Railway Alignment Design and Geometry

Similar documents
TECHNICAL MEMORANDUM

Conceptual Design Report

North Carolina Railroad Company Engineering Department. Design and Construction Guidelines

CURVED STEEL I GIRDER BRIDGES RAMP GH OVER THE ERIE CANAL INTRODUCTION BEHAVIOR OF CURVED BRIDGES DIFFERENCES FROM STRAIGHT BRIDGES

I 244 Arkansas River LRT Track & Bridge Design Criteria Report

2.0 Purpose. 3.0 Work Plan. Page 1 of 7

Standards Respecting Railway Clearances. May 14, 1992 (TC E-05)

Upgrading Rail Lines for Higher Speeds

AASHTOWare Bridge Rating/DesignTraining. STL9 Curved Steel 3D Example (BrR/BrD 6.5)

CHAPTER 4 GRADE SEPARATIONS AND INTERCHANGES

Structural - Engineering Review Checklist

Railroad Surveys, Profiles and Topographic Surveys

Trackway Guidelines for Streetcar and Light Rail Circulator Systems Infrastructure 12th National Light Rail Conference

PHASING CONSIDERATIONS FOR BRIDGES

AASHTOWare BrDR D FEM Analysis Tutorial. Curved Steel Multi-Span 3D Example

Fundamentals and Selected Technical Issues High Speed and Heavy Axle Railroad Engineering

PIER PROTECTION (VEHICLE COLLISION) September 13, 2018

AED Design Requirements: CERP Road - Geometric Requirements and Flexible Pavement Section Design

Bridge articulation No. 1.04

500 Interchange Design

LAFAYETTE RAILROAD RELOCATION, NORFOLK SOUTHERN CORRIDOR

UPRR criteria for sizing waterway openings under bridges and through culverts are as follows:

CONCRETE SPLICED GIRDERS IN TEXAS. Nicholas Nemec, P.E. TxDOT-BRG

How Loads Are Distributed

Highway Motor Transportation. Concentrate On Commercial Motor Vehicles (CMV) Trucks Busses

Michigan DOT: Design Challenges of Dearborn to Ypsilanti Double Track Project

500 Interchange Design

CHAPTER 7 ROADWAY STANDARDS AND TECHNICAL CRITERIA

Guidelines for Checking Final Design Bridge Plans

Rapid City, SD HDR Project No RE: Replacement of Existing I-190 Twin Bridges at I-190/Silver Street Interchange, Rapid City, SD

Copyright 2015 American Institute of Steel Construction. All rights reserved.

LOADS AND FORCES ON TIMBER BRIDGES

Chapter 1. General Design Information. Section 1.02 Structure Selection and Geometry. Introduction

February 24, Basis of Design. Technical Criteria for Concept & Preliminary Engineering. Final Report

Characterization of Vertical and Lateral Wheel Loads

Transportation Route Alignments

Appendix C: Port Jervis Line Capacity Improvements Analysis. Technical Memorandum 2: Passing Siding Alternative

TRAFFIC SAFETY EVALUATION. Using the Highway Safety Manual and the Interactive Highway Safety Design Model. I 15 Dry Lakes Design Exception

49-2A Clear-Zone Width for New Construction or Reconstruction B Clear-Zone Adjustment Factor, K cz, for Horizontal Curve...

Standard Respecting Railway Clearances

Route Selection and Design of a Coal Shuttle Railroad: Experiences of a Recent Railroad Engineering Graduate

NORFOLK SOUTHERN CORPORATION UNDERPASS GRADE SEPARATION DESIGN CRITERIA

Switches and Crossings

Commercial Ties. Cost Effective Solutions for Mainline Track Applications

CHAPTER 12 BRIDGE DECK DRAINAGE SYSTEMS

STREET IMPROVEMENTS (Refer to Title 18, chapter entitled "STREETS" of the Layton Municipal Code.)

