By Leaps. and Bounds. Lessons Learned from Renewable Energy Growth in China. By Ming Ni and Zhixin Yang

Similar documents
Renewables Curtailment in China is there light at the end of the tunnel? Liutong Zhang

Balance of Power. september/october /13/$ IEEE. ieee power & energy magazine FLAG: COURTESY OF DADEROT

China s Electric Power Industry and Its Trends

Chinese Wind Energy Association (CWEA)

Coal and Coal Power s Role in China s Energy System

Technology Roadmap 能源研究所. China Wind Energy Development Roadmap Energy Research Institute

Integrating Wind into the Chinese Power Sector: Development, Barriers and Solutions

Economics of energy storage technology in active distribution networks

Flexibility in Indian Power System

Analysis on the Influence Factors of Wind Power Accommodation

China s Renewables Curtailment and Coal Assets Risk Map

Reform in China s Electric Power Industry. - A Case Study of East China s Wholesale Electric Power Market -

Medium and Long-Term Development Plan for Renewable Energy in China

TLG on China: UHV. UHV Lines: Shaping the Future of China s Power Sector Landscape. Early 2016 Update. UHV Plans

China Market Report 2018

& CNESA Activities. China Energy Storage Alliance

Wind Power Dilemma: Money Blows Away

An Introduction to PJM: Focus on its Markets and Opportunities for Demand Resources OHA Annual Energy & Sustainability Conference

Analysis of air quality trends in 2017

The New Electricity Age

Integration of renewable energy in China lessons learnt from Europe. Kaare Sandholt Chief expert China National Renewable Energy Centre

California Grid Operations: Current Conditions and Future Needs

Industry Report,

Regional disparity and Mitigation cost for carbon policy in China Assessment based on multi-regional CGE model

Pathways to Integrate 175 Gigawatts of Renewable Energy into India s Electric Grid

Lesson learned about the integration of large amount of volatile Renewable Energy Resources

Integration of Renewable Energy Sources in the Electricity System - Grid Issues -

Reliability and the Future of the Electricity Grid: A North American Bulk Power System Perspective

Method for Calculating CO 2 Emissions from the Power Sector at the Provincial Level in China

Pathways to Integrate 175 Gigawatts of Renewable Energy into India s Electric Grid

Patterns of Innovation in China s Energy Sector: The Case of Advanced Electricity Generation Technologies

IMPLEMENTATION OF THE COAL CAP PLAN: LONG TERM IMPACTS, URGENCY AND EFFECTIVENESS

ISO New England Regional Electricity Outlook

Analysis of Status of Photovoltaic and Wind Power Abandoned in China

Operating High Variable, Renewable Generation Power Systems Lessons Learned from Ireland and Northern Ireland

Transmission Planning at the Midwest ISO. Mr. Eric Laverty Senior Manager of Transmission Access Planning Midwest ISO June 26 th, 2008

Impacts of Large-scale Renewable Integration on Power Grid and Energy Transition Dr. Liangzhong Yao

Photovoltaic Power Generation in China

Agenda Short and medium term impact of the German moratorium Longer term challanges: maintaining supply security during decarbonization

ENVIROMENT PROTECTION AND NATURAL GAS DEVELOPMENT IN CHINA

INDUSTRY OVERVIEW. Unless otherwise specified, references to coal production data in this section are to raw coal production.

Current Development Situations of China Coal Industry & Expectation of the Thirteenth Five-year Plan

Renewable Energy Trading in Cross-Region Power Market of China

China Emission Trading Scheme : Policies and Challenges

China between 2000 and China s average electricity transmission and distribution

Pathways to Integrate 175 Gigawatts of Renewable Energy into India s Electric Grid

Outlook on Power Interconnection in North-East Asia. China Electric Power Planning & Engineering Institute (EPPEI)

Article: Li, X, Hubacek, K and Siu, YL (2012) Wind power in China - Dream or reality? Energy, 37 (1). pp ISSN

