Proceedings Single-Element Omnidirectional Piezoelectric Ultrasound Transducer for under Water Communication

Similar documents
Preparation of PZT(53/47) thick films deposited by a dip-coating process

LASER SINTERING OF PA12/PA4,6 POLYMER COMPOSITES. D. Strobbe*, P. Van Puyvelde, J.-P. Kruth*, B. Van Hooreweder*,

Use of Piezoelectric Films for NDT Applications

Metallurgical Defect: Manufacturing of a Reference Specimen for NDE Studies

Advanced Manufacturing Choices

Aluminum Nitride Thin Films for High Frequency Smart Ultrasonic Sensor Systems

Passive TCF Compensation in High Q Silicon Micromechanical Resonators

Alumina/Epoxy Nanocomposite Matching Layers for High-Frequency Ultrasound Transducer Application

Design of piezoelectric micromachined ultrasonic transducers (pmuts) for high pressure output

Green piezoelectric for autonomous smart textile

Detection of Skin Disbond in Honeycombs and Coating Detachment by Laser Tapping Technique

Proceedings Post Fabrication Processing of Foundry MEMS Structures Exhibiting Large, Out-of-Plane Deflections

Wear Performance of SLS/SLM Materials**

EFFECTS OF BORON CARBIDE ADDITION ON HARDNESS AND MICROSTRUCTURE OF Al-Si/B 4 C COMPOSITE. of Malaysia, 43600, Bangi Selangor, Malaysia

Piezoelectric Polycrystalline (PZT) Components and Wafers

Developments in Ultrasonic Inspection II

NOVEL METHODS FOR CRACK DETECTION IN GREEN AND SINTERED PARTS

Microstructure and Vacuum Leak Characteristics of SiC coating Layer by Three Different Deposition Methods

Sintering of oxide and carbide ceramics by electron beam at forevacuum pressure

Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition

Selective laser melting of copper using ultrashort laser pulses

Nondestructive Testing

The formation of composite of tungsten carbide ceramic and cobalt metal is preferred over other cermet composites because:

Scanning space analysis in Selective Laser Melting for CoCrMo powder

Supplementary information. Polymer Derived Silicon Oxycarbide Ceramics as Promising Next Generation Sustainable. Thermoelectrics

Chapter 5: REACTION SINTERING of diamond and silicon powders

Gas B CH4. Chemical vapour infiltration. Reactive melt infiltration. Carbide. Powders. Layers. Final sample & fibre preform. Pack cementation &CVI

POROSITY INFLUENCE ON THE CHARACTERI- ZATION OF CMC (C/C-SiC) SPECIMENS

Application of ultrasonic testing to steel-concrete composite structures

EFFECT OF THE Si POWDER ADDITIONS ON THE PROPERTIES OF SiC COMPOSITES

This is an author-deposited version published in: Eprints ID: 17393

RAPID PATTERN BASED POWDER SINTERING TECHNIQUE AND RELATED SHRINKAGE CONTROL

Diffusion Bonding of Boron Carbide to Boron Carbide Using Cu Interlayer

1. Comparison of Inspection Methods

Properties of Step-down Multilayer Piezo Stack Transformers Using PNN-PMN-PZT Ceramics with CeO 2 Addition

OPTICAL FIBER SYSTEM FOR AE MONITORING OF HIGH TEMPERA- TURE DAMAGE OF STAINLESS STEEL TUBING

Development of Miniature Needle-Type Hydrophone with Lead Zirconate Titanate Polycrystalline Film Deposited by Hydrothermal Method

Advancements in the Design and Fabrication of Ultrasound Transducers for Extreme Temperatures

Selecting Random Distributed Elements for HIFU using Genetic Algorithm

Nondestructive Testing of Defects in Additive Manufacturing Titanium Alloy Components

REAL-TIME CONCENTRATION AND GRAIN SIZE MEASUREMENT OF SUSPENDED SEDIMENT USING MULTI-FREQUENCY BACKSCATTERING TECHNIQUES ABSTRACT

Deposition and characterization of sputtered ZnO films

Additive Manufacturing Challenges Ahead

Microwave dielectric properties and microstructures of MgTa 2 O 6 ceramics with CuO addition