ALIGNMENT ANALYSIS AND COMPARISON TECHNIQUES FOR SMALL RAILROAD PROJECTS IN THE 21 ST CENTURY. C. Tyler Dick, P.E.

Section 13. Guidelines for the Design of Ground Mounted Sign Supports

100 Design Controls and Exceptions

MICHIGAN DEPARTMENT OF TRANSPORTATION BRIDGE DESIGN GUIDES TABLE OF CONTENTS

CHAPTER 6 VERTICAL ALIGNMENT

Superstructure Guidelines

OKLAHOMA DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR PAVEMENT AND BRIDGE DECK SMOOTHNESS

SCRRA Design Criteria Manual

Implementing Vibration and Rail Gap Controls in Preliminary Design of Sound Transit Lynnwood Rail Link Extension

MIDAS Civil 2016 v2.1 Release Webinar. PSC Composite Design Check / Load rating

New Jersey Turnpike Authority

SUBDIVISION SECTION STREET DESIGN MANUAL

SCOPE OF WORK AND DELIVERABLES

PROPOSED BEAM STABILITY SUBMITTAL REQUIREMENTS March 3, 2017

Whose responsibility is it? Design Responsibility. Steel Joist Institute. Standard Assumptions. Common Pitfalls in Steel Joist Specification

Review of Plans and Specs from a Constructability Perspective

Refer to the attached pages, which replace the former pages in their entirety:

Sieve Size 2" 1" 3/8" No. 10 No. 40 No. 200 % Passing Size

Designing for Longitudinal Force

University Region FY 2023 Final Scoping Package

Chapter GRADE SEPARATIONS & INTERCHANGES

RESILIENT INFRASTRUCTURE June 1 4, 2016

Utah Transit Authority Commuter Rail. Design Criteria. Chapter 1 General Requirements and Table of Contents. Revision 2, July 2010.

PERFORMANCE BASED PRACTICAL DESIGN

6 th STREET VIADUCT SIESMIC IMPROVEMENT PROJECT

MTST TRACK DESIGN AND CONSTRUCTION

STANDARDIZED CONCRETE BRIDGES IN TEXAS. John Holt, PE, Texas Department of Transportation Ronald Medlock, PE, Texas Department of Transportation

Submission Date: November 14, ,114 words (not including Title Page) plus words each = 4,114

I-35/I-80/Iowa 141 Interchange IJR and NEPA A Practical Approach to Resolving a Decades-Old Traffic Operations Challenge

TABLE OF CONTENTS CURVED AND SKEWED BRIDGES NOTATION 12.1 SCOPE

Tarbutton Road Interchange and I-20 Frontage Roads. Estimating and Planning Group

Dead Loads. Load Resistance ηγ i Q i ΦR n. Design Criteria. EGCE 406 Bridge Design III. Loads on Bridge Summary of Concepts.

Railroads An Introduction

Barriers, Parapets, and Railings

The Folded Interchange: An Unconventional Design for the Reconstruction of Cloverleaf Interchanges

Steel Railway Bridge Fatigue and the Evolution of Railway Car Loadings

CUYAHOGA COUNTY DEPARTMENT OF PUBLIC WORKS CUYAHOGA COUNTY ENGINEER TOWNSHIP SUBDIVISION STREET DESIGN STANDARDS AND IMPROVEMENT PLAN REQUIREMENTS

DESIGN OF ROAD OVERBRIDGES

Changes to the following sections of Tollway Structure Design Manual shall apply:

ESTIMATING MAINTENANCE COSTS FOR MIXED HIGHER SPEED PASSENGER AND FREIGHT RAIL CORRIDORS

OHIO DEPARTMENT OF TRANSPORTATION CENTRAL OFFICE, 1980 W. BROAD ST., COLUMBUS, OHIO

BRIDGE DESIGN MANUAL UPDATES. Jamie F. Farris, P.E.