China Offshore Wind Power Market Report. Green Industry Market Research Company Ltd. 新业视点咨询公司

Steps To Avoid the Historic Boom/Bust Cycle in Power Sector

The Optimal Approach to Firming Windpower

Pathways to Integrate 175 Gigawatts of Renewable Energy into India s Electric Grid

GE OIL & GAS ANNUAL MEETING 2016 Florence, Italy, 1-2 February

WATER AND WIND QUÉBEC S CLEAN, RENEWABLE ENERGY RESOURCES

China s operating steel capacity increased in 2016, despite efforts on overcapacity

Changes in Area and Quality of Cultivated Land in China

The opportunity for coal in the context of natural gas Presented at the Coaltrans China Conference, Kerry Hotel, Pudong Shanghai, P. R.

An Interactive Real Time Control Scheme For the Future Grid Operation

Capacity Energy Markets: A view from Germany and the United States. by Rebecca Bertram

LONG-TERM SOLUTIONS FOR NEW YORK S CLEAN ENERGY FUTURE

TRADE, SERVICES AND DEVELOPMENT

PJM Renewable Integration Study. Ken Schuyler Renewable Energy in West Virginia June 5, 2014

GHANA POWER MARKET OUTLOOK TO 2025, UPDATE 2015 MARKET TRENDS, REGULATIONS, AND COMPETITIVE LANDSCAPE

CEO s Strategic Review

China National Renewable Energy Centre

ALL ISLAND GRID STUDY STUDY OVERVIEW. January 2008

Large-Scale Distributed Photovoltaic Power Dispatching and Operation Management Review

New England Electricity Outlook

Regional Impact of Renewables: ERCOT

OVERCAPACITY, OVER-WITHDRAWAL: HOW TACKLING COAL POWER OVERCAPACITY CAN EASE WATER STRESS

China establishes number one global position for wind power

New England Power Sector Overview

DRAFT Work in Progress CAISO Integration of Renewable Resources Program (IRRP) - High-Level Program Plan -

Developing a Regional Roadmap on Energy Connectivity. China Electric Power Planning & Engineering Institute Bangkok

YI Yuechun Deputy Director-General, CREEI. Azerbaijan, 19 Oct 2016

China Wind Power Equipment and Parts Industry Report, May 2011

Future key factors of PV power generation to become a mainstream power source - Action plans of -

1.3 Planning Assumptions and Model Development

Environmental Impacts and Benefits of Regional Power. Grid Interconnections for China

Cooperative Policy Mechanism to Promote China s Renewable Energy Consumption based on CGE Model

Renewable Energy Development in Asia Pacific Dr. K K Chan Managing Director-CLP Renewables CLP Holdings

Research on China's power industry investment in Kazakhstan. Gao Yang

China s Actions on Clean Power

Flexibility and the outlook for the GB power market

To: Business Editor April (For immediate release)

CHINA 2050 HIGH RENEWABLE ENERGY PENETRATION SCENARIO AND ROADMAP STUDY. Energy Research Institute National Development and Reform Commission

Medium Term Renewable Energy Market Report Michael Waldron Senior Energy Market Analyst Renewable Energy Division International Energy Agency

China s Efforts in Controlling GHG Emissions in Power Industry

WARMING UP CHINA S GEOTHERMAL SECTOR SOUTHWEST CHINA WARMEST?

Regional Inequality and CO 2 Emissions in China: a consumption-based MRIO approach

SOUTH AFRICA POWER MARKET OUTLOOK TO MARKET TRENDS, REGULATIONS AND COMPETITIVE LANDSCAPE

Integrating High Levels of Variable Renewable Energy Sources

Power Development and Planning in China

Big Data Analytics and Real Time Data Awareness at CECRE (Control Center for Renewable Energies) Copyr i ght 2014 O SIs oft, LLC.

Renewable Integration Impact Assessment Finding integration inflection points of increasing renewable energy. NCEP Webinar Sept.

