ALUMINUM EXTRUSIONS ANODIZED, PAINTED AND MILL-FINISH

Similar documents
ENVIRONMENTAL PRODUCT DECLARATION ALUMINUM SUN CONTROL SYSTEMS THERMASHADE SUNSHADES

UNITIZED CURTAIN WALL ALUMINUM CURTAIN WALL SYSTEMS

IPC Wall Base UNCPC Code: Builders ware of products According to ISO 14025

At One Bal Harbour in Miami, FL, YKK AP s terrace doors were used to create a weather resistant access to exterior spaces.

ALUMINUM WINDOW WALL SYSTEMS YKK AP AMERICA

OVERHEAD GLAZING ALUMINUM SLOPED CURTAIN WALL

PROJECTED & CASEMENT WINDOWS ALUMINUM WINDOWS

HUNG & SLIDING WINDOWS ALUMINUM WINDOWS

MODULAR RESILIENT FLOORING

VIEW DYNAMIC GLASS PROCESSED GLASS

Environmental Product Declaration RIXSON Model 147 Pivot Set, Offset Hung

WINDOW WALL ALUMINUM CURTAIN WALL SYSTEMS

IVES PROTECTION PLATES

MODULAR CARPET ENVIRONMENTAL PRODUCT DECLARATION INTERFACE AMERICAS NEXSTEP, TYPE 66 NYLON

Environmental Product Declaration Sargent Harmony Mortise Lock Integrated Wiegand Access Control

Environmental Product Declaration RIXSON Model 370 Pivot Set, Center Hung

TRIFAB FRAMING SYSTEMS AND STOREFRONT FRAMING SYSTEMS ALUMINUM STOREFRONT FRAMING SYSTEMS

YKK AP curtain walls are used in many applications, shown here at One Crescent Drive. For additional information, visit commercial.ykkap.com.

IPC Handrails UNCPC Code: Builders ware of products According to ISO 14025

ECOWORX CARPET TILE WITH NYLON 6,6 FACE FIBER

ArcelorMittal Construction Mineral wool sandwich panels

IPC Corner Guards UNCPC Code: Builders ware of products According to ISO 14025

LCN 4050 SERIES DOOR CLOSERS

IPC WALL GUARDS !PC DOOR AND WALL PROTECTION SYSTEMS ENVIRONMENTAL PRODUCT DECLARATION

Environmental Product Declaration Corbin Russwin CL3100 Series

LCN ENVIRONMENTAL PRODUCT DECLARATION 4000 SERIES DOOR CLOSERS (INCLUDES MODELS 4010, 4110, 4020, 4030, 4040XP)

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

SCHLAGE SCHLAGE PROXIMITY MINI-MULLION READER

STEELCRAFT F SERIES FRAMES

ECOWORX CARPET TILE WITH ECOSOLUTION Q FACE FIBER

Environmental Product Declaration Yale 6000 Rim Exit

Environmental Product Declaration Corbin Russwin IN100 Aperio Mortise Lock Wireless Access Control

ASSA ABLOY Standard Hollow Frame

FABRICATED HOT-ROLLED STRUCTURAL SECTIONS

Brucha panels for wall - Polyurethane

MODULAR CARPET ENVIRONMENTAL PRODUCT DECLARATION INTERFACE AMERICAS GLASBAC, TYPE 66 NYLON

VON DUPRIN 33A/35A SERIES EXIT DEVICES

Brucha panels for facade Mineral wool

CEMENT GROUT FOR TILE INSTALLATION

CEMENT MORTAR FOR TILE INSTALLATION INDUSTRY-WIDE REPORT PRODUCTS MANUFACTURED IN NORTH AMERICA

Brucha panels for roofing Mineral wool

PRODUCT INFORMATION FOR THE BUILDING CERTIFICATION SCHEME BREEAM (Building Research Establishment's Environmental Assessment Method)

THIRD PARTY VERIFIED - E P D ENVIRONMENTAL PRODUCT DECLARATION in accordance with ISO and EN ANODISED ALUMINIUM COIL AND SHEET