ACMC/SAMPE Conference on Marine Composites Plymouth, September 2003 (ISBN )

MICROWAVE MEASUREMENTS OF NYLON-12 POWDER AGEING FOR ADDITIVE MANUFACTURING. N. Clark 1, F. Lacan and A. Porch

Transactions on Engineering Sciences vol 2, 1993 WIT Press, ISSN

ACOUSTICAL AND DYNAMIC MECHANICAL CHARACTERIZATION OF FIBER-MATRIX INTERFACE BONDS IN CERAMIC COMPOSITES

D. Parks, B. Reinhardt, S. Zhang,C. Searfass, M. Guers Penn State University University Park, PA

Investigating a Semi-Solid Processing technique using metal powder bed Additive Manufacturing Processes

Practical challenges during high temperature ultrasonic scanning

Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and Nano-Sized Boron Nitride

ELASTIC WAVE PROPAGATION AND SCATTERING IN AUSTENITIC STEEL. F. Waite Fraunhofer-Institute for Nondestructive Testing Saarbriicken, Germany

High-performance SiC-polycrystalline fiber with smooth surface

Changes in Laser Weld Bead Geometry with the Application of Ultrasonic Vibrations

NRC Publications Archive Archives des publications du CNRC

Supporting Information

Detection of Concrete Damage Using Ultrasonic Pulse Velocity Method

NON-LINEAR ULTRASONIC METHOD FOR MATERIAL CHARACTERISTICS

Determination of Condition of Recrystallised Grains After Annealing of Cold Rolled IF Grade Steel Sheets Based on Ultrasonic Measurements

Surface Characterization of Laser Polished Indirect-SLS Parts

DEVELOPMENT AND CHARACTERIZATION OF ALUMINA/ALUMINUM CO-CONTINUOUS COMPOSITE BY REACTIVE MELT INFILTRATION TECHNIQUE

High-Temperature Ultrasound NDE Systems for Continuous Monitoring of Critical Points in Nuclear Power Plants Structures

Piezoelectric All-Rounder

Proceedings Study of a Layered Au, Pt-YSZ Mixed-Potential Sensing Electrode by ESEM, XRD and GD-OES with Relation to Its Electrochemical Behaviour

DEPOSITION OF Al 2 O 3 ON CERAMIC SUBSTRATES BY PECVD METHOD. Lucie Špirková a Vlastimil Brožek a Jean Durand b

Effects of the Edm Combined Ultrasonic Vibration on the Machining Properties of Si 3 N 4

Novel Ag-doped glass frit for high-efficiency crystalline silicon solar. cells

Passivation of SiO 2 /Si Interfaces Using High-Pressure-H 2 O-Vapor Heating

Evaluation of Ultrasonic Attenuation and Estimation of Ultrasonic Grain Noise in Copper

SELECTIVE LASER SINTERING AND POST PROCESSING OF FULLY FERROUS COMPONENTS

ADHESIVE CURE MONITORING WITH ACOUSTIC METHOD

optosic+ ULTRA-HIGH PERFORMANCE NON-TOXIC & COST-EFFECTIVE OPTICS & STRUCTURES FOR THE 21st CENTURY optosic AG

High Thermal Conductivity Silicon Nitride Ceramics

Schunk Innovative Insulation Materials. Schunk Kohlenstofftechnik GmbH

New Technological Approach in Fabrication of High Purity Nickel Wire Theodor Stuth 1,a, Rainer Theile 1,b * and Oleksandra Krivtsova 1,c

Experimental Measurement of Coefficient of Thermal Expansion for Graded Layers in Ni-Al 2 O 3 FGM Joints for Accurate Residual Stress Analysis

Change in stoichiometry

Proceedings Aerosol/Ink Jet Printing Technology for High-Temperature MEMS Sensors

Composite Materials. Metal matrix composites

Application of linear frequency modulated excitation on ultrasonic testing for austenitic stainless steel welds

Welding characteristics and structures of same and different metal specimens using ultrasonic complex vibration welding equipments

Performance assessement for ultrasonic testing of austenitic stainless steel welds with finite elements simulation

ScienceDirect. Synthesis of Co 3 O 4 micro-needles on the cell walls and their effect on the sound absorption behavior of open cell Al foam