The Global Grid Spyros Chatzivasileiadis

Sustainable Energy Development Coal Mine Methane in China

Managing Flexibility in MISO Markets

Value-based Transmission Investment and Operations. Marija Ilic Invited Panel, IEEE PES 2014 Washington DC

USEA/USAID. Planning Initiative. May 5, Patrick D. Miller

Transcription:

By Leaps By Ming Ni and Zhixin Yang and Bounds Lessons Learned from Renewable Energy Growth in China NEW WIND POWER INSTALLATIONS in China have doubled every year since 4. By 2010, China s wind generation capacity of 45 GW ranked first in the world. Figure 1 shows how the installed wind capacity in China grew from 0 2010. A total of 30 of 31 provinces, municipalities, and autonomous regions have wind farms. (This article does not discuss wind power development in Hong Kong, Macao, and Taiwan.) The Inner Mongolia Autonomous Region leads the other provinces with 14 GW of installed capacity, followed by Gansu, Hebei, and Liaoning. China was also the first country outside of Europe to have offshore wind farms. By the end of 2010, total Chinese offshore wind power capacity was approximately MW. Wind capacity in China is located primarily in the north, northeast, and northwest parts of the country, which are the wind-rich areas shown in Figure 2. Figure 3 shows the distribution of effective wind power density in China. The north, northeast, and northwest areas of China, along with Tibet, are the wind-rich areas. But they are far from the load centers (the North China Grid, Central China Grid, and East China Grid), which are also the most developed areas in China. Figuring out how Digital Object Identifi er 10.1109/MPE.2011.2178294 Date of publication: 22 February 2012 EYEWIRE & ARTVILLE march/april 2012 1540-7977/12/$31.00 2012 IEEE IEEE power & energy magazine 37

,000 Installed Wind Capacity in China (0 2010) 45,000 Installed Capacity 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5,000 0 Year 0 1 2 3 4 5 6 7 8 9 2010 Newly Installed Capacity 77 57 66 98 197 7 1,288 3,311 6,154 13,803 18,928 Cumulative Capacity 342 399 465 563 760 1,267 2,555 5,866 12,020 25,805 44,733 Source: CWEA figure 1. Installed wind capacity in China. to deliver wind power from wind-rich areas to the load centers is a big challenge. With improvements in wind power economics and interconnection requirements and aided by policy stimulus, China will continue to be the world s leading wind power developer over the next five years. By the end of 2015, total installed wind power capacity in China will be approximately GW, and annual wind energy production will reach 300 TWh. Chinese offshore wind power capacity will be 3 5 GW, and these facilities will produce 7.5 10 TWh annually. Of the GW of wind capacity, about 46% will be consumed locally and about 54% will be delivered to load centers through longdistance transmission lines. By the end of 2020, the total installed wind power capacity in China is estimated to be GW, and about 30 GW of this will come from offshore wind. Of that -GW total, 66 GW will be consumed locally, and 84 GW will be delivered to remote load centers. By the end of 2020, there are projected to be eight wind plants with capacities larger than 10 GW in China, as shown in Figure 4. Lessons Learned 0 0.1 GW 0.1 0.5 GW 0.5 1 GW 1 10 GW 10 GW+ Source: CWEA figure 2. Distribution of installed wind capacity in China. Wind Power Development Scale Exceeds Plans Actual wind power development in China has far exceeded the original plan, for the following reasons: The wind project approval process: Regulations state that wind power plants larger than MW need to be approved by the National Development and Reform Commission, while wind plants smaller than MW need to be approved by local governments. To avoid the necessity for national approval, many local governments and wind power investors divided 38 IEEE power & energy magazine march/april 2012

