Swelling and Mechanical Behaviour of Natural Rubber Vulcanisate Filled with Leather Wastes (Buffing Dust) and Its Modeling

Similar documents
ISSN : Research & Reviews In. Assessement of local sponge (luffa aegyptiaca) filled natural rubber vulcanizate

RICE HULL ASH AS A FILLER IN MICROCELLULAR SOLES

Properties of Rubber Compounds Containing Powdered Vulcanized Waste

Composite Materials : An International Journal

Lecture No. (7) Rubber Fillers

Effect of Rubber Mixing Sequence Variation Upon Bound Rubber Formation and Its Physical Properties

Use of Amine Terminated Liquid Natural Rubber as a Plasticiser in Filled NR and NBR Compounds

The Use of Fly Ash Fillers in Rubber

TECHNICAL BULLETIN. EPDM Engine Mounts

The Tensile Properties and Morphology Analysis of Recycled Mattress Filled Natural Rubber Compounds

UNIPRENE. Shaping a New World of Opportunities THERMOPLASTIC ELASTOMER DIVISION

The Effects Different Size of Batu Reput as a Filler in SMR L and ENR- 50 Blends

AEQ-QEG Technico-Commercial meeting November 8, N990 Thermal Black in Natural Rubber isolation bushings for improved dynamic performance

COMPOUNDING WITH THERMAL CARBON BLACK FOR LOW CONDUCTIVITY

MECHANOCHEMICAL RECYCLING AND PROCESSING OF WASTE CROSSLINKED POLYMERS: WASTE TIRE RUBBER AND WASTE XLPE FROM CABLE SCRAPS

Effects of Semi-Nano Filler Blends (Jatropha seed shell powder and Carbon black) on the Mechanical Properties of Natural Rubber Composites

Evaluation of Two-Roll Mill Method for Preparing Short Glass Fibre Reinforced NBR-Phenolic Composites

The Tensile Properties and Morphology Analysis of Recycled Mattress Filled Natural Rubber Compounds

Starved Feeding for Improving the Mechanical Properties of Styrene-Butadiene Rubber Vulcanizates

Mechanical Properties of Rice Husk /Carbon Black Hybrid Natural Rubber Composite

Use of Antioxidant-modified Precipitated Silica in Natural Rubber

Mechanical Properties and Modeling of Fibreglass-reinforeced Epoxy Resin Wastes-filled Polypropylene

Improving the abrasion resistance of green tyre compounds

Chapter 4 Results and Discussion

Effects of Foaming Temperature and Carbon Black Content on the Cure Characteristics and Mechanical Properties of Natural Rubber Foams

Stella Ugbesia, M.Sc*; Lawrence O. Ekebafe, M.Sc.; and M.D. Ayo, M.Sc.

Studies on Aramid Short Fibers Reinforced Acrylonitrile Butadiene Rubber Composites

Forming of the dermis structure with using of mineral compositions based on zeolite and montmorillonite for shoe leather

GLASS FLAKE PARTICLES FOR ENHANCED PERMEATION RESISTANCE OF ELASTOMER COMPOUNDS

Effect of bis (3-triethoxy silylpropyl) tetrasulphide on the mechanical properties of flyash filled styrene butadiene rubber

on the Thermal Conductivity

Effect of Sawdust as Filler on the Mechanical Properties of Natural Rubber Compound

POLYVEST. Liquid rubbers for enhanced tire performance

ANALYSIS OF EXPLANTED SILICONE/SILICA COMPOSITE BREAST IMPLANTS

Morphological Trends of Modified Coconut Fibre in Natural Rubber Reinforcement

Strain sensitive filled elastomers

as a Filler and Linseed Oil as an Extender on the Cure and Mechanical Properties of Natural Rubber Vulcanizates

Effects of Organic Fillers on the Physico-Mechanical Properties of Low Density Polyethylene

Effects of maximum strain and aging time on the fatigue lifetime of vulcanized natural rubber

Vibration Exposure Analysis of the Polysiloxane Reinforced with Rice Husk Silica. and Nurul Emi Nur Ain Mohammad 1,d

Mechanical Properties of Filled EPDM/SBR Blends

Electrical Properties of Viton

Mitsui Metallocene EPT. Mitsui Metallocene EPT. Mitsui Chemicals, Inc.

