Biological Carbon Uptake and

Similar documents
Economics of increasing afforestation and reforestation as a mitigation measure. G Cornelis van Kooten University of Victoria, Canada

Economic Concepts. Economic Concepts and Applications to Climate Change

Economy: Climate Change, Agriculture and the Rest

SINKS IN THE CDM? IMPLICATIONS AND LOOPHOLES

Discussion Paper. Voluntary Carbon Offsets

Forests and Climate. Changing Forests. Carbon, Climate over Time. Current Forest Change. Why Should We Care? Forest Carbon Cycle

CHAPTER 11 FOREST CARBON SINKS: A TEMPORARY AND COSTLY ALTERNATIVE TO REDUCING EMISSIONS FOR CLIMATE CHANGE MITIGATION

CANADA. INFORMAL SUBMISSION TO THE AWG-KP Information and Data on Land Use, Land-Use Change and Forestry (LULUCF) September 2009

Overview of Offsets Types in Agriculture and Forestry and Key Policy Issues

An Industry Perspective on Canada s s Climate Change Program

The role of LULUCF in the Kyoto Protocol, in countries' mitigation efforts, and in post-2012 climate policy

Saskatchewan Soil Conservation Association Inc. Box North Park PO, Saskatoon, SK S7K 8J

Narration: In this presentation you will learn about mitigation mechanisms and carbon markets.

Carbon Offsets BY: JOE ARCANGELO

Why Copenhagen Still Matters:

The World Bank s Carbon Finance Business Options for Thailand. September 29, 2004

Climate Change Policy and Economics: Implications and Opportunities for Agriculture. KSU Extension Conference Global Climate Change Session

2. Climate change and forests

Emissions Intensity CHAPTER 5 EMISSIONS INTENSITY 25

Is Biomass Energy Carbon Neutral?

The Big Picture: Relationship between Forests and Climate Change

Contribution of Forest Management Credits in Kyoto Protocol Compliance and Future Perspectives

Narration: In this presentation you will learn about the basic concepts of carbon accounting and the

Curbing Greenhouse Gases: Agriculture's Role

Forest Carbon and Silviculture

Lesson 9. Objectives: ocus: Subjects: 1. To understand that carbon cycles from one form. 1. Science: Ecology & Chemistry 2. Reading / Language Arts

Mitigation options in the forest sector

Inclusion of Soil C Sequestration in the CDM? COP-6 and Beyond

The two markets. Outline. C-offsett investments: the two markets CERTIFICATION OF C-OFFSETT FORESTRY PROJECTS. Repetita iuvant

Food and Agriculture Organization of the United Nations

Main sharad activities and results. Marco Meggiolaro LT Terra&Acqua Tech/ University of Ferrara

Biomass Carbon Neutrality

Climate Change Policy Partnership

Multi-functionality and sustainability in the European Union s forests

Michael Thorpe Managing Director Infrastructure and Utilities

State of knowledge: Quantifying Forest C capacity and potential. Tara Hudiburg NAS Terrestrial Carbon Workshop September 19 th, 2017

CDM/JI an efficient way to reduce our financial exposure to carbon

Understanding Carbon Credit Opportunities in Northeast Minnesota

Overview. 1. The UNFCCC and the Kyoto protocol 2. Roles of agriculture and forestry in climate change

Climate Change Implications: Policy, Carbon Markets and the Farm. Edgar Hammermeister, P.Ag. 2nd VP Soil Conservation Council of Canada

Climate Policy in the US and Canada: Learning from past policy failures. Mark Jaccard. Simon Fraser University Vancouver.

Narration: The presentation consists of three parts.

