Outline. Push-Pull Systems Global Company Profile: Toyota Motor Corporation Just-in-Time, the Toyota Production System, and Lean Operations

Similar documents
OM (Fall 2016) Outline

JIT and Lean Operations. JIT/Lean Operations

Lean Operations. PowerPoint slides by Jeff Heyl. Copyright 2017 Pearson Education, Inc.

SCM 302 OPERATIONS MANAGEMENT JIT

Operations Management

JUST IN TIME. Manuel Rincón, M.Sc. October 22nd, 2004

Just-In-Time (JIT) Manufacturing. Overview

Lecture 9 MBF2213 Operations Management Prepared by Dr Khairul Anuar. L9: Lean synchronization

Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa. JIT --Intro 02/11/03 page 1 of 28

Chapter 13. Lean and Sustainable Supply Chains

Learning Objectives. 1. Explain how lean systems improve internal and supply chain operations

Chapter 11. In-Time and Lean Production

Finished goods available to meet Takt time when variations in customer demand exist.

Ch 26 Just-In-Time and Lean Production. What is Lean Production? Structure of Lean Production System. Activities in Manufacturing.

Outline. Pull Manufacturing. Push Vs. Pull Scheduling. Inventory Hides Problems. Lowering Inventory Reveals Problems

Just-in-Time System. Dr S G Deshmukh

PLUS VALUE STREAM MAPPING

JIT AND Lean Operations 14-1

IT 470a Six Sigma Chapter X

Just In Time (JIT) Quality and Reliability Engg. (171906) H I T. Hit suyo na mono O Iru toki iru dake Tasukuran

Session III. LEAN Enterprise and Six Sigma

Flow and Pull Systems

Historical Phases of Production

Lean Principles. Jerry D. Kilpatrick. This article was originally written for and published by MEP Utah in 2003 (

Visual Controls : Applying Visual Management to the Factory

Operations Management - 5 th Edition

"Value Stream Mapping How does Reliability play a role in making Lean Manufacturing a Success " Presented by Larry Akre May 17, 2007

INTRODUCTION 1. When manufacturing processes of products being examine through customer s perspective, we will be able to identify 2 types of processe

INTRODUCTION 1. When manufacturing processes of products being examine through customer s perspective, we will be able to identify 2 types of processe

Lean Manufacturing 1

CHAPTER 3.0 JUST-IN-TIME (JIT) MANUFACTURING SYSTEMS

The Toyota Way Chapters January 30, 2014

The Toyota Way Chapters September 23, 2014

How much money can you add to the bottom line with good inventory management?

Planning. Dr. Richard Jerz rjerz.com

LEAN MANUFACTUING-CONCEPT, LIMITATION, APPLICATIONS: AN OVERVIEW

Planning. Planning Horizon. Stages of Planning. Dr. Richard Jerz

The Toyota Way. Using Operational Excellence as a Strategic Weapon. Chapter 1 9/11/ Ps. September 11, 2014

TEN STEPS to Lean Electrical Controls

Value Stream Analysis and other

One-off Batch High volume production (mass production) One-off: Custom - built kitchen Batch: Olympic medals High volume: Garden table / chairs

PRODUCTION SCHEDULING PART-A

ACTIVITY 8: QUESTION. Identify some ways in which businesses can lose stock. ACTIVITY 8: ANSWER

Lean and Agile Systems. Rajiv Gupta FORE School of Management October 2013 Session 6

1. Does lean operation rely on implicit or explicit production planning? 2. Is a lean operation considered a push or a pull system?

Lean 101: An Introduction

Improving Scrum with. Lean Thinking Nuno Rafael SGMUN 2016

Eliminate Waste and. Increase Value

Chapter 3 JUST IN TIME SYSTEM

CHAPTER 1 INTRODUCTION

Ashvath Sharma (Correspondence) +

Lean Project Delivery Operating System

The basic concept of waste

Answer Key Testname: M1 06

PRINCIPLES OF LEAN MANUFACTURING. Purdue Manufacturing Extension Partnership (800)

GOOD MORNING AND WELCOME

Part 3 Managing for Quality and Competitiveness

LEAN PRODUCTION FACILITY LAYOUT.

