern Treatment Programmes Can Reduce Water Consumption in Cooling Towers

Recirculating Hot Water Systems

Guide to Optimal Steam Generation

Determination Of Cation And Anions In Industrial Boiler Water. *corresponding author

WATER DEIONIZATION. Notes about principles and plants

Silica Scaling in Water Treatment: Mechanism and Mitigation

Produced Water Treatment Systems

Hydrosol System Furnace Cooling Water Cleaning Case Study: North American Stainless

Removing Heavy Metals from Wastewater

AD26 Systems for Iron, Manganese, Sulfide and Arsenic Removal

Transcription:

Boiler Feed Water Reducing Scale and Corrosion, Part 1 of 2 By C.F. Chubb Michaud, CWSVI Summary: A big part of ion exchange s use in commercial/industrial applications involves boiler feed water. This series takes a look at treatment methods using salt regeneration in Part 1 and more advanced chemical regeneration and treatment techniques in Part 2. While taste, color and odor are the primary customer concerns with regard to residential water treatment, water quality is more than a matter of aesthetics when it comes to commercial/ industrial uses. What is clean water? The truth is, our municipal water is safe for the most part and enhancement is a matter of taste. However, the human body is far more tolerant of many impurities contained in our water than are many industrial applications that use water in their manufacturing processes. This series addresses some of the limitations of raw water for use as boiler feed and common methods of treatment for reduction of scale and corrosion. Discussions are limited to treatment by ion exchange. Water treatment needs Manufacturers who heat or cool water in their processes soon discover strange things can happen to water when solubility parameters of salts and gasses it contains are exceeded. Ice becomes cloudy, cooling loops fill with sludge, soap curdles, boilers develop an insulating layer of scale, condensers plug with corrosion and foods develop an off taste and color. Most, if not all, industrial processes require some form of water treatment for system efficiency. Volumes have been written on the various methods of pretreating industrial water and none are complete. This article addresses only a few treatment processes namely softening, dealkalizing and desilicizing raw feed water. The techniques described in this article are also applicable to laundries, ice and beverage production, food processing and others. It basically addresses removal of calcium, magnesium, alkalinity and silica to prevent scale and corrosion. Causing the problem The two most important reasons for pretreating boiler feed water are for reduction of scale and prevention of corrosion. Scale is caused by the precipitation of hardness and/or silica that s present in feed water. Corrosion is generally caused by presence of alkalinity that converts to carbonic acid in the steam. While corrosion can also stem from dissolved oxygen and/ or other acid formers, we won t address those here. Scale formation can stem from temporary hardness that is 1) calcium, magnesium or ferrous bicarbonate; 2) permanent hardness, such as from calcium sulfate; or 3) hardness caused by precipitation of silica (see Reactions 1, 2&3). * Reaction 1: Ca(H à Ca â ** +H 2 Reaction 2: CaSO 4 à CaSO 4 â Reaction 3: H 2 SiO 3 à SiO 2 â + H 2 O * heat ** precipitate These are explained as follows. Calcium and magnesium bicarbonate decompose to carbonates upon heating. Calcium sulfate dihydrate (natural gypsum) which has fair 104 Water Conditioning & Purification

solubility in cold water (2,400 milligrams per liter or mg/l) can precipitate out as gypsum scale in hot water above 100 o F as it converts to the Reaction 4: H 2 à CO 2 á * + H O 2 Reaction 5: 2 NaH à Na 2 + CO 2 á Reaction 6: Na 2 à 2 NaOH + CO 2 á * gas anhydrite form. Silica, which exists as a hydrated substance at room temperature, can form a glassylike precipitate at elevated temperatures. Silica can also volatilize and carry over with steam. Further, carbonic acid (from Reaction 1) volatilizes as CO 2 gas and water, which can recondense as carbonic acid in the steam (see Reaction 4). Even softened water containing alkalinity (as bicarbonate) will produce corrosive steam, although the resulting Na 2 won t form scale (see Reaction 5). The carbonate salt can further react to form the hydroxide and CO 2 (see Reaction 6). Therefore, most applications that produce hot water or steam find it s better to limit both hardness and alkalinity and in some cases, silica. If we consider the purpose of treating boiler feed is to produce high purity steam, we can more readily appreciate that the higher the pressure and temperature the more likely we are to carry over contaminants to the steam. In addition, we have more energy invested in producing higher temperature steam and would like to minimize the blow down dumping part of the boiling water to reduce total dissolved solids (TDS) to save money. It follows that the higher the boiler pressure the more we must limit the contaminants in the feed water. Keep in mind that boiling water can concentrate residual salts by a factor of 20:1 or higher. If we can only tolerate 1 part per million (ppm) of a particular contaminant in the boiler, we can only tolerate 0.05 ppm in the feed to the boiler. Table 1 demonstrates the guideline requirements recommended by the American Boiler Manufacturers Association see www.abma.com for boiler feed water based on a blow down of 5 percent (20:1 concentration): It can be noted that low and medium highpressure boilers will not require complete demineralization. Scale control via softening or chemical injection with dealkalization will usually suffice. Silica can also be controlled by chemical addition or desilicization by ion exchange. Hardness & alkalinity sources Falling rain and surface waters absorb carbon dioxide and other gasses to form dilute acids (see Reactions 7 & 8). As this water percolates into Circle 100 on Reader Service Card Circle 82 on Reader Service Card Water Conditioning & Purification 105