large projects into several smaller projects with less than MW of capacity each. The result was the construction of wind power plants in some areas in the absence of a coordinated system plan. Many of the local governmental approvals for these projects were based on the benefits and stimulus the plants would bring to the local economy, but they were issued without full consideration of the coordinated transmission plan necessary to integrate the wind resources. One study showed that 90% of the wind projects approved by National Development and Reform Commission can be interconnected to the power grid, while the corresponding number for local government wind projects was only 60%. Policy issues: Power grid companies buy renewable energy at predetermined prices, in accordance with state policy requests. This policy promotes the return of wind power investment and encourages more money to flow to wind power projects. Transmission Planning and Construction Lag Far Behind Wind Power Development Contrary to the quick development of wind power, the planning and construction necessary for transmission system improvements are proceeding slowly. The main reasons are: 1) Missing incentives to build transmission to deliver the wind power: The credits from the Interim Measures for Additional Revenue Allocation of Electricity Generated from Renewable Energy program, a Chinese government program, are not enough to pay for the construction, operation, and maintenance of most local wind interconnection projects. Yet there is no incentive tariff that defines a reasonable price for building long-distance transmission lines from large wind farms to remote load centers. And there is no compensation program for the ancillary services provided by other resources necessary for operating the wind generation, such as reserve service, load following, frequency control, and voltage regulation. 2) The transmission projects approval process: For high-voltage transmission projects, approval is granted by the National Development and Reform Commission. The gap between the wind power plant and transmission project approval processes exacerbates the conflicts between the wind power and power grid development. 3) The structure of the power grid industry in China: In China, the biggest grid company is the State Distribution of Effective Wind Power Density in China W/m 2 (High) ~ W/m 2 ~ W/m 2 ~ W/m 2 W/m 2 (Low) figure 3. Distribution of effective wind power density in China. march/april 2012 IEEE power & energy magazine 39

XinJiang 10.8 GW GanSu 21.9 GW MengXi 38.3 GW MengDong 20.8 GW JiLin 21.3 GW HeBei 16.5 GW ShanDong 17.2 GW JiangSu 10.8 GW figure 4. Planned Chinese wind power plants with capacities of more than 10 GW in 2020. Grid Corporation of China, covering 25 provinces, municipalities, and autonomous regions and part of the Inner Mongolia Autonomous Region. The China Southern Power Grid covers five provinces and autonomous regions. The western part of the Inner Mongolia Autonomous Region is operated by MengXi Power Grid Company, which is independent from State Grid and Southern Power Grid. MengXi, a wind-rich area, has the largest installed wind capacity in China. But to transport the wind power out of the area, it needs to be interconnected with State Grid s system and depends on State Grid to build transmission lines to deliver the wind power to remote load centers in State Grid s territory. There is no coordinated planning among these entities. Consequences Because of the fast and uncoordinated development of wind power and the lagging development of the transmission system, as of 2010 approximately 30% of Chinese installed wind power capacity has not been interconnected with the power grid. For those wind plants that are interconnected, approximately 6,000 GWh of energy is lost due to operational issues. For example, the MengXi area, which is rich in wind and coal resources, runs its own power grid, and there are only five transmission lines interconnecting it with State Grid. Due to the limited outlet in this area, about one-third of the thermal units cannot run on full power and about 42% of the installed wind capacity is wasted. Besides this loss of installed wind power energy production, the impact on power system operation is another challenge brought on by wind development. In China, the difference between peak and valley loads is growing gradually year after year. Load-following capability has become very tight, even without wind power additions. The situation is getting worse with the large amount of wind generation integrated into the system because the wind power peaks normally occur at system load off-peak hours. Large-scale wind power also adversely affects the real power balance of the system. The random and intermittent characteristics of wind power lead to difficulties in achieving reliable energy balance and resource commitment. In China, coal units comprise a large percentage of the resource mix, but historically they did not provide frequency control because of their slow ramp rates. Even with these units on frequency control, the system has not adapted to quick 40 IEEE power & energy magazine march/april 2012