Monitoring Of Adhesive Cure Process and Following Evaluation of Adhesive Joint Structure by Acoustic Techniques

The measurement of electromagnetic shielding effectiveness of the composite carbon fibers/nickel thin film

LASER SOUND GENERATION IN A WELD POOL. Nancy M. Carlson and John A. Johnson

THE EFFECT OF SOL-GEL TECHNIQUE ON THE ALUMINIUM SiCp COMPOSITE

Chiang Mai J. Sci. 2009; 36(1) : Contributed Paper O 3. - Pb(Ni 1/3

Investigation into high-frequency-vibration assisted micro-blanking of pure copper foils

Structural and Electrical Properties of Reaction Bonded Silicon Nitride Ceramics

ANALYZING THE DMLS-PROCESS BY A MACROSCOPIC FE-MODEL. F. Niebling, A. Otto, M. Geiger

Low Cost PZT/Polymer Composites as a Sensor Material

Microstructures & Properties Changes Induced by Nitrogen Ion Implantation on Chromium Films

ULTRASONIC REFLECTIVITY DETERMINATION OF INTERFACIAL PROPERTIES IN

Available online at ScienceDirect. Energy Procedia 55 (2014 )

COST STSM REPORT. Investigation of anisotropic properties of Rapid Prototyped metallic implants AIM OF THE COST STSM

Relationship between Microstructure and Vacuum Leak Characteristics of SiC Coating Layer

Global Journal of Engineering Science and Research Management

SLURRY-BASED LASER SINTERING OF ALUMINA CERAMICS. Sebastian Meyers*, Quinten Feys*, Shoufeng Yang***, Jef Vleugels **, Jean-Pierre Kruth*** Abstract

Transcription:

Proceedings Single-Element Omnidirectional Piezoelectric Ultrasound Transducer for under Water Communication Sina Sadeghpour 1, *, Sebastian Meyers, Jean-Pierre Kruth, Jef Vleugels 3 and Robert Puers 1 1 KU Leuven, ESAT-MICAS, B-31 Heverlee, Belgium; puers@esat.kuleuven.be KU Leuven, Department of Mechanical Engineering, B-31 Heverlee, Belgium; sebastian.meyers@kuleuven.be (S.M.); jean-pierre.kruth@kuleuven.be (J.-P.K.) 3 KU Leuven, Department of Materials Engineering, B-31 Heverlee, Belgium; jozef.vleugels@kuleuven.be * Correspondence: sina.sadeghpour@esat.kuleuven.be; Tel.: +3-16-3-539 Presented at the Eurosensors 17 Conference, Paris, France, 3 6 September 17. Published: 16 August 17 Abstract: This paper presents the design and fabrication procedure of a single-element omnidirectional piezoelectric ultrasound transducer, which can be utilized for under water communication. The transducer consists of a spherical silicon infiltrated silicon carbide (Si-SiC) body and is able to perform communication at 16 khz with a Q factor of about 5.6 over a distance of more than one meter. The circumferential pressure amplitude of the beam pattern of the transducer varies less than 1 db, which allows reliable communication between different transducers at an arbitrary orientation with respect to each other. Keywords: piezoelectric; PZT; Si-SiC; additive manufacturing; omnidirectional 1. Introduction The low attenuation of ultrasound signals in water, oil, human body, etc. makes it a promising alternative to electromagnetic wave communication. Therefore, ultrasound is commonly used in medical imaging and underwater communication [1]. Most of the available ultrasound transducers are based on a single element piezoelectric material producing a piston shaped actuation, although single crystal piezoelectric materials by means of array structure are utilized in medical imaging []. In both cases, the beam pattern of the transducer is directional. However, to cover the whole space, e.g., for 3D imaging or communication, we need very complex structures, such as mechanical rotary movement or a folded surface covered with an array of transducers, which are also limited to short distance application [3]. We proposed a new type of transducer that generates ultrasound waves by the vibration of a mechanical structure, based on the piezoelectric phenomena, for omnidirectional long distance under water communication. This work describes the design, fabrication, and results of the proposed omnidirectional transducer. Under water measurement with a hydrophone and among two similar transducers are also presented. The transducer s fabrication is relatively cheap and it can be used in under water communication, localization, and range finding applications.. Materials and Methods.1. Design and Methodology The transducer and its design architecture before integration is shown in Figure 1. It consists of two Si-SiC hemisphere shells with a thickness of 1 mm, which works as the main generator of the Proceedings 17, 1, 363; doi:1.339/proceedings14363 www.mdpi.com/journal/proceedings