1. The limiting value of super elevation of board gauge in Indian Railways is:

TABLE OF CONTENTS. Section / Article Page

CHAPTER 2. Restricted Residential ½ Street** Design Speed 25 MPH 25 MPH 25 MPH 25 MPH 40 MPH 50 MPH 55 MPH

CITY OF KILGORE, TEXAS ENGINEERING DESIGN MANUAL

PRIVATE ROAD AND DRIVEWAY STANDARDS Development Standard #1 (Rev 7/18)

Conclusions & Lessons Learned

Andy Keel, P.E. Roadway Design Office Criteria and Standards Section /SC

LOCATION AND DESIGN DIVISION

100 Introduction Functional Classification Traffic Data Terrain & Locale Design & Legal Speed...

BNSF RAILWAY COMPANY

GEOMETRIC DESIGN CRITERIA for Non-freeway Resurfacing, Restoration, and Rehabilitation Projects

DAIMLERCHRYSLER CORPORATION Design Standard Category Code: N/A EASL Requirement: Yes RESTRICTED: Yes

Transcription:

Railway Alignment Design and Geometry Pasi Lautala, Michigan Tech University Tyler Dick, HDR, Inc. Topics Horizontal and Vertical geometry Clearances Turnout design Structures and loading 1 REES Module #6 - Railway Alignment Design and Geometry 1

Railroad vs. Highway Passenger Vehicles Passenger Car Top speed (mph) 65+ 65 Weight (tons) 1.4 53.5 Power to weight ratio (hp/ton) 150 9.3 Light rail vehicle Length (ft) 15 92 (articulated) # of passengers 5 160 Propulsion method Gasoline engine Electric (or dieselelectric) 2 REES Module #6 - Railway Alignment Design and Geometry 2

Railroad vs. Highway Freight Semi-trailer Truck Top speed (mph) 55+ 40+ Weight (tons) 40 18,000 Power to weight ratio (hp/ton) 12.5 0.73 Length (ft) 65 7,000 # of power units 1 1-4 # of trailing units 1 Up to 125 Freight (Unit) Train Propulsion method Diesel engine Diesel-electric 3 REES Module #6 - Railway Alignment Design and Geometry 3

Horizontal Geometry Degree of Curve Arc (Roadway and LRT) Angle measured along the length of a section of curve subtended by a 100 arc 100 D R D/360 = 100/2(pi)R 1-deg curve, R= 5729.58 7-deg curve, R=818.51 Chord (Railroad) Angle measured along the length of a section of curve subtended by a 100 chord 100 D R R = 50/sin(D/2) 1-deg curve, R=5729.65 7-deg curve, R=819.02 REES Module #6 - Railway Alignment Design and Geometry 4

Curve length difference Watch out for LONG and SHARP curves REES Module #6 - Railway Alignment Design and Geometry 5

Horizontal Geometry Curves Highway Railroad Criteria - Design speed -Design speed -Allowable superelevation Typical values Freeway: - 60 mph, R=1,340, D=4.28-70 mph, R=2,050, D=2.79 Main lines: -High speed: R > 5,729, D<1 -Typical: R >2,865, D<2 -Low speed: R>1,433, D<4 Industrial facilities: - R>764, D<7.5 6 REES Module #6 - Railway Alignment Design and Geometry 6

Horizontal Geometry Superelevation Expressed by Function of Highway e expressed as cross-slope in percent Vehicle speed, curve radius and tire side friction (0.01e + f) / (1 0.01ef) = V 2 /15R Railroad E is inches of elevation difference between high rail (outside) and low rail (inside) Function of design speed, degree of curve E = 0.0007V 2 D Eu Where Eu is unbalance (1-2 typical) Max. values 6-8% Freight: 6-7 Light Rail: 6 Rotation point Centerline Inside rail Transition Runoff (2/3 on tangent, 1/3 in curve) 7 Spiral REES Module #6 - Railway Alignment Design and Geometry 7