changes of wind output due to the large number of wind power interconnections. This has caused a serious system frequency problem under some circumstances. Finally, large-scale wind power causes problems in reactive power and voltage control. Large-scale wind farms are normally located at the remote reaches of the power system. The wind power needs to be delivered to load centers through long-distance transmission lines. Quick and large variations of wind output cause swift changes of system voltage and tie line flows, both of which can lead to voltage stability issues and jeopardize the security of the power system. Strategies for Effective Wind Power Development and Management Enhance the Approval Process Wind power development should be planned at the national level. And the local government should strictly follow the national plan in generating its own long-term development. National planning should be strategic and directional and local planning more specific and more operational. National planning and local planning need to be better coordinated to achieve the most efficient allocation of renewable and other resources nationwide. As a fix to the old wind project approval process, wind projects smaller than MW are now recorded in the National Development and Reform Commission after the project receives approvals from the local government. Coordinate the Planning of Wind Power and Other Resources Planning for wind power development needs to be consistent with the objectives and basic frameworks of overall resource planning. Since wind energy and other renewable projects have different output characteristics from conventional generators, their nameplate capacities are not interchangeable. Flexible resources are required to achieve the full integration of wind power. But in China s wind-rich areas (the northeast, north, and northwest regions), coal is the main energy resource. For example, in the northeast, coal accounts for more than 80% of the total energy sources, and in northern China, it accounts for more than 90%. There are very limited flexibly adjustable resources in these areas. In the winter, the higher-production period of wind power overlaps with high production from thermal power plants to meet heating load and the low production of hydropower due to low water levels. With the lack of flexible support available from other resources, it is very difficult to operate the system with large amounts of wind power. A sufficient number of peaking units is urgently needed to match the large-scale wind power development. China is not rich in oil and gas resources, but the construction of pump-storage peaking power plants is realistic. By the end of 2010, 21 pump-storage power stations had been built, with a capacity of 16.645 GW. By 2015, the pumpstorage capacity in the operating territory of State Grid is projected to reach 18.4 GW. In 2020, it will exceed 40 GW. This amount of pump-storage capacity is almost sufficient to meet the load-following requirement when large amounts of clean energy, such as wind and nuclear, are integrated. The planned resource mix is expected to meet the security and stability requirements of the power system. Coordinate Long-Term Planning for Wind Power and the Transmission System The negative consequences listed above are caused by a lack of coordinated planning with respect to wind power plants and the expansion of the transmission system. In China, most of the wind resources are far from the load centers. This increases the importance of developing a robust transmission plan. The absorption of large-scale wind power production needs to occur in the grids linking the various regions and even in the nationwide power grid. Large power grids can easily compensate for variability in wind power outputs among the regions and act to smooth the overall volatility resulting from wind power output. This is because the large grid provides access to a diversity of wind resource locations and to more resources that can provide regulation. The larger the power grid, the less impact wind power will have on it. Because of the volatility of wind power, building longdistance transmission lines exclusively to deliver wind power can create risks and difficulties for the operation of the system. Load following, frequency control, voltage regulation, and system stability are among the issues that must be addressed. A higher wind power landing price (the total price of the wind generation plus the transmission cost) at the receiving end of the long-distance transmission lines will occur for transmission capacity with low usage. The landing price will likely be twice the price of local coal-generated electricity. The wind-rich areas in China are also rich in coal. Therefore, bundling the delivery of wind and thermal power to remote load centers becomes a viable option by coordinating the development of wind power, thermal power, and the power grid. This coordinated development means that % of the wind power can be delivered to remote load centers, and the capacity factor of the transmission lines can be well over 68%. Under a bundled delivery scenario, the wind power landing price at the receiving end can at times be lower than the price of local coal-generated electricity. System security will also improve, because the bundled delivery of wind and thermal power can smooth the volatility of the wind output seen by the rest of the system. This helps relieve the operational difficulties at the receiving end of the power system. In April 2011, to meet the long-term wind development plan in China, State Grid Corporation of China issued a white paper that proposed associated transmission expansion march/april 2012 IEEE power & energy magazine 41