Understanding Sequestration as a Means of Carbon Management. Howard Herzog MIT Energy Laboratory

Chapter 7 Energy-Related Carbon Dioxide Emissions

Scope and methodology for measuring the Greenhouse Gas (GHG) and Carbon Profile of the Canadian Forestry Industry

Review of Carbon Markets

Climate change: a development perspective

Forest and plantation challenges and opportunities for emission trading

Climate Change Policy Development Update on farm friendly policy advocacy JOHN BENNETT FARMER, ADVISOR SASKATCHEWAN SOIL CONSERVATION ASSOCIATION

Recommendations for Enhancing the Role of Forests In Climate Change Mitigation and Ecosystem Adaption to Climate Change

Forestry, Carbon Markets and Ecosystem Services. Jim Bowyer Dovetail Partners, Inc.

Carbon Sequestration, Its Methods and Significance

Appendix 1: Forest Carbon Emission Offset Project Development Guidance

BC Hydro Renewable Generation Market Competitiveness Report

Kyoto Protocol and Carbon Market Drivers

AN AGE-CLASS FOREST MODEL WITH SILVICULTURAL INPUTS AND CARBON PAYMENTS

Waste Wood, Wasted Opportunity: The Value of Carbon in British Columbia

Everything you need to know about biomass - Interesting energy articles - Renewables-info.com

Analysis On The Method Of Highway Carbon Sink Forest

Carbon Cap-and-Trade: Impacts to First Nations

THE VOLUNTARY CARBON OFFSET MARKET IN AUSTRALIA

Key Findings (English)

Scientific Facts on. Forests

Subsidies to Industrial Forest Plantations: Impacts and Implications

EPA Analysis of the Waxman-Markey Discussion Draft: The American Clean Energy and Security Act of 2009 Executive Summary April 20, 2009

Climate Policies and Carbon Capture and Storage in the Dutch Power Sector

Forest industries. National Association of Forest Industries. and climate change

Duke Energy s Low Carbon Strategy Initiatives for West Virginia December 8, 2009

WORKING PAPER Resource Economics and Policy Analysis (REPA) Research Group. Department of Economics University of Victoria

Paper presented to the New Zealand Institute of Foresters Conference, Wellington NZ, April 20 to

An Introduction to the Economic Projection and Policy Analysis (EPPA) model

Kyoto Protocol and Beyond: The Economic Cost to Spain

State of resources reporting

Reducing Emissions from Deforestation and Forest Degradation

The world forest sink closes the global carbon cycle

In 2011 burning of fossil fuels provided 83% of mankind s energy resource while nuclear electric power provided 9%, and renewable energy 8% (1).

An Economic Framework for Analyzing Forest Landscape Restoration Decisions

Zero Net Deforestation

Some Effects of Biogenic Energy on Wood Fiber Markets

GRACE: A model for integration of knowledge on climate change and policies

RESPONSE TO CALL FOR INFORMATION ON BIOMASS ACCOUNTING BY EPA

Forests and Global Climate Change

SPE Distinguished Lecturer Program

Sectoral Approaches in International and National Policy

AFTER COP 21 (PARIS): FES 2030 FOSSIL EXIT STRATEGY 2030 FOR EUROPE

K38e: Deforestation and Climate

forestry -practices, and carbon dioxid ribs o u m ia : oress, MINI~TRy LIBRARY 1450 QOVERNIt I ST RESEARCH Introduction Forests and th e carbon cycle

Information on LULUCF actions by Sweden. First progress report

Kurt Niquidet

To Start Describe this map (3 marks)

Ray Massey Commercial Ag Program Crops Economist

Agricultural Contributions to Carbon Sequestration

Renewable energy in Europe. E-turn 21 workshop Cologne, 10 May 2006

5/27/09. Climate Change, Carbon Trading and Cockey s. Contributing Countries in aggregate terms. Best Worst

Renewable & Alternative Energy Resources: What s the difference? 2

A Framework for Analyzing Forest Landscape Restoration Decisions. CBD Training

than fossil fuels per unit of energy released CO 2

Submission on New Zealand s Post 2020 Emission Reduction Target. A Submission by Carbon Market Solutions Ltd. 29 May 2015

Carbon sinks and biofuels silviculture in the Greenhouse

Biofuels, Land Use Change, and Climate

Transcription:

Biological Carbon Uptake and Carbon Sinks: Role of Forests G. Cornelis van Kooten University of Victoria Victoria, British Columbia May 5 2009 May 5, 2009 Western Forest Economists Welches, OR

Background papers: van Kooten, GC, 2009. Biological Carbon Sinks: Transaction Costs and Governance, The Forestry Chronicle In press. van Kooten, GC, 2009. Biological Carbon Sequestration and Carbon Trading Re-Visited, Climatic Change In press. van Kooten, GC & B Sohngen, 2007. Economics of Forest Carbon Sinks: A Review, International Review of Environmental & Resource Economics 1(3): 237-269. Manley, J, GC van Kooten, K Moeltner & DW Johnson, 2005. Creating Carbon Offsets in Agriculture through Zero Tillage: A Meta-Analysis of Costs and Carbon Benefits, Climatic Change 68: 41-65. van Kooten, GC, AJ Eagle, J Manley & T Smolak, 2004. How Costly are Carbon Offsets? A Meta-analysis of Carbon Forest Sinks, Environmental Science & Policy 7(4): 239-51.

Climate: Background Current rush to implement climate policy EU renewable energy targets ETS of 2005; trading in western states t (WCI) US renewable energy initiatives, including subsidies for electricity renewables and notably biofuels China and India using CDM funding BC has implemented carbon tax

Climate Background (cont) Should something be done about climate change? Can something be done? Is Kyoto Protocol effective? Chinese emissions rose 11% in each of 2005, 2006, and by 8% in 2007. China accounts for 35% of increase in global l emissions Norway: emissions rose 15% after carbon tax was implemented Kyoto targets are not being met

Success at Meeting Kyoto Targets Relative to target Relative to base year Australia Canada EU-15 France Germany United Kingdom Rest EU-15 Japan New Zealand Russia Eastern Europe USA Other TOTAL -50.00-30.00-10.00 10.00 30.00 50.00 % above or below

Heat Island Effect of Temperature Measurement US high temperatures occurred in 1930s Average temperature for 1 st six months of 2008 put us back 100 years Climate in Victoria generally warmer than Edmonton. Has gap narrowed? Have winter temperatures narrowed more than summer ones? Have night-time temps (lows) risen faster than daytime temps (highs)?

Average Annual Temperatures 15.00 Deg C elsius 12.00 9.00 6.00 Victoria 3.00 Edmonton 0.00 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Year

Average Maximum minus Minimum Temperatures 20.0 Deg Celsius 16.0 12.0 8.0 Edmonton 4.0 Victoria i 0.0 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Year Indicative of human heat island effect

What is going on? Summer temperatures are rising slowly in both locations; Edmonton s winter temperatures are rising, but not those of Victoria KEY: the max-min difference has declined significantly in Edmonton, suggesting heat island effect Climate data supposedly filter out this effect, but as much as half of the measured post-1980 landbased global warming may be attributable to contamination of the basic data (McKitrick & Michaels, J Geophysical Research 112: 2007)

Biological Sink Activities Many sellers of CO 2 offsets created by sinks Greenfleet, Australia will plant trees for a donation www.greenfleet.com.au/greenfleet/objectives.asp Trees for Life claims to reduce your carbon footprint for a fee www.treesforlife.org.uk/tfl.global_warming.html Haida Gwaii want to restore old-growth trees (must remove alder first) and is selling carbon credits (www.haidaclimate.com/) Little Red River Cree and Powell River Community Assoc want carbon credits for not harvesting trees (timber markets are currently the worse they have been in years!) How many are legitimate offset activities?

CDM Forestry Projects Sequestration of CO 2 via forestry projects is popular within CDM. First project approved in November 2006 (UNFCC 2006): to establish 2,000 ha of multiple-use forests on degraded lands in Huanjiang County of Guangxi province of China (sponsored by Italy and Spain). Cost: $4 per t CO 2 Total sequestration over 30-year life: 773,842 tco 2 2,, or 25,795 tco 2 annually Ignores potential loss of CO 2 in 2036, fire/disease risk, etc.