Unbalanced Elevation Different maximum allowed speeds for different trains on the same track: passenger, express freight, general freight Actual elevation on track to balance head and flange wear of both rails Center of Gravity V OVERBALANCE E D Gravity max a Centrifugal Force Resultant Superelevation V max Center of Gravity EQUILIBRIUM Gravity Centrifugal Force Resultant Ea 3 0.0007D Superelevation Center of Gravity = Maximum allowable operating speed (mph). = Average elevation of the outside rail (inches). = Degree of curvature (degrees). UNDERBALANCE Gravity Resultant Centrifugal Force Superelevation Amount of Underbalance

Spiral Transition Curves TS (Tangent to Spiral) SC (Spiral to Curve) Railways use the higher length of two formulae: To limit unbalanced lateral acceleration acting on passengers to 0.03 g per second: L = 1.63 E u V E u = unbalanced elevation (in.) To limit track twist to 1 inch in 62 feet: L = 62 E a 9 E a = actual elevation (in.) REES Module #6 - Railway Alignment Design and Geometry 9

Superelevation Tables REES Module #6 - Railway Alignment Design and Geometry 10

Avoid Reversed Curves Min. 100 or 3 seconds of running Time between curves (select greater)!! REES Module #6 - Railway Alignment Design and Geometry 11

Critical Issues with Horizontal Curves a) Too short tangent between reversed curves b) Broken back curve c) Curve within turnout d) Additional horizontal clearance required 12 REES Module #6 - Railway Alignment Design and Geometry 12

Highway 4% common 6% on ramps Up to 8% on county roads Vertical Geometry - Grades Rail rarely exceeds 1% (2-2.5% for industry lines) LRT maximum 4 to 6% Up to 10% for short sections REES Module #6 - Railway Alignment Design and Geometry 13

Design Grade for Railways Ideal maximum for railway grade: Trains can roll safely down 0.3% grade without wasting energy on brakes <0.1% for tracks for extensive storage Railway vertical curves old formula: L = D / R D = algebraic difference of grade (ft. per 100-ft. station) R = rate of change per 100-ft. station 0.05 ft. per station for crest on main track 0.10 ft. per station for sag on main track Secondary line may be twice those for main line REES Module #6 - Railway Alignment Design and Geometry 14

New Shorter Vertical Curves Old railway formula developed in 1880 s for hook and pin couplers in those days Present day couplers can accommodate shorter vertical curves New formula developed in recent years: L = 2.15 V 2 D / A V = train speed in mph D = algebraic difference of grade in decimal A = vertical acceleration in ft./sec 2 0.1 ft./ sec 2 for freight, 0.6 ft./ sec 2 for passenger or transit REES Module #6 - Railway Alignment Design and Geometry 15

Critical issues with Vertical Curves a) Overlapping vertical curves b) Avoid lowering existing tracks c) No vertical curves within turnouts d) Provide additional clearance in sag curves e) No vertical curves within horizontal spirals 16 REES Module #6 - Railway Alignment Design and Geometry 16

Railroad Turnouts Allows diverging from one track to another Identified by frog number PS PI N 1 Typical frog numbers: Mainline No.20 or 24 Sidings No.15 Yards and Industry No. 11 Diverging turnout speed ~ 2 x N REES Module #6 - Railway Alignment Design and Geometry 17

#8 RH Turnout REES Module #6 - Railway Alignment Design and Geometry 18

#8 Offsets & layout REES Module #6 - Railway Alignment Design and Geometry 19

Designing a Turnout in Plans Need to know: PS to PI length (B) Angle (C) PS to LLT (A) Draw centerline of each track Good to mark PS & LLT No curves and/or adjacent turnouts between PS and LLT Legend: PS = Point of Switch PI = Point of intersection LLT = Last long tie Angle C = Turnout angle REES Module #6 - Railway Alignment Design and Geometry 20

Basic Plan Sheet for Track Design REES Module #6 - Railway Alignment Design and Geometry 21

Track Clearances Specific clearances necessary for safe operations Size of car clearance envelope is based on dimensions of: Locomotives Cars Potential large loads Requirements set by several agencies 9 9 23