XinJiang 10.8 GW GanSu 21.9 GW North China Grid Northwest China Grid East China Grid Central China Grid 7-kV ac 800-kV dc 1,-kV dc figure 5. Integration plan for XinJiang and GanSu wind power plant bases. plans to absorb the wind power (or wind power bundled with coal power) output at eight wind power plant bases of more than 10 GW. In JiLin, HuBei, ShanDong, and JiangSu, the wind power bases are located in or very close to load centers. As a result, their wind output will be consumed locally or delivered to the regional grid through 0-kV ac lines, according to the white paper. The white paper specifies the following: The wind power in XinJiang will be collected locally through 765-kV systems and delivered (bundled with thermal power) to the North China Grid through two 1,-kV dc lines and to the Central China Grid through one 800-kV dc line. The wind powers in GanSu will be collected locally through 330-kV and 765-kV systems and delivered (bundled with thermal power) to Northwest China Grid through a 7-kV ac system and to the Central China Grid through one 800-kV dc line. The wind power in MengXi will be collected locally through 0-kV systems and delivered (bundled with thermal power) to three main load centers (North China Grid, Central China Grid, and East China Grid) through four 1,000-kV ac and two 800-kV dc lines. The wind power in MengDong will be collected locally through 0-kV systems, and delivered (bundled with thermal power) to three main load centers through three 800-kV dc lines. Figures 5 and 6 show the wind integration plans for the XinJiang, GanSu, MengXi, and MengDong wind power bases. Coordinate the Construction Plans It takes longer to build a transmission project than a wind power plant. The construction of peaking units takes even longer than the construction of a transmission project. If the three are not coordinated, it will likely lead to curtailment of wind power production due to transmission or operation issues. To achieve this coordination, the approval of wind, transmission, and other generator projects needs to be controlled under one umbrella, such as the National Development and Reform Commission. To match the current transmission and peaking unit construction plans, an annual wind capacity increase of 10 20% is a reasonable range, one study shows. Establish a Coordination Mechanism The ultimate goal of planning and building a wind power plant is to fully utilize the plant s potential production. To 42 IEEE power & energy magazine march/april 2012

MengDong 20.8 GW MenXi 38.3 GW North China Grid East China Grid Central China Grid 800-kV dc 1,000-kV dc figure 6. Integration plan for MengXi and MengDong wind power plant bases. succeed in this while keeping the power system secure and stable, establishing good coordination between wind power plant operation and power system operation is extremely critical. A fully functional wind power forecasting system and improved wind power forecasting technology are crucial. For a wind plant, a local wind power forecasting system is needed. For grid companies, forecasting coverage and accuracy should be improved. As the accuracy of the wind power forecasting increases, so does the amount of output from the wind plant that can be used. With greater accuracy there also comes a decrease in adverse effects on power system operation. In addition, a valid monitoring system for the wind farm will strengthen operational control, improve the setting coordination of the relay protections and automatic control devices in the power plant, and ensure that the requirements for reactive power and voltage support are met. Finally, the system s load-following capability should be improved by making full use of conventional resources. Industry codes and standards should then be developed to guide the integration of wind power into the system. To meet this requirement, the China National Energy Administration has just released 18 standards, including Design Regulations for Large-Scale Wind Power Connecting to the System. For Further Reading Greenpeace. (2011). China wind power outlook 2011. [Online]. Available: http://www.greenpeace.org/hk/global/hk/ publications/climate/china-wind-power-outlook-2011.pdf Chinese Wind Energy Association (CWEA). (2010). Statistics of installed wind power capacity in China 2010. [Online]. Available: http://www.cwea.org.cn/download/ display_info.asp?id=39 China National Energy Administration. (2011, July). Design regulations for large-scale wind power connecting to the system. Beijing, China. [Online]. Available: http://www. gwpem.com/news/show-1715.html State Grid Corporation of China, White paper on promoting wind development in China, Beijing, China, Apr. 15, 2011. Biographies Ming Ni is with MISO (formerly Midwest Independent System Operator Inc.). Zhixin Yang is with Jiangsu Electric Power Research Institute, China. p&e march/april 2012 IEEE power & energy magazine 43