CDM Forestry Projects FAO (2004) examined 49 projects then underway or proposed to create carbon offset credits: 43 in developing countries and eligible for CDM credits 38 forestry projects 17 involve forest conservation 33 provide some information on amount of carbon sequestered 24 have data considered d good 11 provided information on costs None had data on the timing of carbon uptake or release

Meta-regression Analysis Based on a meta-regression analysis of 68 studies, 1047 observations, we determine costs of sequestering carbon in forest ecosystems.

Study Averages All observations Region and Scenario (n=68) (n=1047) Global $28.85 $25.10 Planting $0.26 -$4.93 Planting & opportunity cost of land $29.80 $21.91 Planting, opportunity cost of land & fuel substitution -$40.14 $19.88 Forest management $88.47 $35.31 Forest management & opportunity cost of land $118.01 $62.15 Forest management, opportunity cost of land & fuel $48.07 $60.12 substitution Forest conservation $158.28 $20.16 Forest conservation & opportunity cost of land $187.82 $47.00 Europe $173.26 $183.64 Planting & opportunity cost of land $185.44 $180.14 Planting, opportunity cost of land & fuel substitution $115.50 $178.11 Forest management & opportunity cost of land $273.65 $220.38 Forest management, opportunity cost of land & fuel $203.71 $218.35 substitution Tropics (CDM Projects) -$26.2020 $4.04 Planting & opportunity cost of land -$25.26 $0.85 Planting, opportunity cost of land & fuel substitution -$95.20 -$1.18 Forest management & opportunity cost of land $62.95 $41.09 Forest management, opportunity cost of land & fuel -$6.99 $39.06 substitution tion Conservation $103.22 -$0.90 Conservation & opportunity cost of land $132.76 $25.94 Boreal Region $58.01 $8.77 Planting & opportunity cost of land $70.19 $5.26 Planting, opportunity cost of land &f fuel substitution $0.25 $3.23 Forest management & opportunity cost of land $158.40 $45.50 Forest management, opportunity cost of land & fuel substitution $88.46 $43.47

Meta-regression Analysis Only 10% of studies provided data on how long carbon was held in the terrestrial sink. Most forest activities not competitive with emissions reduction because of high opportunity cost of land. Even when account is taken of carbon stored in wood products, costs are high. Some activities in some regions are worth undertaking, many are not. When trees are harvested and burned in place of fossil fuels to generate electricity, one gets best results, but not for all locations. More recent research suggests this needs further investigation

Agriculture: Storing Carbon in Soil Yields Carbon Credits During the 1990s farmers increasingly During the 1990s, farmers increasingly adopted conservation tillage practices, particularly zero tillage cropping.

Storing Carbon in Soil Yields Carbon Credits Profit to no till = saving from reduced tillage output price yield input price chemicals zero tillage lowers yield, reduces tillage costs and increases chemical use during the 1990s, output prices and chemical prices were low increase in output price = opportunity cost of lost yield increased chemical prices implies costs of chemicals is higher and it is cheaper to substitute tillage for chemicals

Storing Carbon in Soil Yields Carbon Credits To determine cost of sequestering carbon in soils by shifting from conventional to zero tillage, we needed two meta-regression analyses: Carbon flux caused by shift to no till: we found that carbon flux narrowed with increase in soil depth (52 studies) (Baker et al. Agric., Ecosystems & Environ. 2007) Cost of shifting from conventional to zero till agriculture (51 studies) Next table summarizes the results of the two meta-regression analyses.

Cost of Creating Carbon Credits via Zero Tillage Agriculture, $ per metric ton of CO 2 Region Wheat Other Crops U.S. South $3 to $4 $½ to $1 Prairies $105 to >$500 $41 to $57 US U.S. Corn Belt $39 to $51 $23 to $24

Store Carbon in Soil and get Carbon Credits Conclusion: Conservation tillage appears a winner in some but not all cases. Problems: Ephemeral nature of soil conservation E.g., g, 12 years of soil conservation can be reversed in one year (Olson et al., J of Soil & Tillage Research, 2005) Duration Problem: How do we compare projects of different durations?