Table 1. Boiler water guidelines (conditions in boiler) Drum pressure Silica Total alkalinity* Hardness Conductance (psig) (ppm as SiO 2 ) (ppm as Ca ) (ppm as Ca ) (micromhos/cm) 0300 150 700 0 7000 301450 90 600 0 6000 451600 40 500 0 5000 601750 30 400 0 4000 751900 20 300 0 3000 9011000 8 200 0 2000 10011500 2 0** 0 150 1500000 1 0** 0 100 *Alkalinity not to exceed 10% of specific conductance ** Minimum level of OH alkalinity in boilers below 1,000 psi must be individually specified with regard to silica solubility. SOURCE: www.abma.com the soil, it will dissolve minerals and build in TDS (see Reaction 9). Reaction 7: H 2 O + CO 2 à H 2 Reaction 8: H 2 O + SO 2 à H 2 SO 3 Reaction 9: H 2 + Ca à Ca(H Alkalinity represents acid neutralizing or buffering capabilities in water. It can come from the presence of or OH ions as well as H in water. With the exception of H, alkaline salts of divalent ions such as Ca +2 and Fe +2 are almost completely insoluble. Therefore, the alkalinity we experience in most feed water with a ph of 6.5 to 8.5 will be H if hardness is present. Natural water rarely contains hydroxyl alkalinity (OH ). Depending upon ph, the relationship between CO 2, H and changes (see Figure 1). The hardness associated with bicarbonate alkalinity is termed temporary hardness. While this may sound like a minor problem, it isn t. When this water is heated, the H ion decomposes to CO 2 and ion and the CO 2 goes off with the steam and becomes carbonic acid (see Reaction 1). The carbonate that s left behind precipitates as insoluble calcium carbonate scale directly onto the heating surfaces. You now have a scaled up boiler and a corroded heat exchanger (but very little soluble hardness in the blow down). Needless to say, this isn t a good thing. Scale buildup in any heat transfer vessel can reduce the heat exchange efficiency by 50 percent or more. In hot water heaters, the build up of scale will reduce the heater volume over time. Silica Silica comes from the partial breakdown of natural aluminosilicates contained in the soil. Silica is more soluble in hot water than in cold and generally doesn t present a problem in water heaters or lowpressure boilers. At elevated temperatures, however, silica actually volatilizes with the steam. It can then deposit in condensers or on turbine blades causing mechanical problems and costly shutdowns. The amount of silica contained in the steam becomes significant, above 600 pounds per square inch (psi) of steam pressure. Silica is less soluble in low TDS waters than in high TDS water, thus a boiler requiring deionized (DI) water generally above 1,000 psi may also have limits for silica lower than might otherwise be expected. There are both economic as well as efficiency reasons to soften and dealkalize boiler feed water. Unless there s a need for TDS or silica reduction along with hardness and alkalinity reductions, simple salt regenerated ion exchange provides a complete and economical choice. Silica, however, cannot be removed with a salt regenerated system. Pretreatment designs Hardness removal uses a strong acid cation exchanger. Sizing of the softening unit will vary with the flow rate and desired run length (see Reaction 10). Calculate grain removal capacity as: gpm gpg 60 hrs = grains removal capacity between cycles. Divide this number by the capacity of the softening resin to get the Figure 1. CO 2 equilibrium vs. ph. Fraction of carbon dioxide 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 CO 2 gas = H 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ph Figure 2. Hardness vs. influent TDS. Hardness leakage (ppm as Ca ) 100 50 20 1.0 10 2.0 5 3.0 2 5.0 10 15 30 1 100 200 500 1,000 2,000 5,000 10,000 Combined sodiumcalcium influent (ppm as CacO 3 ) 106 Water Conditioning & Purification