JUST IN TIME (JIT), LEAN, AND TOYOTA PRODUCTION SYSTEM (TPS)

1. If an employee is involved with transforming resources into goods and services, then he is in:

These tend to be sequential, and offer increasing levels of efficiency to an organisation.

Lean Principles in Facility Management

Introduction. Introduction. Introduction LEARNING OBJECTIVES LEARNING OBJECTIVES

Lean Basics Overview. EMC 2011 Training. NCDENR April Copyright 2010 EMC Corporation. All rights reserved.

Lean Six Sigma Black Belt Week 3

Supply Chain Management. Dr Mariusz Maciejczak

Net Requirements Plan. The logic of net requirements. MRP Planning Sheet. Gross Requirements Schedule

Level & Stable Operations

Running Head: Implementing Just-In-Time Production at Toyota

This appendix includes the title and reference number for every best

SEVEN (7) PRINCIPLES FOR IMPROVING WORKFLOW

Managing for Daily Improvement

November 17, NYS Lean Basics What is Lean & How Does it Work?

A PM on Lean Production Randel Ltd.

Optimizing Inventory Control at PT. Total Pack Indonesia by Using Kanban System

Lean Flow Enterprise Elements

Chapter 4 Supplier Kanban and the Sequence Schedule Used by Suppliers. Seoul National University Professor ILKYEONG MOON

The entire presentation kit is having 2 main directories as below. Just in Time. 01 Introduction

Lean Methods for High-Variety, Low-Volume Industries

TYPICAL FACTORY LAYOUT vs THE TOYOTA APPROACH

Toyota s 14 Steps to Becoming Lean

Extending Lean Initiatives Across the Organization:

Drum Buffer-Rope. Skorkovský. Based on : R. Holt, Ph.D., PE

A Study of the Toyota Production System From an Industrial Engineering Viewpoint by Shigeo Shingo 1989

Simulation of Lean Principles Impact in a Multi-Product Supply Chain

Chapter 12 Inventory Management. Inventory Management

LEARNING TO SEE an introduction to lean thinking

Supply Chain & Procurement Roundtable. Lean Supply Chain. Workshop

Lab Quality Confab LEAN Principles. 4 Fundamental LEAN Tools to Transform your Laboratory. Rita D Angelo, Bonnie Messinger, Bill Krzisnik

Beyond Lean Manufacturing

Lean Thinking. Continuous improvement is about removing stuff that get in the way of your things working well.

Lecture 12. Introductory Production Control

Part 3 : 11/10/10 21:33:42. The four factors that derive from a company's distinctive competencies and which create competitive advantage are

Five Tips to Achieve a Lean Manufacturing Business

The Quality Group. All Rights Reserved

An Introduction to Lean. Heidi Maier Sagstad

MCQ: Unit-1: introduction to Operations and Supply Chain management

LEAN SIX SIGMA GLOSSARY OF TERMS

Lean Manufacturing. Introduction & Background to Lean

MAS BEST PRACTICE SKILLS EVENT LEAN AWARENESS WORKSHOP

Transcription:

JIT and Lean Operations Outline Push-Pull Systems Global Company Profile: Toyota Motor Corporation Just-in-Time, the Toyota Production System, and Lean Operations Eliminate Waste Remove Variability Improve Throughput 1

Outline Continued Just-in-Time JIT Partnerships Concerns of Suppliers JIT Layout Distance Reduction Increased Flexibility Impact on Employees Reduced Space and Inventory Outline Continued JIT Inventory Reduce Variability Reduce Inventory Reduce Lot Sizes Reduce Setup Costs JIT Scheduling Level Schedules Kanban 2

Outline Continued JIT Quality Toyota Production System Continuous Improvement Respect for People Standard Work Practices Lean Operations Building a Lean Organization Lean Operations in Services Learning Objectives When you complete this chapter you should be able to: 1. Define push-pull systems, just-intime, TPS, and lean operations 2. Define the seven wastes and the 5 Ss 3. Explain JIT partnerships 4. Determine optimal setup time 3

Learning Objectives When you complete this chapter you should be able to: 5. Define kanban 6. Compute the required number of kanbans 7. Explain the principles of the Toyota Production System Push - Pull 4

Push A "push system" of production - distribution is one where replenishment of material items begins in advance of customer needs. 5

