Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable Batteries

Similar documents
INVESTIGATION ON ALUMINUM-BASED AMORPHOUS METALLIC GLASS

Nanocrystalline LiFePO4 as cathode material for lithium battery applications S.C SIAH

Towards High-Safety Potassium-Sulfur Battery Using. Potassium Polysulfide Catholyte and Metal-Free Anode

Electronic Supporting Information. Synthesis of single crystalline hexagonal nanobricks of

In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries

A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme electrolyte

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup.

Supporting Information

Supporting information. Carbon Matrix: An Ultrafast Na-Storage Cathode with. the Potential of Outperforming Li-Cathodes

LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries

Investigation of anode materials for lithium-ion batteries

A New Anode Material LiVMoO 6 for Use in Rechargeable Li-Ion Batteries

Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries

The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin

Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained by Crystallization of Cast Amorphous Phase

Characterization of Nanocrystalline Si-MCMB Composite Anode Materials

Supporting Information

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)

Supporting Information

High Performance Lithium Battery Anodes Using Silicon Nanowires

Microscopic Structural Analysis of Advanced Anode Material for Lithium Battery

Supporting Information for Fluorinated Ethylene Carbonate as Electrolyte Additive for Rechargeable Na Batteries

Preparation and Characterization of Sn-mesocarbon Composite Microbeads

Investigation of anode materials for lithium-ion batteries

Supporting Information

Supporting information

suppressing charging instabilities of Li-O 2 batteries

Uudergraduate Honors Thesis. Ge Zhu 4/13/2018

Design and Comparative Study of O3/P2 Hybrid Structures for

Influence of Spraying Conditions on Properties of Zr-Based Metallic Glass Coating by Gas Tunnel Type Plasma Spraying

Supporting Information

EFFECT OF THE PITCH-BASED CARBON ANODE ON THE IRREVERSIBLE CAPACITY OF LITHIUM-ION SECONDARY BATTERY

SUPPORTING INFORMATION. A Rechargeable Aluminum-Ion Battery Based on MoS 2. Microsphere Cathode

Department of Energy Engineering, Hanyang University, Seoul 04763, South Korea

Department of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea

Anomalous, High-Voltage Irreversible Capacity in Tin Electrodes for Lithium Batteries

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide

Mechanical Properties of Bulk Metallic Glasses and composites

Novel Materials for Lithium-Ion Batteries

Supporting Information

A SOLVENT-FREE COMPOSITE SOLID ELECTROLYTES OF Li 2 CO 3 Al 2 O 3 SYSTEM PREPARED VIA WATER BASED SOL GEL METHOD

Amorphous and Nanocrystalline Mg 2 Si Thin Film Electrodes

Supporting Information

Supporting Information

Supporting information

Supporting Information. Oxidation State of Cross-over Manganese Species on the Graphite Electrode of Lithium-ion Cells

New Cu-based Bulk Metallic Glasses with High Strength of 2000 MPa

Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

Magnesium-Ion Battery-Relevant Electrochemistry of MgMn 2 O 4 : Crystallite Size Effects and the Notable Role of Electrolyte Water Content

Supporting Information for

The Effects of LaF 3 Coating on the Electrochemical Property of Li[Ni 0.3 Co 0.4 Mn 0.3 ]O 2 Cathode Material

Soft silicon anodes for lithium ion batteries

Li 2 OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes

Effect of Amorphous Transformation on Electrochemical Capacities of Rare Earth Mg Based Alloys

Mechanical Alloying of Mg-Al Alloy with Addition of Metal Silicides

Supporting Information. Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries

Nitrogen-Doped Graphdiyne Applied for Lithium-

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

FABRICATION AND ELECTROCHEMICAL CHARECTARIZATION OF THE CR2032 COIN CELLS USING THE DEVELOPED PURE AND CARBON COATED

Supporting Information. Amorphous Red Phosphorus Embedded in Highly Ordered. Mesoporous Carbon with Superior Lithium and Sodium Storage.

