Magnets. Fα1/d 2. Brief History

Similar documents
Magnetism: a force of attraction or repulsion by magnetic materials. Copper, plastic, and glass attracted to magnets.

Lines of force shape pole

Magnetism 1. In this presentation you will: explore how magnets can be used to investigate magnetism. Next >

Unit 7. Magnetism Electromagnetism Electromagnetic Induction

Magnetism and Field Theory

The Why & How of Magnets The sources of nearly all magnetic effects in matter are the electrons in atoms.

Magnets. Permanent vs. Temporary Magnets. Characteristics. Name originates from the region of Magnesia, a part of Greece

Gravitational field Magnetic field

Magnetism. L 27 Electricity & Magnetism [5] 29:006 EXAM 3 Wednesday April 11 Lectures 19 through 28

MODULE 4.2 MAGNETISM PERMANENT MAGNETS VISUAL PHYSICS ONLINE

Glossary of Magnetic Terms

Magnets MR. BANKS 8 TH GRADE SCIENCE

History of the Magnet:

INTRODUCTION:- 1.Classification of magnetic material Diamagnetic

Electromagnetism. Magnetism & Electricity

UNIT 11: ELECTROMAGNETISM. Content: Learning Aims: Initial Activities

Magnetism 1 of 25 Boardworks Ltd 2016

Stephan Treml. Magnetic Separation -Basics- Product Manager Magnetic Systems. Product Purity. Greater Security. Added Value.

Natural Magnetism and Electromagnetism

TRADE OF HEAVY VEHICLE MECHANIC

The Magnetism Unit: I Hope You Will Be Attracted To It

SPH3U UNIVERSITY PHYSICS

The Nature of Magnetis111

EQ: How do magnets work, and can they be useful?

Module 8 Magnetism. What this module is about

SCIENCE STUDENT BOOK. 8th Grade Unit 6

1 Magnets and Magnetic Fields

MAGNETISM GRADE 10 CAPS SUTHERLAND HIGH SCHOOL PHYSICAL SCIENCE R. BASSON

MODULE 4.2 MAGNETISM MAGNETIC PROPERTIES OF MATERIALS VISUAL PHYSICS ONLINE

SCIENCE STUDENT BOOK. 8th Grade Unit 6

Causes for residual magnetism on parts. Residual magnetism of steel products:

glossary magnetglossary

Which rod should she use to make the permanent magnet, and is this rod a hard magnetic material or a soft magnetic material?

Downloaded from

Magnetism I. Physics 2415 Lecture 14. Michael Fowler, UVa

Nanomagnetism. R. A. Buhrman. Center for Nanoscale Systems ( Cornell University

Introduction. Lodestone (1 st known magnets) An ore of Iron oxide (Fe 3 O 4 ) Property of attraction Definite direction (used in ships)

Magnets. Contact the National Museum of the U.S. Navy for Field Trip and School Visit opportunities!

Electricity and Magnetism

Magnetism and Geomagnetism: Basics and Concepts

Making Materials Matter: Measuring Magnetism

Carlos R. Villa Director of K-12 Programs National High Magnetic Field Laboratory 2018 NSTA Distinguished Informal Science Educator

Nature of Magnetism. Figure B-1 Bohr s model of the atom. For application help: call Honeywell Sensing and Control 79

Electronic materials and components-inductive components

INTRODUCTION TO MAGNETIC MATERIALS

Magnets. Physical Processes Gr7

CONTENTS PART II. MAGNETIC PROPERTIES OF MATERIALS

Lecture 26 Chapter 23 Circuits Chapter 24 Magnetism

I think it is a deficiency in the Amateur Radio syllabus that questions are not asked on magnetism.

SCIENCE PROGRAM AT SCHOOL DISCOVERING MAGNETISM 2018 CEIP Nuestra Señora de los Ángeles

Magnetism magnetism What is magnetism? attract repel magnetic field electromagnetism SIX things to know about magnets poles

Wireless Temperature Sensor Operating in Complete Metallic Environment Using Permanent Magnets

NdFeB. Title Here. for High Temperature Motor Applications. Author Venue. Steve Constantinides. Date. with Dale Gulick

Magnetic fields 04/09/2016 cgrahamphysics.com 2016

Types of Magnets. force: a push or a pull

The Effect of Magnetic Field on Oil Based Ferrofluid in Field Reversible Thermal Connector Interface

Physics Lab #25. Magnetism

7. FERROMAGNETIC MATERIALS. aligned atomic dipoles

HOEGANAES INSULATED POWDER COMPOSITES CHARACTERISTICS AND ELECTROMAGNETIC APPLICATION GUIDELINES

Magnetic Particle Testing (MPT) [8]

Specific heat of water = 4190 J (kg C) or 4.19 J (g C)

Combat old foes with new technology in LNG tank construction

EHE TECHNICAL BULLETIN. Ferrimagnetic 1 materials for HF welding impeders. TB1010. History. Composition. Manufacturing Process

COBALT Essential to High Performance Magnetics

SEPARATION OF MAGNETIC PARTICLES FROM BULK SUGAR FLOWS

DOWNLOAD PDF WHAT DO THE N AND THE S ON A MAGNET MEAN?