Proceedings 17, 1, 363 of 5 ultrasound wave, two PZT elements (Physik Instrumente (PI) GmbH & Co, Karlsruhe, Germany) with a thickness of 1 mm, and one. mm stainless-steel layer. I II SiC shell PZT Stainless steel (a) (b) Figure 1. (a) The structure of the transducer before (I) and after (II) assembly.; (b) Microstructure of the produced material, with Si (light grey matrix) and α-sic (dark grey grains). By the vibration of the piezoelectric elements, the ultrasound wave is transmitted through the Si-SiC shells and bring them to their resonance frequency. The stainless-steel layer separates the functionality of the two hemispheres by introducing a different acoustic impedance than the one of the PZT. In the case of using one PZT element without the steel layer, the acoustic power transmitted through the shells will be reduced to half. To simplify the design procedure, we imitated the vibration of each hemisphere by a curved beam with constant curvature. The resonance frequency of such a curved beam is calculated by the following equation [4]: Ω = 1 h 1(1 ) (1) where, h,, Ω, are the Young s modulus, thickness, radius of curvature, frequency constant, and the density per unit of length of the shell, respectively. In order to keep the resonance frequency of the transducer in the range of a few hundred khz to avoid acoustic power absorption by water at higher frequencies and to have enough space inside the transducer for electronics, the / ratio had to be increased. Therefore, Si-SiC was used as the material of the shell. SiC has a Young s modulus to density ratio of 1.11 1 8 1.486 1 8, depending on the production technique [5]. After diamond and boron carbide, SiC has the highest value of / among all ceramics... Fabrication and Integration..1. Additive Manufacturing of Si-SiC Hemispheres The Si-SiC hemispheres used in this work are produced by selective laser sintering, an additive manufacturing method, whereby a structure is built up in a layer by layer fashion starting from a powder bed [5]. The process consists in 4 steps. In a first step, 33 wt % Si and 67 wt % α-sic powders are mixed until a homogeneous Si-SiC powder mixture is obtained. This powder serves as the base material for the laser sintering. The second step consists of laser sintering of the powder mixture. In order to avoid oxidation, the process is conducted under an inert Argon atmosphere. As the laser selectively scans the powder bed, the Si in the powder mixture locally melts and resolidifies to bind the SiC grains together. This results in a porous preform hemisphere that can be transformed into a fully dense Si-SiC part. This happens in the third step by means of liquid silicon infiltration (LSI). The LSI is performed in a vacuum of.1 mbar in a hot press furnace. During infiltration, the laser sintered hemispheres are placed in a graphite crucible together with Si powder. The furnace is heated at 5 C/min

Proceedings 17, 1, 363 3 of 5 up to 15 C and held for 15 min, before cooling down naturally to room temperature. The Si in the crucible melts and infiltrates the porosity in the laser sintered parts, resulting in fully dense Si-SiC hemispheres. Figure shows a light microscopy image of the produced material s microstructure. The fourth and final step consists of finishing the hemispheres by grinding the bottom surface and make it ready for the integration with PZT and stainless-steel elements. This is done on an in-house built grinding/polishing station. Table 1 shows a comparison of the properties of the fabricated Si- SiC material with those of pure SiC. (a) (b) Figure. (a) FEM simulation and measurement of the frequency response of the transducer; (b) (I) The measured receiving frequency response of the transducer in communication with another transducer and (II) the beam pattern of the transducer, measured in the perpendicular plane to the surface of the piezoelectric elements.... Assembly of the Transducer Table 1. Properties of fabricated Si-SiC material and pure SiC. Material ( / ) E ( ) SiC (vol %) Si-SiC.57 35 SiC 3.1 45 1 The assembly is done in three steps. First, each hemisphere is coated by copper thin films by RF sputtering at W and pressure of 4 1 3 mbar for min to increase its conductivity in order to use the shell as one of the electrodes. Second, the two piezoelectric PZT elements are attached together by a mixture of conductive CircuitWork CW4 epoxy and medium viscosity Epotek 353ND epoxy, which are both cured at 1 C. This is noticeably lower than the curie temperature of the PZT and does not damage the PZT element. Third, the PZT elements and the hemispheres are assembled together by Epotek 353ND and cured and hardened in an oven in ambient atmosphere while clamped together. 3. Results and Discussions The functionality of the transducer has been measured in a 3 L deionized water tank equipped with a needle hydrophone (Precision Acoustics Ltd., Dorchester, UK). Figure a shows the FEM simulation and measurement of the normalized frequency response of the transducers, which is measured by a hydrophone placed in front of the transducer. The difference between the measurement and simulation is due to the manufacturing flaws, such as surface roughness in shell fabrication and misalignment in the assembly of the components. The first and second resonance frequency are at 16 khz and 51 khz respectively.