Comparing Carbon Credit Values when Duration Differs Across Projects This depends on: discount rate (r) time it takes a ton of CO 2 stored in a forest ecosystem to return to the atmosphere (n) time it takes a ton of CO 2 not emitted today to increase emissions at a future date (N)

Comparing Carbon Credit Values when Duration Differs Across Projects Proportional value of a sink credit to an emissions reduction credit (α) varies depending on: relationship between n and N discount rate growth rate (γ) in damages from atmospheric concentrations of CO 2

Comparing Carbon Credit Values when Duration Differs Across Projects The following slides indicate values of a temporary relative to a permanent carbon credit (α), for the following growth rates of shadow price of carbon at N=100, 200 and 500 years: γ = 0.00 γ = 0.01 As γ increases, the value of a temporary carbon credit declines relative to a permanent credit

Value of a Temporary Relative to a Permanent Carbon Credit (α), γ = 0 n to N ratio N =100 years N =200 years N =500 years Discount rate Discount rate Discount rate 2% 5% 10% 2% 5% 10% 2% 5% 10% Growth rate of shadow price of carbon, γ=0 0.01 0.023 0.048 0.091 0.040 0.093 0.174 0.094 0.216 0.379 0.05 0.109 0.218 0.379 0.183 0.386 0.614 0.390 0.705 0.908 0.10 0.208 0.389 0.615 0.333 0.623 0.851 0.629 0.913 0.991 0.15 0.298 0.523 0.761 0.457 0.769 0.943 0.774 0.974 0.999 020 0.20 0.379 0.628 0.851 0.558 0.858 0.978 0.862 0.992 1.000 0.25 0.453 0.710 0.908 0.641 0.913 0.991 0.916 0.998 1.000 0.30 0.520 0.775 0.943 0.709 0.947 0.997 0.949 0.999 1.000

Value of a Temporary Relative to a Permanent Carbon Credit (α), γ = 0.01 n to N =100 years N =200 years N =500 years N Discount rate Discount rate Discount rate ratio 2% 5% 10% 2% 5% 10% 2% 5% 10% Growth rate of shadow price of carbon, γ=0.01 0.01 0.016 0.039 0.082 0.023 0.075 0.157 0.048 0.177 0.347 0.05 0.077 0.180 0.347 0.109 0.322 0.574 0.220 0.621 0.882 0.10 0.150 0.329 0.574 0.208 0.540 0.819 0.392 0.857 0.986 0.15 0.219 0.451 0.722 0.297 0.688 0.923 0.526 0.946 0.998 020 0.20 0.285 0.551 0.819 0.378 0.789 0.967 06310 0.631 0.979 1000 1.000 0.25 0.348 0.634 0.882 0.452 0.857 0.986 0.713 0.992 1.000 0.30 0.408 0.703 0.923 0.519 0.903 0.994 0.778 0.997 1.000

Discussion Sink offset credits cannot generally be traded d onefor-one for emission reduction credits, even if the latter are not considered permanent; NOR can credits from different sink projects be traded one-for-one without some adjustment for duration (say using previous tables).

Discussion Vl Value of temporary carbon storage fall fllas the shadow price of damages from CO 2 rises. Consequence: reduced demand for short-term sequestration as landowners will delay investing in land-use activities that create carbon credits so as to obtain a higher price in the next period

Discussion Equivalently, l landowners delay investments in carbon sink activities if opportunity cost of time falls, which essentially happens when CO 2 damages rise over time (the shadow price γ increases).

Discussion Given great difficulty determining not only the discount rate and the growth rate in damages, but also uncertainty surrounding n and N, it will simply not be possible for the authority to determine a conversion factor between activities leading to carbon credits of differing duration. Perhaps one can rely on the market to determine conversion rates, but even the market will have difficulty resolving all uncertainty. In the absence of a certifying authority that guarantees equivalence and thereby resolves uncertainty, sink credits will be worth a lot less.