number of cubic feet of resin required (see Reaction 11). Reaction 10: Ca(H + O Na+ * à O Ca+2 + NaH Reaction 11: Regeneration O Ca+2 + NaCl à ONa+ + CaCl + NaCl** 2 * O in this case represents an ion exchange resin with Na, Ca, H or Cl attached ** indicates excess salt The ability of a softener to produce very low hardness leakage will depend upon the TDS and regeneration salt level. Ten pounds of salt will produce 1 ppm of hardness leakage in water up to about 700 ppm in TDS, and 5 ppm leakage in water up to about 1,600 ppm in TDS. Fifteen pounds or more can be used for lower leakages or to treat water at higher TDS (see Figure 2). Cocurrent strong acid cation (SAC) softeners are limited to TDS in the feed of about 3,000 ppm but can be run effectively at TDS in excess of 5,000 ppm with high brine doses 30 pounds per cubic foot (lbs/ft 3 ) or more. Series softeners Counterflow regenerated SAC allows for more effective usage of brine and produces lower leakage in higher TDS feed water. Because of the complexity and expense of a proper countercurrent system, units are often designed with only the polisher of a twointandem softener design. This is referred to as series softening, which utilizes a coflow primary and a counterflow polisher. This design has been effectively used for softening produced waters from oil field steam floods that are 5,000+ TDS and deliver leakages of less than 1 ppm hardness (see Figure 3). Strong brine at 15to18 percent is pumped into the bottom of the polisher. A blocking flow of primary softened water is pumped to the top. The partially spent and diluted brine is taken off at the regenerant collector (now at about 10 percent strength) and pumped to the top of the primary. The total amount of brine is based on a stoichiometric quantity for the polisher plus the normal level for the primary. The polisher, however, sees all the brine, which is what produces very low leakages. Addi Figure 3. Series softening Inlet 10% brine SAC resin bed primary Brine waste Blocking flow Lateral SAC resin bed polisher 18% brine Brine makeup Service outlet Circle 97 on Reader Service Card Circle 83 on Reader Service Card Water Conditioning & Purification 107

tional efficiency benefits can be gained by running both the primary and the polisher in a counterflow mode. Most of the benefit of counterflow regeneration is lost if the resin bed isn t held in place during brining. Anion softening Hardness salts don t form scale unless they have the appropriate counterions present (, SO 4 ). The process of using a saltregenerated strong base anion exchanger to remove those ions has been termed anion softening. Here, strong base anion (SBA) resins usually a Type II in the chloride form will exchange bicarbonates and carbonates (alkalinity) along with sulfates for chlorides (see Reaction 12). All hardness chlorides are soluble, eliminating scale formers. Plus, alkalinity is reduced. Regeneration is with salt (see Reaction 13). Reaction 12: Ca(H + O Cl à O HCO3 + CaCl 2 Reaction 13: O HCO3 + NaCl à O Cl + NaH + NaCl A secondary source of softened water should be used for regeneration to eliminate the possible precipitation of Ca, CaSO 4 and Mg. When an anion softener is used purely for the reduction of alkalinity, it s referred to as a dealkalizer. Here, our service reaction involves only the removal of bicarbon Figure 4. Dealkalization capacity vs. alkalinity fraction 16 15 14 13 Influent TDS 500 ppm NaCl + NaOH 250 ppm Dealkalizing capacity (kg as Ca /cu.ft.) 12 11 10 9 8 7 6 5 4 500 ppm 250 ppm NaCl only 3 2 1 Circle 48 on Reader Service Card 0 0 10 20 30 40 50 60 70 80 90 100 Fraction of H as (%) 108 Water Conditioning & Purification

ates, although and SO 4 will still be removed (with reactions similar to Reaction 12). Capacity can be enhanced by adding a small amount of caustic soda (NaOH) to the brine. A comparison of capacities for a typical Type II SBA is shown in Figure 4. Use of a small amount of caustic with regenerant brine will improve performance of a dealkalizer by elevating ph slightly during service. Some H will convert to, which is picked up better by the chloride form SBA resin. Feed water should be presoftened if your design includes use of caustic with brine for regeneration. Inclusion of SAC and SBA in the same vessel for simultaneous reduction of hardness and alkalinity in a single tank, although commonly done, is not recommended. The waste regenerant, which will be high in both hardness and alkalinity, will surely precipitate and cause fouling. The same holds true if the same regenerant is used for regenerating two separate vessels simultaneously. Acidified brine has been successfully employed. If the regenerant ph is held below 5.5 with addition of citric acid (1.0 lbs citric acid/100 lbs of salt), ions will be converted to H and carbonate precipitation can be avoided. H to SO 4 ratios should be at least 10:1. Otherwise, CaSO 4 precipitation may still occur (see Reaction 2). Conclusion This article dealt with boiler feed water treatment and scale prevention methods using ion exchange that involve salt regeneration only. Part 2 of this series next month will review use of weak acid resins, decarbonators and silica removal. q About the author S C.F. Chubb Michaud, CWSVI, holds bachelor s and master s degrees in chemical engineering from the University of Maine and has more than 30 years of professional experience in water and fluid treatment processes. Michaud is technical director for Systematix Inc. of Buena Park, Calif. He also is chairman of the Water Quality Association s Ion Exchange Task Force, sits on the Science Advisory Committee and is a founding member of the WC&P Technical Review Committee. Michaud can be reached at (714) 5225453, (714) 5225443 (fax) or email: cmichaud@systematixusa.com REPRINTS Improve your bottom line Help your business grow Increase your visibility Educate your customers For more information, contact Tom Losito (520) 3236144 or email: tlosito@wcponline.com Circle 99 on Reader Service Card Circle 84 on Reader Service Card Water Conditioning & Purification 109