EEC Terminology Guide

ENGINEER COURSE M A G N E T I C PACKET S I L E N C I N G. Introduction to Magnetic Silencing SELF-STUDY WORKBOOK FOR OFFICIAL USE ONLY

Magnets. Grades 1-3. Written by Isabel Deslauriers Illustrated by Jim Caputo. ISBN Copyright 2008

Magnetism. What do you remember? Pg Syllabus cgrahamphysics.com 2015

7.9.6 Magnetic Poles. 85 minutes. 117 marks. Page 1 of 37

Sometimes children become very enthusiastic when confronted with well-known things and events. The interesting thing about magnetism is the way it

Heat Treating Distortion and Residual Stresses

PM Generators and the Magnet price development. Drivetrain concepts for wind turbines Bremen, 22.Oct Christian Contini, Dipl.-Ing.

THE THEORY OF MAGNETISM AND APPLICATION OF MAGNETS. ; 1l. l.', J%acio eorpor aiiorc/ INS. caineiicas Olclesi

Electrochemical response of permanent magnets in different solutions

2. What property of cooperating valence electrons is mostly responsible for creating domains in special elements? CHOOSE ONE ANSWER ONLY

Atomic structure, arrangement, and movement Introduction to Materials Introduction Types of Materials Structure-Property-Processing Relationship

Magnetic Properties. WHY STUDY the Magnetic Properties of Materials? FIRST PAGES. Chapter

Hexaferrite Permanent Magnetic Materials

Electric and Magnetic Forces

Just doing our bit to help make better cars. High-performance thin-shape anisotropic magnets FB13B / FB14H

Metals are used by industry for either one or combination of the following properties

Properties of metals

B H. Magnetic materials

Vigyan Pratibha Learning Unit (Teacher Version)

The Path of Resistance part 5

The table shows the students suggestions about the identity of P.

Properties of Metals

TDK s Environmental Technologies

Part 1 Pre-16 The platinum story

13 Fun with Magnets. Paheli and Boojho went to a place. How Magnets Were Discovered

Mathematics and Science in Schools in Sub-Saharan Africa

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

COMMERCIAL ITEM DESCRIPTION MAGNET MATERIALS, PERMANENT

SmCo Samarium Cobalt Magnet Material

NOTES ON CHAPTER 4: ELEMENTS AND THE PERIODIC TABLE. 4.3 Metals

Preliminary Chemistry

Oman College of Management & Technology COURSE NAME: MATERIALS SCIENCE PROPOSED BY: DR.MOHAMED ALNEJEM SEMESTER: SECOND 2015/2016 CHAPTER (7): METALS

DFARS/Domestic Speciality Metals

Transcription:

Magnets Brief History The ancient Greeks (Magnesia Greece) and Chinese are credited as the first to find and use a naturally occurring iron ore called magnetite. The key to their discovery was that magnetite is able to attract other iron bearing materials. The earliest application of this permanent magnet material was in the mariner's compass and pieces of magnetite became known as lodestone. The word lode means "to lead" and lodestone led the mariners to safe harbor. From the time of the discovery of lodestone until 1600, when Gilbert published his results on observed magnetic phenomena, progress in the understanding of magnetism was limited. Gilbert was the first to apply scientific methods into the study of magnetism and is credited as the first to discover that the earth is one giant magnet. His efforts in separating the difference between electric charges and magnetic charges became the foundation of the science of electricity and magnetism. The next milestone in magnetics occurred in 1785 when Charles Coulomb published the inverse square law of attraction and repulsion between electrical charges and magnetic poles. Because these early contributions originated from force concepts, the first definitions and units were based on forces between poles. Fα1/d 2 DOMAIN THEORY (1907) The domain theory explains magnetic phenomenon by proposing the existence of domains. Domains are small regions within an object that are magnetic. These regions may be from one to hundreds of microns, which is small, but larger than atomic in size. When the polarities of the individual domains are randomized, their fields cancel one another and the object is not magnetic. When the polarities of all domains are parallel and aligned, their fields reinforce one another and the object is magnetic. This theory explains several observations. When a ferrous material such as a nail is left in a magnetic field for an extended period of time the material becomes magnetic, at least temporarily. The explanation is that the domains are subject to atomic jostling and move randomly about fixed points. When exposed for a time to a magnetic field, the domains eventually line up with the field much as a compass needle lines up with the Earth's magnetic field. Once the domains are aligned, the object as a whole acts as a magnet. When removed from the field the jostling eventually randomizes the field again and the material becomes demagnetized. Magnets become demagnetized when heated or when hammered or dropped repeatedly. This treatment randomizes the orientation of the domains which causes their individual fields to cancel. 1