Constant on tangent track Additional clearance: In curves for car end swing and car overhang In superelevated tracks to provide room for cant Use clearance chart (next page) to define horizontal clearance for: Main track 5.5 degree curve 2 inch superelevation 10 feet high object Horizontal Clearance car width "w" centre line of track w/2 t/2 center of curve truck centers "t" center of car radius of track curvature "R" swing out of center line of car from center line of track "m" center line of track at center of car center line of car overhang at center of car "s" REES Module #6 - Railway Alignment Design and Geometry 23

Clearance Chart REES Module #6 - Railway Alignment Design and Geometry 24

Vertical Clearance Constant on tangent track Additional clearance: In sag vertical curves In superelevated tracks For specialized equipment (double-deck cars) To provide threshold for future track maintenance and equipment changes REES Module #6 - Railway Alignment Design and Geometry 25

Typical Section - Railroad Subgrade top width of 24 to 30 for single track

Typical section - multiple tracks Track centerlines minimum 13 apart Track centerlines minimum 13 apart Roadbed sloped to drain Sometimes wider shoulders for maintenance purposes 27 REES Module #6 - Railway Alignment Design and Geometry 27

Bridge Loading - Highway HS-20 truck loading Impact Loading I = 50 / (L + 125) but I < 0.3 REES Module #6 - Railway Alignment Design and Geometry 28

Bridge Loading - Railroad Cooper E-80 railroad loading Developed in 1890s 80 refers to 80kip driving axle load on steam locomotive REES Module #6 - Railway Alignment Design and Geometry 29

Bridge Loading Railroad (cont.) Impact Loading The following percentages of Live Load, applied at the top of rail and added to the axle loads (E-80 Loading) For L 14 ft: I = 60 For 14 ft < L 127 ft: I = 225/ L For L> 127 ft: I = 20 L = Span Length in ft REES Module #6 - Railway Alignment Design and Geometry 30

Typical Section Roadway Superstructure REES Module #6 - Railway Alignment Design and Geometry 31

Typical Section Railroad Concrete Superstructure REES Module #6 - Railway Alignment Design and Geometry 32

Grade Separations Road over Rail 23 vertical clearance, plus future track raise Allow for maintenance road and future second track Collision protection for piers within 25 of rail centerline Do not drain roadway on to tracks! Other details vary by specific railroad

Grade Separations Rail over Road Steel preferred structure type as it can be repaired Concrete bridges - sacrificial beam or crash beam Depth of structure increases rapidly with span length under railroad loading Decreases clearance or increase required railroad fill Need to minimize skew and span lengths

Copyright Restrictions and Disclaimer Presentation Author Pasi Lautala Director, Rail Transportation Program Michigan Tech University Michigan Tech Transportation Institute 318 Dillman Hall Houghton, MI 49931 (906) 487-3547 <ptlautal@mtu.edu> It is the author s intention that the information contained in this file be used for non-commercial, educational purposes with as few restrictions as possible. However, there are some necessary constraints on its use as described below. Copyright Restrictions and Disclaimer: The materials used in this file have come from a variety of sources and have been assembled here for personal use by the author for educational purposes. The copyright for some of the images and graphics used in this presentation may be held by others. Users may not change or delete any author attribution, copyright notice, trademark or other legend. Users of this material may not further reproduce this material without permission from the copyright owner. It is the responsibility of the user to obtain such permissions as necessary. You may not, without prior consent from the copyright owner, modify, copy, publish, display, transmit, adapt or in any way exploit the content of this file. Additional restrictions may apply to specific images or graphics as indicated herein. The contents of this file are provided on an "as is" basis and without warranties of any kind, either express or implied. The author makes no warranties or representations, including any warranties of title, noninfringement of copyright or other rights, nor does the author make any warranties or representation regarding the correctness, accuracy or reliability of the content or other material in the file. 35 REES Module #6 - Railway Alignment Design and Geometry 35