Brucha panels for wall Mineral wool

ENVIRONMENTAL PRODUCT DECLARATION

VON DUPRIN 98/99 SERIES EXIT DEVICES

Industry Workshop Break-Out. Building Construction. Seoul South Korea. 21 October ASTM International

SCHLAGE B500 SERIES LOCKS

ERFMI - Environmental Product Declaration. Homogeneous polyvinyl chloride floor coverings according to EN 649 and ISO 10581

SECURITRON AQD6 POWER SUPPLY

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

PRODUCT INFORMATION FOR THE BUILDING CERTIFICATION SCHEME LEED V4 (Leadership in Energy and Environmental Design)

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

Environmental Product Declaration Norton 6300 Series Low Energy Operator

Environmental Product Declaration Pemko PDB4131E Acoustic Automatic Door Bottom

THIRD PARTY VERIFIED - E P D ENVIRONMENTAL PRODUCT DECLARATION in accordance with ISO and EN ANODISED ALUMINIUM COIL & SHEET

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

SECURITRON AQD6 SERIES POWER SUPPLY

Environmental Product Declaration Pemko 2746x292FGPK Thermally Broken Accessible Panic Exit Saddle Thermally Broken Threshold with PemkoPrene Seal

ADAMS RITE MS1850S MS SINGLE POINT LOCK

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

Environmental Product Declaration Pemko 2009PK Accessible Panic Exit Saddle

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

SCHLAGE L9000 SERIES LOCKS

Environmental Product Declaration

ISO & EN 15804: A1:2013

Environmental Product Declaration Norton 5800 Series ADAEZ

Environmental Product Declaration. SULB Company B.S.C.(c) Hot-Rolled Structural Steel

EPD. 3 rd P A R T Y V E R I F I E D. Owner: DEKO p s No.: ECO EPD: MD EN Issued: Valid to:

Brucha panels for facade - Polyurethane

Environmental Product Declaration Medeco XT

STAINLESS STEEL HANDRAILS INPRO

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

ISO & EN 15804: A1:2013

Environmental Product Declaration Pemko Full Mortise Aluminum Heavy Duty Continuous Geared Hinge (Grade 1) Continuous Geared Hinge

ENVIRONMENTAL PRODUCT DECLARATION

ECOLUM CAST ALUMINUM PRODUCTS

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

ENVIRONMENTAL PRODUCT DECLARATION as per EN ISO and EN 15804

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

EPD. 3 r d P A R T Y V E R I F I E D. Owner: Gamle Mursten ApS No.: ECO EPD: MD EN Issued: Valid to:

ENVIRONMENTAL PRODUCT DECLARATION as per EN ISO and EN 15804

Environmental Product Declaration Pemko S773 SiliconSeal Adhesive Smoke/Fire Gasket Adhesive Gasket

ENVIRONMENTAL PRODUCT DECLARATION

BIOFELT TM TILE FLOORING CHILEWICH SULTAN LLC

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

Environmental Product Declaration HID iclass SE Express R10 Contactless Smartcard Reader

ECOFLEX NXT MODULAR CARPET TILES

Environmental Product Declaration Pemko Silicone Adhesive Smoke and Fire Gasket Adhesive Gasket

CHILEWICH BROADLOOMTM FLOORING CHILEWICH SULTAN LLC

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

STEELCRAFT L SERIES DOORS

ARROW Lock & Door Hardware

Yale Lock & Hardware ENVIRONMENTAL PRODUCT DECLARATION 51 SERIES DOOR CLOSER

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

ENVIRONMENTAL PRODUCT DECLARATION as per ISO and EN 15804

Transcription:

ENVIRONMENTAL PRODUCT DECLARATION ALUMINUM EXTRUSIONS ANODIZED, PAINTED AND MILL-FINISH Kawneer Company, Inc., part of Arconic's global Building and Construction Systems (BCS) business, has provided the commercial construction industry with best-in-class architectural aluminum products and service for more than 100 years. Its extensive range of solutions from curtain walls and windows, to entrances and framing systems help build infinite possibilities for thermal performance, hurricane resistance, blast mitigation and sun control. Kawneer s commitment to social and environmental responsibility is rooted in high performing, sustainable solutions that extend beyond energy efficiency to elements like daylighting, acoustical efficiency, recyclability, occupant security and occupant comfort. In fact, sustainability is at the heart of Kawneer s product line, which is comprised of one of the earth's most plentiful recyclables aluminum. Kawneer offers architects a new way to look at the building façade, placing endless design and sustainability options at their fingertips. For more information visit www.kawneer.com Kawneer products are comprised of extrusions made from one of the earth's most plentiful recyclables aluminum. Durable and lasting the extruded products also boast aesthetically appealing design features that can help contribute to energy efficiency and long term sustainability

Page 2 of 13 This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable. PROGRAM OPERATOR UL Environment DECLARATION HOLDER Kawneer North America DECLARATION NUMBER 47868332121.106.1 DECLARED PRODUCT REFERENCE PCR DATE OF ISSUE November 16, 2015 PERIOD OF VALIDITY 5 Years CONTENTS OF THE DECLARATION The PCR review was conducted by: Anodized, Painted and Mill-Finished Aluminum Extrusions Part A: Calculation Rules for the LCA and Requirements Project Report, (IBU/UL Environment, V1.3, 06.19.2014) and Part B Addendum: IBU PCR for Products of aluminum and aluminum alloys (UL Environment, V1.0 Oct. 2015). Berlin: Institut Bauen & Umwelt. Product definition and information about building physics Information about basic material and the material s origin Description of the product s manufacture Indication of product processing Information about the in-use conditions Life cycle assessment results Testing results and verifications IBU The Independent Expert Committee This declaration was independently verified in accordance with ISO 14025 by Underwriters Laboratories INTERNAL EXTERNAL This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by: Wade Stout, UL Environment Thomas Gloria, Industrial Ecology Consultants

Page 3 of 13 Product Product Description This EPD covers the production of extruded aluminum with the following finishing options: anodizing, painted and millfinish. The results for each product type are calculated for the production-weighted average from all Kawneer production sites in North America. Range of Applications Kawneer extruded aluminum is used in a variety of commercial building and construction applications, including: high rise curtain wall, commercial and architectural windows, storefront framing systems, sun control and shading devices, entrances/doors, skylights, interior framing and impact resistance. Technical Data Technical data for the studied product can be found in the table below. Name Value Unit Density 2700 kg/m3 Melting point 616-654 C Electrical conductivity at 20 C 31.25 m/ωmm 2 Thermal conductivity 200 W/(mK) Coefficient of thermal expansion 24 10-6 K -1 Modulus of elasticity 68.9 x 10 3 N/mm 2 Shear modulus 25.8 x 10 3 N/mm 2 Specific heat capacity 0.90 kj/kgk Hardness 73 HB Yield strength 214 N/mm 2 Ultimate tensile strength 241 N/mm 2 Breaking elongation 12 % Chemical composition Aluminum - 97.5 Alloy 2.5 % by mass Industry Standards ASTM B221 Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes. This specification includes guidelines regarding chemical compositions, manufacturing practices, mechanical properties and end product testing procedures. ASTM B807/B807M - Standard Practice for Extrusion Press Solution Heat Treatment for Aluminum Alloys. This specification establishes the controls required for extrusion press solution heat treatment of the 6xxx and 7xxx series aluminum alloys.