For a "push system" customer orders for materials are promised for delivery at a given future date, production is started at the first workstation of the production/distribution pipeline and pushed ahead to the next operation. Work-in-process inventories are accumulated in the production - distribution pipeline in anticipation of shipping the completed order on the promised date. 6

SALES/PROD. PLAN < AVAILABLE MPS > TO < PROMISE > MRP < > CRP < No REALISTIC? Yes EXECUTE CRP EXECUTE MRP Push is Computer Intensive!!!!!!!!!!!! Pull 7

A "pull system" of production - distribution is one where customer demand activates production - distribution of the item. For A "pull system" production and distribution activities are not performed in anticipation of customer actions. Customer orders initiate all production - distribution pipeline activities. 8

Pull systems are characterized as Just-in-Time Systems. The logic of JIT is based on the concept that nothing will be ordered for replenishment until it is needed and need is created by the void left in a production - distribution pipeline when a product is pulled away or used. In theory, when an item is sold to a customer the market "pulls" a replacement from the last position within the production - distribution pipeline. An order from this last pipeline position pulls a replacement unit from the next to last pipeline position to replace the pipeline void. Then an order from the next to last pipeline position pulls a unit from the third from last position to fill the void in the next to last position, and so on all the way back to the original release of materials at the beginning of the production - distribution pipeline. 9

In this way, total pipeline flow is equally maintained throughout the pipeline and if, as assumed, customer demand is smooth and continuous, total pipeline flow will be smooth and continuous and pipeline inventories are minimized. In general, the philosophy of filling unit voids in the production - distribution pipeline defines the JIT goal of generating precisely the necessary units in the necessary quantities at the necessary time with zero performance deviation from schedule. 10

Small Lot Sizes and Short Lead Times Between Supply Chain Links!! Toyota Motor Corporation Largest vehicle manufacturer in the world with annual sales of over 9 million vehicles Success due to two techniques, JIT and TPS Continual problem solving is central to JIT Eliminating excess inventory makes problems immediately evident 11

Toyota Motor Corporation Central to TPS is a continuing effort to produce products under ideal conditions Respect for people is fundamental Small building but high levels of production Subassemblies are transferred to the assembly line on a JIT basis High quality and low assembly time per vehicle Just-In-Time, TPS, and Lean Operations JIT is a philosophy of continuous and forced problem solving via a focus on throughput and reduced inventory TPS emphasizes continuous improvement, respect for people, and standard work practices Lean production supplies the customer with their exact wants when the customer wants it without waste 12

Just-In-Time, TPS, and Lean Operations JIT emphasizes forced problem solving TPS emphasizes employee learning and empowerment in an assembly-line environment Lean operations emphasize understanding the customer Eliminate Waste Waste is anything that does not add value from the customer point of view Storage, inspection, delay, waiting in queues, and defective products do not add value and are 100% waste 13

Ohno s Seven Wastes Overproduction Queues Transportation Inventory Motion Overprocessing Defective products Eliminate Waste Other resources such as energy, water, and air are often wasted Efficient, ethical, and socially responsible production minimizes inputs, reduces waste Traditional housekeeping has been expanded to the 5 Ss 14

The 5 Ss Sort/segregate when in doubt, throw it out Simplify/straighten methods analysis tools Shine/sweep clean daily Standardize remove variations from processes Sustain/self-discipline review work and recognize progress The 5 Ss Sort/segregate when in doubt, throw it out Simplify/straighten methods analysis Two additional tools Ss Shine/sweep Safety build clean in good daily practices Standardize Support/maintenance remove variations reduce from processes variability and unplanned Sustain/self-discipline downtime review work and recognize progress 15

Remove Variability JIT systems require managers to reduce variability caused by both internal and external factors Variability is any deviation from the optimum process Inventory hides variability Less variability results in less waste Sources of Variability 1. Incomplete or inaccurate drawings or specifications 2. Poor production processes resulting in incorrect quantities, late, or non-conforming units 3. Unknown customer demands 16

Sources of Variability 1. Incomplete or inaccurate drawings or specifications 2. Poor production processes resulting in incorrect quantities, late, or non-conforming units 3. Unknown customer demands Improve Throughput The time it takes to move an order from receipt to delivery The time between the arrival of raw materials and the shipping of the finished order is called manufacturing cycle time A pull system increases throughput 17