Proceedings 17, 1, 363 4 of 5 The other peaks at higher frequencies belong to more complex mode of vibrations. In order to measure the frequency response of two transducer in communication with each other, the hydrophone in previous experiment is replaced by a transducer. Figure (bi) shows the result of such a measurement. The only peak in the frequency response belongs to the first resonance mode (16 khz). It is mainly due to the spherical shape of the transducer allowing only the first mode of vibration to be excited by the impact of a planar wave. By considering 16 khz as the main working frequency and a 8.5 khz measured bandwidth, the Q factor is 5.6. As shown in Figure (bii), the spherical shape of the transducer proved that the circumferential pressure beam pattern varies less than 1 db. To demonstrate the time domain response of the communication between two transducers, two sinus pulses with 3 and 5 cycles respectively are exerted and responses are shown in Figure 3. The transient time is about 35 µs. 1-3 responce to 3 cycle sinus wave 1-3 responce to 5 cycle sinus wave - 3 cycle actuation sinus wave 5 1-4 - 5 cycle actuation sinus wave 5 1-4 -5 Time (s) 1-4 -5 Time (s) 1-4 4. Conclusions Figure 3. The pulse response of the transducer to a 3 and 5 cycles sinus waves. An omnidirectional ultrasound transducer was designed and fabricated by mean of two Si-SiC hemisphere shells, which are actuated by a single piezoelectric (PZT) element. The Si-SiC shells were fabricated by an additive manufacturing technique, namely selective laser sintering. All components were assembled utilizing two CircuitWork CW4 and Epotek 353ND epoxies. The transducer was fully functional under water at its first resonance frequency (16 khz) and has a circumferential pressure loss of maximum 1 db. Acknowledgments: This work was supported by the Research Foundation Flanders (FWO) under project FWO-G.956.14N, the research fund of KU Leuven through project GOA/15/1-SUMMA and the European Union s Horizon research and innovation program under grant agreement No. 665347. Conflicts of Interest: The authors declare no conflict of interest. References 1. Cannata, J.M.; Ritter, T.A.; Chen, W.H.; Silverman, R.H.; Shung, K.K. Design of efficient, broadband singleelement ( 8 MHz) ultrasonic transducers for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 3, 5, 1548 1557.. Sun, P.; Wang, G.; Wu, D.; Zhu, B.; Hu, C.; Liu, C.; Djuth, F.T.; Zhou, Q.; Shung, K.K. High frequency PMN- PT 1 3 composite transducer for ultrasonic imaging application. Ferroelectrics 1, 48, 1 18. 3. Dausch, D.E.; Gilchrist, K.H.; Carlson, J.B.; Hall, S.D.; Castellucci, J.B.; von Ramm, O.T. In vivo real-time 3- D intracardiac echo using PMUT arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 14, 61, 1754 1764.

Proceedings 17, 1, 363 5 of 5 4. Lee, S.K.; Mace, B.R.; Brennan, M.J. In-plane free vibration of curved beams. In Proceedings of the 15th International Conference on Sound and Vibration, Daejeon, Korea, 6 1 July 8; pp. 91 398. 5. Kruth, J.P.; Levy G.; Klocke F.; Childs T. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. Manuf. Technol. 7, 56, 73 759. 17 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4./).