Page 4 of 13 AAMA 611 - Voluntary Specification for Anodized Architectural Aluminum. This specification describes test procedures and requirements for architectural quality aluminum oxide coatings applied to aluminum extrusions and panels for architectural products. AAMA 2604 - Voluntary Specification, Performance Requirements and Test Procedures for High Performance Pigmented Organic Coatings on Aluminum Extrusions and Panels. This specification covers high performance organic coatings which are used on products produced by the Kawneer Company and other manufacturers of high quality products. AAMA 2605 - Voluntary Specification, Performance Requirements and Test Procedures for Superior Performing Pigmented Organic Coatings on Aluminum Extrusions and Panels. This specification covers superior organic coatings which are used on products produced by the Kawneer Company and other manufactures of high quality products. Delivery Status Extrusions vary in size and thickness depending on the part and application. Base and Ancillary Materials Manufacturing Aluminum alloys (>98% by mass; average of 50% recycled content): aluminum alloy 6xxx series Pre-treatment chemicals (<0.5% by mass) Anodizing (<0.01% by mass) Paint (<2.0% by mass): kynar, acrylic polymer and fluoropolymer resins available The Kawneer aluminum extrusions covered by this EPD are produced in four US plants (Bloomsburg, PA; Cranberry, PA; Springdale, AR; Visalia, CA) and one Canadian plant (Lethbridge, AB). The manufacturing process comprises the following production stages: Extrusion: Aluminum billet (rods approximately 24 feet in length and 8-9 inch in diameter) are heated and pressed through various die shapes to create an aluminum extrusion. Surface treatment (unless mill-finished): o o o Pre-treatment: The aluminum extrusions are cleaned in preparation for finishing. Anodizing: Cleaned extrusions are placed in chemicals baths with an electric current to etch and color the surface, then the extrusions are sealed to harden the surface. Painting: Primer is added to the cleaned extrusions, then they are sprayed with a color coating and baked to set the color. Painted coatings can either be liquid or powder based. Product Processing/Installation Installation is outside of the scope of this EPD.

Page 5 of 13 Packaging Our aluminum extrustions are custom packaged in bundles with plastic wrap. In each bundle the extrusions are separated by foam and/or paper. They are then packed in custom cardboard boxes with plastic or steel strapping prior to shipping. Once delivered packaging can be recycled if facilities are available in the area. Extraordinary Effects Fire: Aluminum products comply with all local and federal laws with respect to fire hazards and control. Water: There is no evidence to suggest water runoff or exposure under normal and intended operation will violate general water quality standards. Mechanical desctruction: Not relevant for aluminum extrusions. Recycling and Disposal Aluminum extrusions are a highly efficient sustainable building material. Aluminum is 100% recycleable and can be recycled repeatedly. Recycled aluminum is identical to smelted aluminum but requires only 1/20 of the energy to manufacture. In building and construction aluminum scrap has a recycling rate of 95% [AA]. The remaining 5% is sent to landfill. Environment and Health Product manufacturing: Plant emissions to air/soil/water are monitored (if applicable) and comply with local laws. Product use: Kawneer products are not expected to create exposure conditions that exceed safe thresholds for health impacts to humans or flora/fauna under normal operating conditions. Life Cycle Assessment Product System and Modeling A cradle-to-gate analysis using life cycle assessment (LCA) techniques was conducted for this EPD. The analysis was done according to the product category rule (PCR) for Products of Aluminum and Aluminum Alloys and followed LCA principles, requirements and guidelines laid out in the ISO 14040/14044 and EN 15804 standards. As such, EPDs of aluminum products may not be comparable if they do not comply with the same PCR. While the intent of the PCR is to increase comparability, there may still be differences among EPDs that comply with the same PCR (e.g., due to differences in system boundaries, background data, etc.). Declared Unit The declared unit is 1 kg of aluminum extrusion as produced at the factory. System Boundary Per the PCR, this cradle-to-gate analysis provides information on the Product Stage of the aluminum product life cycle, including modules A1 A3: A1 The provision of resources, additives and energy A2 Transport of resources and additives to the production site