School of Materials Science and Engineering, South China University of Technology,

Absorption/desorption behavior of hydrogen and deuterium in a Pdcoated Zr-based amorphous alloy

Supporting Information for. A Water-in-Salt Electrolyte for Potassium-Ion Batteries

Three-dimensional Nano-electrode. by Metal-Nanowire-Nonwoven Clothes

Large-scale Spinning of Silver Nanofibers as Flexible and. Reliable Conductors

Galvanostatic charge discharge tests, 57 Fe and 119 Sn Mössbauer and XRD measurements on novel Sn-Ni-Fe electrodeposits

T H E E U R O P E A N P O R T A B L E B A T T E R Y A S S O C I A T I O N. Product Information Primary and Rechargeable Batteries

Kuang-Che Hsiao. Supervisor: Prof. Tony West

Electrochemical study of the reaction of lithium with Aurivillius and related phases

Fe-B-Si-Nb Bulk Metallic Glasses with High Strength above 4000 MPa and Distinct Plastic Elongation

PHASE SEPARATION BY INTERNAL OXIDATION AND REDUCTION IN A Cu-5at%Ni-ALLOY

Keywords. Aluminium-based amorphous alloys; melt spinning; crystallization behaviour; microhardness.

Supplementary information. performance Li-ion battery

SUPPORTING INFORMATION. Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, 373-1

Application in High-Performance Lithium-

Effects of different metal ion doping on nano crystalline LiMn 2 O 4 as cathodes for Lithium ions batteries

TEPZZ 747_77A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

Supporting Information

Synthesis, characterization and cycling performance of novel chromium oxide cathode materials for lithium batteries

Effect of Li Addition on Synthesis of Mg-Ti BCC Alloys by means of Ball Milling

Novel concept of rechargeable battery using iron oxide nanorods. anode and nickel hydroxide cathode in aqueous electrolyte

Dual phase bulk metallic glasses fabricated by hot pressing using two different types of glassy alloy powder

Batteries. Self contained electrochemical cell. Dry Cell (Flashlight Battery) ! Primary batteries (not rechargeable)

Reducing the charging voltage of a Li-O 2 battery to 1.9 V by incorporating a photocatalyst

Supplementary Information

A design of Solid-State Li-S cell with evaporated Lithium anode to eliminate shuttle effects

Unusual Li-ion Storage through Anionic Redox Processes of. Bacteria-driven Tellurium Nanorods

Safe, Inexpensive, Long Life, High Power and Efficiency Batteries For Grid Scale Energy Storage Applications

Formation and Soft Magnetic Properties of Co Fe Si B Nb Bulk Glassy Alloys

ALD TiO 2 coated Silicon Nanowires for Lithium Ion Battery Anodes with enhanced Cycling Stability and Coulombic Efficiency

Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes

INFLUENCE OF SELECTIVE LEACHING PARAMETERS ON PROPERTIES OF SILVER NANOPARTICLES. Ivo MAREK, Alena MICHALCOVÁ, Dalibor VOJTĚCH

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Supplementary Figure 1:

Supplementary Figure 1 The lithium polysulfide distribution on the patterned electrode.

Supporting Information

HALF - CELLS BASED ON SOLID VITREOUS ELECTROLYTE AND THERMO EXPANDED GRAPHITE

Transcription:

Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable Batteries Meng Ying 1, Li Yi 1,2, E. M. Arroyo 3 and G. Ceder 1,3 1. Singapore-MIT Alliance, Advanced Materials for Micro- and Nano- Systems Programme, National University of Singapore 2. Department of Materials Science, National University of Singapore, Lower Kent Ridge, Singapore11926 3. School of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 2139 ABSTRACT We have investigated the use of aluminum based amorphous metallic glass as the anode in lithium ion rechargeable batteries. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely packed compared to the crystalline alloys of the same compositions; they usually have higher ionic conductivity than crystalline materials, which make rapid lithium diffusion possible. Many metallic systems have higher theoretical capacity for lithium than graphite/carbon; in addition irreversible capacity loss can be avoided in metallic systems. With careful processing, we are able to obtain nano-crystalline phases dispersed in the amorphous metallic glass matrix. These crystalline regions may form the active centers with which lithium reacts. The surrounding matrix can respond very well to the volume changes as these nano-size regions take up lithium. A comparison study of various kinds of anode materials for lithium rechargeable batteries is carried out. I. INTRODUCTION The demand for lithium ion rechargeable batteries has been driven by the rapid growth of electronic portable equipment such as cellular phones, laptops and digital cameras etc. In addition, the expectation that rechargeable batteries will play a large role in alternative energy technology and electric vehicles (EV), has made lithium ion rechargeable batteries development into a fast growing area. Although lithium batteries already have the highest energy density of any battery systems, the power and energy requirements of many new portable devices cannot be met with the current choices for electrode materials, especially the negative electrode (anode) materials. Graphite /carbon are used in commercial lithium ion batteries as anodes, nevertheless the capacity of these materials is limited to 34-35 Ahkg -1 [1]. Metal alloys have a potential anodic capacity of 1-2 Ahkg -1 [2]. Industrial interest i t lli ll h b li it d d t th i limited cycle life in commercial cells. This situation changed when Fujifilm announced the development of lithium batteries that were constructed with metal oxide glasses as the anodes [3]. In the first charging step some of the metal oxide is reduced by lithium. The Li 2 O produced in this reaction reduces the amount of Li available for cycling in the battery. In this project, we investigate the use of amorphous aluminum-based metallic glass as the anode material in lithium ion rechargeable batteries. As these materials contain no oxides, their initial reaction with Li should not reduce the amount of Li for cycling and hence they should keep a more stable capacity than the oxide glasses. II. BACKGROUND A battery is an energy storage device. Lithium ion battery is one of the dominant energy storage devices including fuel cell and nickel metal hydride battery. Two-way movement of lithium ions between the

anode and cathode through the electrolyte occurs during charge and discharge processes, as shown in Figure.1. The first commercial lithium ion rechargeable battery was introduced by Sony Japan in 1989, using graphite as the anode [4]. The reaction mechanism between Li and carbon is an intercalation type reaction [5]. Lithium ions are reversibly stored between layered carbon frameworks. During the reaction, there are no major structural reconfigurations in graphite, which results in a highly reversible reaction. Nevertheless, when graphite is initially charged, the formation of a passivation layer due to electrolyte decomposition at the electrode surface is imminent and results in an irreversible capacity loss [6]. The state-of-art carbon materials also present a safety issue problem [7]. Figure 1. Principle of lithium ion battery - the battery is in discharge state In 1997, Fujifilm claimed that a high-capacity lithium-storage material in metal-oxide form had been synthesized that could replace the carbon-based lithium intercalation materials currently in extensive use as the anode of lithium-ion rechargeable batteries. This tin-based amorphous composite oxide (TCO) contains Sn(II)-O asthe active center for lithium insertion and other glass-forming elements, which make up an oxide network. [3,8] The TCO anode yields a specific capacity for reversible lithium absorption more than 5 percent higher than those of the carbon families. In the first cycle, the Sn-O is reduced by Li, creating a nano-composite of Sn metal dispersed in an oxide matrix. It is this metallic Sn, which provides the capacity to reversibly react with Li. However, the first cycle capacity loss is very high due to the Li consumed in the reduction of Sn-O and formation of Li 2 O, which is an irreversible reaction. Since the amount of Li in a practical Li-ion is limited to what is provided by the as-made cathode material, any irreversible Li loss, reduces the cycling capacity of the battery [9]. The search for newer and higher performance anode materials leads to the development of alloy anodes [1]. The utilization of metals and alloys as negative electrode material is based on reversible alloying of lithium with the metal/alloy. Many metals undergo very large volume expansion when alloying with Li and have low Li diffusivities, reducing the applicability of these materials as electrodes. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely packed compared to the crystalline alloys of the same compositions [11]; they usually have higher ionic conductivity than crystalline materials, which make rapid lithium diffusion possible. Many metallic systems have higher theoretical capacity for lithium than graphite/carbon; in addition irreversible capacity loss can be avoided in metallic systems [1]. With careful processing, we are able to obtain nanocrystalline phases dispersed in the amorphous metallic glass matrix. These crystalline regions may form the active centers with which lithium reacts. The surrounding matrix is expected to respond well to the volume changes as these nano-size regions take up lithium.