Improve Throughput By pulling material in small lots, inventory cushions are removed, exposing problems and emphasizing continual improvement Manufacturing cycle time is reduced Push systems dump orders on the downstream stations regardless of the need Just-In-Time (JIT) Powerful strategy for improving operations Materials arrive where they are needed when they are needed Identifying problems and driving out waste reduces costs and variability and improves throughput Requires a meaningful buyer-supplier relationship 18

JIT and Competitive Advantage Figure 16.1 JIT and Competitive Advantage Figure 16.1 19

JIT Partnerships JIT partnerships exist when a supplier and purchaser work together to remove waste and drive down costs Four goals of JIT partnerships are: Removal of unnecessary activities Removal of in-plant inventory Removal of in-transit inventory Improved quality and reliability JIT Partnerships Figure 16.2 20

Concerns of Suppliers Diversification ties to only one customer increases risk Scheduling don t believe customers can create a smooth schedule Changes short lead times mean engineering or specification changes can create problems Quality limited by capital budgets, processes, or technology Lot sizes small lot sizes may transfer costs to suppliers JIT Layout Reduce waste due to movement JIT Layout Tactics Build work cells for families of products Include a large number operations in a small area Minimize distance Design little space for inventory Improve employee communication Use poka-yoke devices Build flexible or movable equipment Cross-train workers to add flexibility Table 16.1 21

Distance Reduction Large lots and long production lines with single-purpose machinery are being replaced by smaller flexible cells Often U-shaped for shorter paths and improved communication Often using group technology concepts Increased Flexibility Cells designed to be rearranged as volume or designs change Applicable in office environments as well as production settings Facilitates both product and process improvement 22

Impact on Employees Employees are cross trained for flexibility and efficiency Improved communications facilitate the passing on of important information about the process With little or no inventory buffer, getting it right the first time is critical Reduced Space and Inventory With reduced space, inventory must be in very small lots Units are always moving because there is no storage 23

Inventory Inventory is at the minimum level necessary to keep operations running JIT Inventory Tactics Use a pull system to move inventory Reduce lot sizes Develop just-in-time delivery systems with suppliers Deliver directly to point of use Perform to schedule Reduce setup time Use group technology Table 16.2 Reduce Variability Inventory level Scrap Setup time Process downtime Quality problems Late deliveries Figure 16.3 24

Reduce Variability Inventory level Scrap Setup time Process downtime Quality problems Late deliveries Figure 16.3 Reduce Lot Sizes Inventory 200 100 Q 1 When average order size = 200 average inventory is 100 Q 2 When average order size = 100 average inventory is 50 Time Figure 16.4 25

Reduce Lot Sizes Ideal situation is to have lot sizes of one pulled from one process to the next Often not feasible Can use EOQ analysis to calculate desired setup time Two key changes necessary Improve material handling Reduce setup time Lot Size Example D = Annual demand = 400,000 units d = Daily demand = 400,000/250 = 1,600 per day p = Daily production rate = 4,000 units Q = EOQ desired = 400 H = Holding cost = $20 per unit S = Setup cost (to be determined) Q = 2DS H(1 - d/p) Q 2 = 2DS H(1 - d/p) (Q 2 )(H)(1 - d/p) (3,200,000)(0.6) S = 2D = 800,000 = $2.40 Setup time = $2.40/($30/hour) = 0.08 hr = 4.8 minutes 26

Reduce Setup Costs High setup costs encourage large lot sizes Reducing setup costs reduces lot size and reduces average inventory Setup time can be reduced through preparation prior to shutdown and changeover Lower Setup Costs Sum of ordering and holding costs Holding cost Cost T 1 Setup cost curves (S 1, S 2 ) T 2 S 2 S 1 Lot size Figure 16.5 27

Reduce Setup Times Initial Setup Time 90 min Step 1 Separate setup into preparation and actual setup, doing as much as possible while the machine/process is operating (save 30 minutes) Step 2 Figure 16.6 Step 3 Move material closer and improve material handling (save 20 minutes) Step 4 Standardize and improve tooling (save 15 minutes) Step 5 Step 6 Use one-touch system to eliminate adjustments (save 10 minutes) Training operators and standardizing work procedures (save 2 minutes) Repeat cycle until subminute setup is achieved 60 min 45 min 25 min 15 min 13 min JIT Scheduling Schedules must be communicated inside and outside the organization Level schedules Process frequent small batches Freezing the schedule helps stability Kanban Signals used in a pull system 28