Page 6 of 13 A3 Production process on site, including energy, production of additives, disposal of production residues, consideration of related emissions and recycling of production scrap ( closed loop ) C4 Disposal at the end of the life cycle, i.e., during building deconstruction D Net benefits resulting from reuse, recycling and energy recovery that take place beyond the system boundary. PRODUCT STAGE DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED) CONSTRUCTION PROCESS STAGE USE STAGE END OF LIFE STAGE BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES Raw material supply Transport Manufacturing Transport Constructioninstallation process Use Maintenance Repair Replacement 1 Refurbishment 1 Operational energy use Operational water use De-construction demolition Transport Waste processing Disposal Reuse- Recovery- Recyclingpotential A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4 D X X X MND MND MND MND MND MND MND MND MND MND MND MND X X Time coverage: Primary data were collected on production within calendar year 2014. Background data for upstream and downstream processes (i.e., raw materials, energy resources, transportation and ancillary materials) were obtained from the GaBi 2014 databases. Technology coverage: Data were collected for the production of anodized, painted and mill-finish aluminum extrusions at Kawneer s facilities in the United States and Canada. Geographical coverage: Kawneer manufactures aluminum extrusion products at four US facilities and one Canadian facility. As such, the geographical coverage for this study is based on North American system boundaries for all processes and products. Whenever US/Canadian background data were not readily available, European data or global data were used as proxies. Assumptions The manufacturing process and end product is essentially the same in all manufacturing sites. A1-A3 impacts and inventories for each product mill finished extrusions, painted extrusions, and anodized extrusions are calculated with a mass-based production-weighted average of each manufacturer s impacts and inventories. No significant assumptions have been made beyond the aforementioned. All of the raw materials and energy inputs have been modeled using processes and flows that closely follow actual production raw materials and processes. All of the material and energy flows have been accounted.

Page 7 of 13 Cut-off Criteria As required by EN 15804, in case of insufficient input data or data gaps for a unit process, the cut-off criteria were 1% of renewable and non-renewable primary energy usage and 1% of the total mass input of that unit process. The total of neglected input flows per module was a maximum of 5% of energy usage and mass. In practice, all inputs and outputs, for which data are available, have been included in the calculation. Data gaps have been filled by conservative assumptions with average or generic data. Background Data In order to model the life cycle for the production and recycling of the extruded aluminum, the GaBi Professional software system developed by thinkstep AG was used. All relevant background data necessary for the production of extruded aluminum were taken from the GaBi 2014 databases. Data Quality Inventory data quality is judged by its precision (measured, calculated or estimated), completeness (e.g., unreported emissions), consistency (degree of uniformity of the methodology applied on a study serving as a data source) and representativeness (geographical, temporal, and technological). To cover these requirements and to ensure reliable results, first-hand industry data were used in combination with consistent background LCA information from the GaBi LCI database. The data for aluminum billet, as well as externally sourced aluminum extrusions, are based on 2010 Aluminum Association studies and are the best available. Other LCI datasets were sourced from the GaBi LCA databases and are representative of years 2010-2013. LCI datasets from the GaBi LCI database are widely distributed and used with the GaBi Professional Software. The datasets have been used in LCA models worldwide in industrial and scientific applications in internal as well as in many critically reviewed and published studies. In the process of providing these datasets they are cross-checked with other databases and values from industry and science. Allocation The recycling potential was calculated according to the requirement of the German Institute Construction and Environment (IBU) e.v. PCR document Construction Metals. The methodology quantifies the environmental burden avoided in relation to production of the virgin material (here, the avoidance of primary aluminum production). An estimated 100% of aluminum extrusions are recycled at the end of life. However, at this point 95% represents a defensible recycling rate for aluminum extrusion products in the building and transportation sector, so this rate was used and it was assumed that the remaing 5% goes to landfill. No co-prouducts are generated from the production process.