Three aluminum-based amorphous metallic glass were prepared by rapid solidification. Alloy ingots of and larger enthalpies of crystallization than those of Al 8 Cu 1 La 1. compositions Al 8 Ni 1 La 1, Al 8 Cu 1 La 1 and Al 88 Ni 9 Y 3 [12] were prepared by arc melting nominal amounts of elements in an argon atmosphere. Melt spinning was carried out in argon atmosphere using a copper wheel with a typical circumferential velocity of 3m/sec. The melt spun ribbons were 2_m thick, 1 to 2mm wide, and up to several meters long. The microstructures of the samples were analyzed using a Table 1. Crystalline phases in the as-spun amorphous metallic glass Al 8Ni 1La 1 Al 8Cu 1La 1 Al 88Ni 9Y 3 Phase Present La 3Al 11 in amorphous matrix Partially amorphous only Nano-size _-Al in amorphous matrix Philip x-ray diffractometer with a Cu K _ x-ray radiation and a Jeol JEM-1CXII transmission electron microscope (TEM) operating at 1keV. The melt-spun ribbons were ground into powders by mortar and pestle (average particle size > 2_m). Slurries were prepared by mixing the respective Heat Flow (A.U.) powders (85% by weight), carbon black (1% by weight) and polyvinylidene fluoride (PVDF) (5% by weight) in acetone. After drying the mixtures they were conformed into 5mm diameter pellets. Swagelok-type test cells were constructed using these electrodes as the positive electrode; the cells used S&S glass fiber filter paper as the separator, an electrolyte [1M LiPF6 in EC: DMC 1:1 (v/o)] and a lithium foil for the negative electrode. Cells were assembled in an argon-filled glove box, where moisture level is less than 1ppm. All cells were tested with a current density of.4ma/cm 2 and were charged and discharged between specified voltage limits. Al 8 Ni 1 La 1 Al 88 Ni 9 Y 3 Al 8 Cu 1 La 1 35 4 45 5 55 6 65 7 75 Temperature (K) Figure 2. Differential scanning calorimetry result for glassy Al 8Ni 1La 1, Al 88Ni 9Y 3 and Al 8Cu 1La 1 The broad maximal in the x-ray diffraction (XRD) spectra of Al 8 Ni 1 La 1 and Al 88 Ni 9 Y 3 (Figure 3) indicate large amount of amorphous phase in both samples. Applying Warren s method [13] of particle size measurement, we calculated that the average particle /crystal size in the glass Al 88 Ni 9 Y 3 is about 12.6nm. IV. RESULTS AND DISCUSSION 1. Characterization of Amorphous Metallic Glass The aluminum based metallic glasses have the following microstructures as shown in the table below. Al 8 Ni 1 La 1 and Al 88 Ni 9 Y 3 have better glass forming ability than Al 8 Cu 1 La 1 as shown in the differential scanning calorimetry (DSC) analysis. The DSC result in Figure 2 shows that Al 8 Ni 1 La 1 and Al 88 Ni 9 Y 3 have higher crystallization temperatures T x Transmission electron microscopy was performed to examine the morphology of the crystalline phase and identify the phases. Figure 4 (a) shows that the particle size of the crystalline phase in Al 88 Ni 9 Y 3 is indeed in the nano-meter range. The selected area electron diffraction (SAED) pattern shown in Figure 4(b) allows the identification of the crystalline phase as La 3 Al 11.