Discussion To judge sink projects in the absence of market data requires the analyst make arbitrary judgments about the discount rate, the rate of increase in damages, and the conversion rate between projects to remove CO 2 from the atmosphere to account for differing i durations. These are over and above assumptions and uncertainty related to vegetation growth rates, uptake of carbon in soils, wildfire, disease, pests, etc.

Discussion Some advocate for low discount rates, but low rates of discount militate against terrestrial sink activities.

Discussion If the rate of increase in damages equals or exceeds the discount rate, CO 2 offset credits from sink activities are only worth n/n of an emissions-reduction credit. This is equivalent to assuming a zero discount rate for physical carbon. But this implies that temporary offsets from biological sink activities are overvalued because, as N, the value of a temporary offset credit falls to zero. (N if an emissions-reduction policy changes behavior that cause permanent reductions in CO 2 emissions).

Discussion If a country relies on terrestrial carbon sinks during Kyoto s 1st commitment period and remains committed to long-term climate mitigation, it is in trouble! Suppose it relies on forest sinks for one-third of a 6% reduction in emissions and commits to a further 7% reduction for the second commitment period. In the 2nd period, it must still reduce emissions by 11%. It has only reduced emissions by 4% in 1st period, so it must reduce emissions by 9% in the 2nd period. But as the forest sink releases its carbon to the atmosphere, it must also cover that loss, which amounts to a further 2% reduction in emissions.

Discussion (continued) Temporal shifting in the emissions-reduction burden caused by reliance on carbon sinks results in an onerous obligation for future generations, one which they may not be willing to accept.

Two more thoughts 1. Giving carbon credits to conservation (preventing deforestation) opens one up to corruption 2. Burning forest biomass to generate electricity is not carbon neutral. Eg. Burning mountain pine beetle killed wood results in increased CO 2 emissions just as burning of coal (and likely more so). Benefits come from growing trees, not burning them.

Conclusion Do away with the terrestrial sink option and Do away with the terrestrial sink option and focus on energy and real emissions reduction!

Background papers: van Kooten, GC, 2009. Biological Carbon Sinks: Transaction Costs and Governance, The Forestry Chronicle In press. van Kooten, GC, 2009. Biological Carbon Sequestration and Carbon Trading Re-Visited, Climatic Change In press. van Kooten, GC & B Sohngen, 2007. Economics of Forest Carbon Sinks: A Review, International Review of Environmental & Resource Economics 1(3): 237-269. Manley, J, GC van Kooten, K Moeltner & DW Johnson, 2005. Creating Carbon Offsets in Agriculture through Zero Tillage: A Meta-Analysis of Costs and Carbon Benefits, Climatic Change 68: 41-65. van Kooten, GC, AJ Eagle, J Manley & T Smolak, 2004. How Costly are Carbon Offsets? A Meta-analysis of Carbon Forest Sinks, Environmental Science & Policy 7(4): 239-51.

Effect of US Wind Energy Production Tax Credit (PTC) on Investment Adde ed Capacity (MW) 3000 2250 1500 750 0 Effect of removal of PTC was to reduce investment dramatically 1999 2000 2001 2002 2003 2004 2005 2006 2007 Year

Costs of reducing CO 2 emissions Generation Reducing emissions Increase in per MWh mix/ Wind per tco 2 costs penetration 10% 30% 10% 30% High hydro $1,493.71 $3,339.88 73% 245% (HH) Typical (TT) $120.03 $272.58 26% 88% Fossil Fuel (FF) $42.86 $73.63 16% 58%

Model Conclusion: Intermittent power leads to added costs to the system that must be considered in project analysis Wind Power can displace CO2 emissions but in a non-linear and often decreasing fashion Their ability to do so heavily depends on the pre-existing generating mix However, there may be non-marketed benefits of tidal power over wind power, and renewable power in general