Page 8 of 13 Life Cycle Assessment Results Extruded Aluminum (mill finish) Results given per one kilogram of product. ENVIRONMENTAL IMPACTS CML 2001 (Apr 2013) GWP kg CO2 eq 5.90E+00 2.26E-03-2.30E-01 ODP kg CFC-11 eq 5.19E-09 5.11E-14 3.84E-10 AP kg SO2 eq 3.21E-02 9.89E-06-1.59E-03 EP kg PO4 3 eq 1.41E-03 1.25E-06-6.53E-05 POCP kg C2H4 eq 1.91E-03 9.93E-07-8.46E-05 ADPE kg Sb eq 3.18E-06 8.76E-10-2.42E-07 ADPF MJ 7.07E+01 3.47E-02-2.14E+00 TRACI 2.1 GWP kg CO2 eq 5.90E+00 2.26E-03-2.30E-01 ODP kg CFC-11 eq 6.23E-09 5.43E-14 4.19E-10 AP kg SO2 eq 2.95E-02 1.06E-05-1.46E-03 EP kg N eq 7.93E-04 5.81E-07-2.32E-05 SP kg O3 eq 2.21E-01 2.07E-04-1.14E-02 FF MJ 5.73E+00 4.47E-03-1.31E-01 RESOURCE USE PERE [MJ] 1.22E+01 1.94E-03-1.28E+00 PERM [MJ] - 4.97E-01 - PERT [MJ] 1.22E+01 4.99E-01-1.28E+00 PENRE [MJ] 7.53E+01 3.57E-02-2.17E+00 PENRM [MJ] - - - PENRT [MJ] 7.53E+01 3.57E-02-2.17E+00 SM [kg] 1.52E+00 - - RSF [MJ] - - - NRSF [MJ] - - - FW [m³] 5.02E-02-3.30E-05-5.62E-03 OUTPUT FLOWS AND WASTE CATEGORIES HWD [kg] 1.25E-03 6.88E-09-2.06E-05 NHWD [kg] 7.62E-01 5.01E-02-6.95E-02 RWD [kg] 2.68E-03 4.45E-06 2.46E-09 CRU [kg] - - - MFR [kg] - - 9.50E-01 MER [kg] - - - EEE [MJ] - - - EET [MJ] - - - Glossary Environmental Impacts GWP ODP AP EP POCP ADPE ADPF FF Resource Use Global warming potential Depletion potential of the stratospheric ozone layer Acidification potential of land and water Eutrophication potential Formation potential of tropospheric ozone photochemical oxidants Abiotic depletion potential for non fossil resources Abiotic depletion potential for fossil resources Fossil fuel consumption PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials PERT Total use of renewable primary energy resources PENRE Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials PENRM Use of non renewable primary energy resources used as raw materials PENRT Total use of non renewable primary energy resources SM Use of secondary material RSF Use of renewable secondary fuels NRSF Use of non renewable secondary fuels FW Use of net fresh water Output Flows and Waste Categories HWD NHWD RWD CRU MFR MER EE Hazardous waste disposed Non hazardous waste disposed Radioactive waste disposed Components for re-use Materials for recycling Materials for energy recovery Exported energy per energy carrier