2

The Domain Theory The domain theory is a great theory on explaining and predicting the behaviour of magnets. However, as we will learn later, it is only a useful tool in predicting a magnets behaviour. The domain theory states that in all matter, tiny magnets called domains or dipoles exist. In a permanent magnet these domains are aligned. In a temporary magnet (some "ferromagnetic" material), the domains can be easily aligned by an external magnetic field. In material that can't be magnetized, the dipoles cannot be aligned Sketch your own drawing to show the following 1. Saturation maximum strength 2. Demagnetization 3. Breaking a magnet in 2 4. Hitting a magnet with a hammer 5. How to properly store 2 magnets 3

Other information about magnets Magnetic Fields A magnet distorts the space around the magnet. Field lines, imaginary lines of force, can be drawn to represent how the space around a magnet is distorted. Iron fillings can be used to show how field lines affect space. A compass is a tiny magnet that is suspended and free to rotate. The tiny magnet will align itself with any external magnetic field Note magnetic field lines point South to North inside the magnet, North to South outside the magnet because the field lines are continuous loops. Note the earth creates a small magnetic field that has been used by travellers as a navigation tool for years (with the compass). If field lines point from North to South outside the magnet, compasses actually point The earth's magnetic field is due to flip again."our planet's magnetic field reverses about once every 200,000 years on average." http://news.nationalgeographic.com/news/2004/09/0927_040927_field_flip.html The sun's magnetic field flips every 11 years http://science.nasa.gov/science news/science at nasa/2003/22apr_currentsheet/ 4

5

Natural magnets Natural magnets are formed when molten lava cools and the domains in the material aligned with the earth's magnetic field. This fact was used to verify the tectonic plate theory. http://science.nationalgeographic.com/science/earth/the dynamicearth/plate tectonics article/ Artificial Magnets Select a materials whose domains Heat the material Place the material in a Let the material cool while in this field. 6

Modern development In 1820, Hans Oersted discovered that an electric current would deflect a magnetic needle. Using Oersteds' discovery, Ampere magnetized steel needles by placing them in a helix of wire carrying an electric current. Around 1830, Joseph Henry and Michael Faraday independently discovered electromagnetic induction. Their concepts of converting magnetism into electricity were then used to make the first transformers. The invention of the dynamo in 1865 naturally followed and began the era of electricity. James Maxwell formulated the relationships of electricity and magnetism based on the discoveries of Gauss, Ampere and Faraday, which he published in 1873. These relationships are known today as Maxwell's equations and form the backbone of modern electromagnetism. Between Oersted's discovery in 1820 and through the early 1920's, advances in the understanding of magnetism were theoretical in nature. The physical development of magnetic materials beyond magnet steels began in 1921 with the introduction of cobalt chrome steel. Subsequent work on alloys with nickel, aluminum, copper and platinum led to the introduction of precipitation hardened alnico (aluminum nickel cobalt) in 1935, Cunife (copper nickel iron) in 1935 and Platinum Cobalt in 1936. The alnico magnets were further improved in 1940 with the introduction of domain oriented alnico V that is still in frequent use today. The alnico family of magnets, with much improved properties compared to steel magnets, opened the door to new markets. For example, alnico speaker designs helped make radio and television ossible in millions of homes starting at the end of World War II. Figure I presents the development of modern permanent magnet materials. Philips Corporation produced the first non metallic magnets in the 1950's. These ceramic (ferrite) magnets used strontium or barium compounds together with iron oxide. The properties of ferrite magnets coupled with low raw material costs led to very useful, low priced magnets which today dominate the consumer and industrial marketplace. Estimates indicate that ferrite magnets comprise over 80% of world consumption by weight. Stronger magnet types were introduced in the 1970's and 1980's. These magnets became known as the rare earth family of magnets since they were made from samarium or neodymium, two of the rare earth elements found in the Lanthanide series of the periodic table. Rare earth magnets made it possible to make some devices both smaller and more powerful at the same time. The term "rare earth" implies a scarcity of these elements when, in fact, both are readily available. 7