JIT Scheduling Better scheduling improves performance JIT Scheduling Tactics Communicate schedules to suppliers Make level schedules Freeze part of the schedule Perform to schedule Seek one-piece-make and one-piece move Eliminate waste Produce in small lots Use kanbans Make each operation produce a perfect part Table 16.3 Level Schedules Process frequent small batches rather than a few large batches Make and move small lots so the level schedule is economical Jelly bean scheduling Freezing the schedule closest to the due dates can improve performance 29

Scheduling Small Lots JIT Level Material-Use Approach A A B B B C A A B B B C Large-Lot Approach A A A A A A B B B B B B B B B C C C Time Figure 16.7 Kanban Kanban is the Japanese word for card The card is an authorization for the next container of material to be produced A sequence of kanbans pulls material through the process Many different sorts of signals are used, but the system is still called a kanban 30

Kanban 1. User removes a standard sized container 2. Signal is seen by the producing department as authorization to replenish Signal marker on boxes Figure 16.8 Part numbers mark location Kanban Work cell Kanban Finished goods Customer order Ship Raw Material Supplier Kanban Kanban Final assembly Kanban Kanban Purchased Parts Supplier Kanban Subassembly Figure 16.9 31

More Kanban When the producer and user are not in visual contact, a card can be used When the producer and user are in visual contact, a light or flag or empty spot on the floor may be adequate Since several components may be required, several different kanban techniques may be employed More Kanban Usually each card controls a specific quantity or parts Multiple card systems may be used if there are several components or different lot sizes In an MRP system, the schedule can be thought of as a build authorization and the kanban a type of pull system that initiates actual production 32

More Kanban Kanban cards provide a direct control and limit on the amount of work-inprocess between cells If there is an immediate storage area, a two-card system can be used with one card circulating between the user and storage area and the other between the storage area and the producer The Number of Kanban Cards or Containers Need to know the lead time needed to produce a container of parts Need to know the amount of safety stock needed Number of kanbans (containers) = Demand during Safety lead time + stock Size of container 33

Number of Kanbans Example Daily demand Production lead time (Wait time + Material handling time + Processing time) Safety stock Container size = 500 cakes = 2 days = 1/2 day = 250 cakes Demand during lead time = 2 days x 500 cakes = 1,000 1,000 + 250 Number of kanbans = 250 = 5 Advantages of Kanban Allow only limited amount of faulty or delayed material Problems are immediately evident Puts downward pressure on bad aspects of inventory Standardized containers reduce weight, disposal costs, wasted space, and labor 34

Quality Strong relationship JIT cuts the cost of obtaining good quality because JIT exposes poor quality Because lead times are shorter, quality problems are exposed sooner Better quality means fewer buffers and allows simpler JIT systems to be used JIT Quality Tactics Use statistical process control Empower employees Build fail-safe methods (pokayoke, checklists, etc.) Expose poor quality with small lot JIT Provide immediate feedback Table 16.4 35

Toyota Production System Continuous improvement Build an organizational culture and value system that stresses improvement of all processes Part of everyone s job Respect for people People are treated as knowledge workers Engage mental and physical capabilities Empower employees Toyota Production System Standard work practice Work shall be completely specified as to content, sequence, timing, and outcome Internal and external customer-supplier connection are direct Product and service flows must be simple and direct Any improvement must be made in accordance with the scientific method at the lowest possible level of the organization 36

Lean Operations Different from JIT in that it is externally focused on the customer Starts with understanding what the customer wants Optimize the entire process from the customer s perspective Building a Lean Organization Transitioning to a lean system can be difficult Lean systems tend to have the following attributes Use JIT techniques Build systems that help employees produce perfect parts Reduce space requirements 37

Building a Lean Organization Develop partnerships with suppliers Educate suppliers Eliminate all but value-added activities Develop employees Make jobs challenging Build worker flexibility JIT in Services The JIT techniques used in manufacturing are used in services Suppliers Layouts Inventory Scheduling 38