Page 9 of 13 Extruded Aluminum (painted finish) Results given per one kilogram of product. ENVIRONMENTAL IMPACTS CML 2001 (Apr 2013) GWP kg CO2 eq 1.10E+01 2.26E-03 2.67E-01 ODP kg CFC-11 eq 5.76E-09 5.11E-14 3.87E-10 AP kg SO2 eq 4.11E-02 9.89E-06 1.85E-03 EP kg PO4 3 eq 2.23E-03 1.25E-06 7.62E-05 POCP kg C2H4 eq 1.25E-02 9.93E-07 9.77E-05 ADPE kg Sb eq 5.21E-06 8.76E-10 2.63E-07 ADPF MJ 1.32E+02 3.47E-02 2.47E+00 TRACI 2.1 GWP kg CO2 eq 1.10E+01 2.26E-03 2.67E-01 ODP kg CFC-11 eq 6.88E-09 5.43E-14 4.22E-10 AP kg SO2 eq 3.85E-02 1.06E-05 1.70E-03 EP kg N eq 1.29E-03 5.81E-07 2.71E-05 SP kg O3 eq 4.20E-01 2.07E-04 1.32E-02 FF MJ 1.34E+01 4.47E-03 1.53E-01 RESOURCE USE PERE [MJ] 1.61E+01 1.94E-03 1.50E+00 PERM [MJ] - 4.97E-01 - PERT [MJ] 1.61E+01 4.99E-01 1.50E+00 PENRE [MJ] 1.41E+02 3.57E-02 2.52E+00 PENRM [MJ] - - - PENRT [MJ] 1.41E+02 3.57E-02 2.52E+00 SM [kg] 1.55E+00 - - RSF [MJ] - - - NRSF [MJ] - - - FW [m³] 6.55E-02 3.30E-05 6.57E-03 OUTPUT FLOWS AND WASTE CATEGORIES HWD [kg] 1.31E-03 6.88E-09 2.41E-05 NHWD [kg] 9.15E-01 5.01E-02 8.11E-02 RWD [kg] 2.80E-03 5.17E-05 2.46E-09 CRU [kg] - - - MFR [kg] - - 9.50E-01 MER [kg] - - - EEE [MJ] - - - EET [MJ] - - - Glossary Environmental Impacts GWP ODP AP EP POCP ADPE ADPF FF Resource Use Global warming potential Depletion potential of the stratospheric ozone layer Acidification potential of land and water Eutrophication potential Formation potential of tropospheric ozone photochemical oxidants Abiotic depletion potential for non fossil resources Abiotic depletion potential for fossil resources Fossil fuel consumption PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials PERT Total use of renewable primary energy resources PENRE Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials PENRM Use of non renewable primary energy resources used as raw materials PENRT Total use of non renewable primary energy resources SM Use of secondary material RSF Use of renewable secondary fuels NRSF Use of non renewable secondary fuels FW Use of net fresh water Output Flows and Waste Categories HWD NHWD RWD CRU MFR MER EE Hazardous waste disposed Non hazardous waste disposed Radioactive waste disposed Components for re-use Materials for recycling Materials for energy recovery Exported energy per energy carrier

Page 10 of 13 Extruded Aluminum (anodized finish) Results given per one kilogram of product. ENVIRONMENTAL IMPACTS CML 2001 (Apr 2013) GWP kg CO2 eq 7.02E+00 2.26E-03 1.23E-01 ODP kg CFC-11 eq 5.13E-09 5.11E-14 4.33E-10 AP kg SO2 eq 3.50E-02 9.89E-06 9.44E-04 EP kg PO4 3 eq 1.64E-03 1.25E-06 3.96E-05 POCP kg C2H4 eq 2.12E-03 9.93E-07 4.18E-05 ADPE kg Sb eq 1.04E-05 8.76E-10-6.30E-08 ADPF MJ 8.29E+01 3.47E-02 1.12E+00 TRACI 2.1 GWP kg CO2 eq 7.02E+00 2.26E-03 1.23E-01 ODP kg CFC-11 eq 6.15E-09 5.43E-14 4.72E-10 AP kg SO2 eq 3.22E-02 1.06E-05 8.67E-04 EP kg N eq 1.07E-03 5.81E-07 1.42E-05 SP kg O3 eq 2.40E-01 2.07E-04 6.64E-03 FF MJ 7.01E+00 4.47E-03 8.53E-02 RESOURCE USE PERE [MJ] 1.10E+01 1.94E-03 8.16E-01 PERM [MJ] - 4.85E-01 - PERT [MJ] 1.10E+01 4.87E-01 8.16E-01 PENRE [MJ] 8.84E+01 3.57E-02 1.17E+00 PENRM [MJ] - - - PENRT [MJ] 8.84E+01 3.57E-02 1.17E+00 SM [kg] 1.61E+00 - - RSF [MJ] - - - NRSF [MJ] - - - FW [m³] 4.58E-02-3.30E-05 3.53E-03 OUTPUT FLOWS AND WASTE CATEGORIES HWD [kg] 2.73E-04 6.88E-09 1.29E-05 NHWD [kg] 1.16E+00 5.01E-02 4.36E-02 RWD [kg] 2.44E-03 6.17E-05 2.46E-09 CRU [kg] - - - MFR [kg] - - 9.50E-01 MER [kg] - - - EEE [MJ] - - - EET [MJ] - - - Glossary Environmental Impacts GWP ODP AP EP POCP ADPE ADPF FF Resource Use Global warming potential Depletion potential of the stratospheric ozone layer Acidification potential of land and water Eutrophication potential Formation potential of tropospheric ozone photochemical oxidants Abiotic depletion potential for non fossil resources Abiotic depletion potential for fossil resources Fossil fuel consumption PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials PERT Total use of renewable primary energy resources PENRE Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials PENRM Use of non renewable primary energy resources used as raw materials PENRT Total use of non renewable primary energy resources SM Use of secondary material RSF Use of renewable secondary fuels NRSF Use of non renewable secondary fuels FW Use of net fresh water Output Flows and Waste Categories HWD NHWD RWD CRU MFR MER EE Hazardous waste disposed Non hazardous waste disposed Radioactive waste disposed Components for re-use Materials for recycling Materials for energy recovery Exported energy per energy carrier