Intensity (A.U.) Al 88 Ni 9 Y 3 aluminum is shown in Figure 5. It can be observed that the lithium insertion voltage of the aluminum based metallic glass is about.2volt, lower than that of pure aluminum: V=.3volt, shown by a plateau shift in the E vs. Time curve. Similar phenomena were observed in Al-Ni-La and Al-Ni-Y metallic glasses. Al 8 Ni 1 La 1 3.5 3 4 5 6 7 8 2 Theta (degree) Figure 3. X-ray diffraction spectra of as-spun Al 8Ni 1La 1 and Al 88Ni 9Y 3 metallic glass 1nm Cell Voltage (V) 3. 2.5 2. 1.5 1..5. -.5 Plateaus due to lithium intercalation into carbon back Aluminum (2um powder) Al 8 Cu 1 La 1 15 3 45 6 75 Time (Hour) Figure 5. Lithium insertion voltage for crystalline aluminum and glassy Al 8Cu 1La 1 a) Under the applied experimental condition, the charging capacity for Li-ion storage of Al 8 Cu 1 La 1 is.45mol lithium per mol of Al 8 Cu 1 La 1 for discharge down to V. The Li-ion capacity of 123 13 11 Al 8 Ni 1 La 1 is about.24mol lithium per mole of Al 8 Ni 1 La 1. The reasons for different capacity, which require further investigation, may have to do with the different phases present in the materials as well as with the grain size of the active material in b) the electrode. Figure 4. a) Dark-field TEM micrograph of Al 88Ni 9Y 3, the bright phase is _-Al nano-crystals; b) Diffraction pattern of the crystalline phase in Al 8Ni 1La 1, which was identified as La 3Al 11. 2. Battery Properties Figures 5 and 6 show the results from the preliminary electrochemical study of the prepared materials as Figure 6 (a) and (b) show the cycling behaviors of the Li// Al 8 Cu 1 La 1 cells and Li//Al 8 Ni 1 La 1 cells. The first cycle capacity fade is mainly due to the presence of carbon black in the electrode. The subsequent capacity fade is as small as a few percentages. positive electrodes in lithium cells. A comparison of

Voltage/V (a) 3 2 2Ah/Kg conformation of the electrode has to be improved as V of Acl1.7 I of Acl1.7 well. Fully amorphous samples will be produced to isolate the capacity of the crystalline phase from the total capacity of the material. In addition, the cycling 1 Current/A ability of these anode materials will be investigated. Voltage/V 5 1 15 2 Time/h 3 (b) 1Ah/Kg 2 1 5 1 15 2 Time/h Figure 6. (a) Cycling of electrochemical Li insertion and release on Al 8Cu 1La 1 at constant current of.8ma per 8.7mg Al 8Cu 1La 1, conducted at room temperature between voltage limits of V and 3V (C/7); (b) Cycling of electrochemical Li insertion and release on Al 8Ni 1La 1 at constant current of.4ma per 1.2mg Al 8Ni 1La 1, conducted at room temperature between voltage limits of V and 3V(C/17). V. CONCLUSIONS AND FUTURE WORK In summary, aluminum based amorphous metallic glasses were produced and tested as the anode materials for the lithium ion rechargeable batteries. It was found that the lithium insertion voltages of these metallic glasses were slightly lower than that of crystalline aluminum, which is.2volt. The capacities for these metallic glasses were found lower than the maximum theoretical specific capacity value. However, the compositions and particle size inside the metallic glass anodes have to be optimized before the full lithium capacities of such materials can be confirmed; the particle sizes of the metallic glasses shall be lowered to 1-2_m. The Current/A REFERENCE: 1. D. Fauteux and R. Koksbang, Journal of Applied Electrochemistry 23 (1993) 1-1. 2. J.O. Besenhard, ed. Handbook of Battery V of Aln11c.3 I of Aln11c.3 Materials, Weinheim, Germany, Wiley-VCH, 1999. 3. Y. Idota, Tadahiko Kubota, Akihiro Matsufuji, Yukio Maekawa and Tsutomu Miyasaka, Science 276 (1997) 1395. 4. http://www.sony.co.jp/sonyinfo 5. Robert A. Huggins, Journal of Power Sources 81-82 (1999) 13-19 6. Masataka Wakihara, Materials Science and Engineering R 33 (21) 19-134. 7. M.N. Richard and J.R. Dahn, Materials Research Society Symposium Proceeding 496 (1998) 445 8. I.A. Courtney and J.R. Dahn, Journal of Electrochemical Society 144 (1997) 2943 9. C.K. Huang, J.S. Sakamoto, M.C. Smart, S. Surampudi and J. Wolfenstine, Materials Research Society Symposium Proceeding 496 (1998) 519 1. S.S. Kim, H. Ikuta and M. Wakihara, Solid State Ionics 139 (21) 57 11. Y. He, S.J. Poon and G.J. Shiflet, Science 241 (1988) 164-1642 12. A. Inoue, Progress in Materials Science 43 (1998) 365-52 13. B.D.Cullity, Elements of X-Ray Diffraction, 2 nd Edition, Addison-Wesley Pub. Co., 1978