Page 11 of 13 Life Cycle Assessment Interpretation The results represent the cradle-to-gate and end-of-life environmental performance of three types of aluminum extrusions: mill finish, painted, and anodized. As shown in the figures to the right, the results indicate that the impacts are driven by the manufacturing process (A1-A3). The primary impact is derived from aluminum production; the extrusion and finishing processes account for a relatively small part of the manufacturing impact in comparison. Further, there is minimal disparity between finishing option from a life-cycle perspective. The recycling rate of 95% represents a defensible rate for aluminum extrusion products in building and transportation sector. This is based on a conservative calculation for global aluminum recycling from these sectors. The credits at the endof-life (Module D) do play a role in the life cycle; if a higher rate is used, the credit will increase, thus lowering the total life-cycle impacts. Similarly, a lower recycling rate would raise the total life cycle impacts. As new information becomes available (e.g., the Aluminum Association publishes regional-specific recycling rates), this report and EPD should be modified to reflect industry conditions. 100% 80% 60% 40% 20% 0% -20% 100% 80% 60% 40% 20% 0% -20% 100% 80% 60% 40% 20% 0% Mill finished extrusions GWP ODP AP EP SFP FF Painted aluminum extrusions GWP ODP AP EP SFP FF Anodized aluminum extrusions D C4 A1-A3 D C4 A1-A3 D C4 A1-A3-20% GWP ODP AP EP SFP FF

Page 12 of 13 extrusion and finishing processes (A3) (relative to painted) Comparison of Finishing Alternatives (A3 Contributions Only) 120% 100% 80% 60% 40% 20% 0% AP EP FF GWP ODP SFP Mill Anodized Painted The environmental performance of the finishing options themselves is difficult to distinguish when viewed from a life cycle perspective. The aluminum production dominates the life cycle impact, which does not allow for interpretation of the impact from downstream extrusion and finishing processes. Although small in comparison with the aluminum billet, the finishing processes do have notable difference in environmental performance, as illustrated in the above figure. The mill finishing process has the lowest impact across all categories. Anodizing has the second lowest impacts and painting has the largest impact in all categories except eutrophication potential, where painting has the second lowest impacts and anodizing has the largest impact.

Page 13 of 13 References AA. (2013). The Environmental Footprint of Semi-finished Aluminum Products in North America: A Life Cycle Assessment Report. Aluminum Association. EN. (2013). EN 15804:2013-05 Sustainability of construction works Environmental Product Declarations Core rules for the product category of construction products. IBU/UL. (2014). PCR Guidance-Texts for Building-Related Products and Services: Part B: Requirements on the EPD for Products of aluminium and aluminium alloys. Berlin. IBU/UL. (2014). Product Category Rules for Building-Related Products and Services: Part A: Calculation Rules for the Life Cycle As-sessment and Requirements on the Project report. Königswinter. ISO. (2006). 14024:2006, Environmental labels and declarations - Type III environmental declarations - Principles and procedures. ISO. (2006). 14040:2006, Environmental Management Life Cycle Assessment Principles and Framework. ISO. (2006). 14044:2006 Environmental Management Life Cycle Assessment Requirements and Guidelines. The Life Cycle Assessment was conducted by thinkstep (formerly PE INTERNATIONAL) using GaBi data.