Effect of Compatibilizing Agent on Mechanical Properties of Waste Paper and Gracinia kola Filled Low Density Polyethylene Composites

Scanning Electron Microscopy Examination of the Fracture Surface of NR/SBR and NR/BR Blends

6.3 Results and discussion. Table 6.1. Compounding recipe. Ingredients Concentration (phr) Ingredients Concentration (phr)

rcb, a unique material

Metals are generally ductile because the structure consists of close-packed layers of

Magazine for the Polymer Industry

THERMAX versus Furnace Blacks

Effect of nano silica on the mechanical properties of Styrene-butadiene rubber (SBR) composite

Kumarjyoti Roy, Md. Najib Alam, Subhas Chandra Debnath * Department of Chemistry, University of Kalyani, Kalyani, Nadia (W.

EVALUATION OF PHYSICAL PROPERTIES AND FATIGUE DURABILITY OF RUBBER-CLAY NANO-COMPOSITES

DMS-6300, Waterproofing

TRIBOLOGICAL AND MECHANICAL BEHAVIOUR OF POLYETHERIMIDE REINFORCED WITH GLASS FIBER & GRAPHITE POWDER

EFFECT OF CHEMICAL PRE-TREATMENT ON THE CURE, MECHANICAL AND ABRASION PROPERTIES OF KENAF/NATURAL RUBBER GREEN COMPOSITES

N EX N P EX RENE P 9000 T PE

Surfactant Influence on Silica Filled Tread

Investigation of the Mechanical Properties of Bagasse Fiber-Reinforced Epoxy Composite using Taguchi and Response Surface Methodology

CHAPTER 8 Thermal Conductivity Of Carbon black Filled Ethylene-Octene Copolymer And It s Microcellular Foams

Tensile Properties of Plastics

FACT SHEET K0027 Europe/Africa. Ageing Characteristics of KRATON G Compounds

Test Methods for Elastomers

Calcium Carbonate in Blown HDPE Film

EFFECT OF DIFFERENT ORIGINS OF NATURAL RUBBER ON THE PROPERTIES OF CARBON BLACK FILLED NATURAL RUBBER COMPOSITES

School of Environmental Engineering, Universiti Malaysia Perlis, Kompleks Pengajian Jejawi 3, Jejawi, Perlis, Malaysia

Advanced Silica Characterization and Its Importance for In- Rubber Performance

Comparison between Polyimide and Bismaleimide Effect on Mechanical Properties and Ageing Resistance of Nitrile Rubber

Study of Effect of Various Fillers on Mechanical Properties of Carbon-Epoxy Composites

The influence of Rice Husk Fiber on The Properties of Epoxidized Natural Rubber/ Rice Husk Compounds

XIAMETER Silicone Rubber

CHAPTER 4 WATER ABSORPTION BEHAVIOR AND ACCELERATED AGING EFFECTS

TECHNICAL SPECIFICATION

DESIGNING OF CRADLE-TO-CRADLE LOOPS FOR ELASTOMER PRODUCTS

ENERGY SAVER BLACKS: CARBON BLACKS FOR IMPROVED TIRE PERFORMANCE

Molded NBR Parts for Automotive. Replacement of Carbon black N990

Optimum diene content. Easy handling Shorter mixing cycle Efficient in short CV lines (Jet air / hot air)

Elastomer Copolymerized from Ethylene Vinyl Aceteate and Acrylic Esters. Characteristics of DENKA ER

Post-stress Induced Tensile Property Modification of Jute Polymer Composite

Molded NBR Parts for Automotive Oil Seals ASTM D2000. Replacement of Carbon black N990 with Neuburg Siliceous Earth. Hubert Oggermüller

Environmental Impact of Using Suprmix Versus Liquid

ITEM 435 ELASTOMERIC MATERIALS

Effect of Stone Slurry And Crumb Rubber on Phosphogypsum Treated Clay

CHAPTER FOUR THE RESULTS

PLASTICS. Disadvantages: Expensive Combustible Poor ductility High softness Deformation under load Low heat resistance.

CONCLUSIONS AND FUTURE SCOPE OF WORK

DuPont Hytrel. Hytrel Product Information. thermoplastic polyester elastomer. plastics.dupont.com

MATERIAL SPECIFICATION FOR BEARINGS - ELASTOMERIC PLAIN AND STEEL LAMINATED

Utilization of Rice Husk Ash in Highways

Journal of Applied Science and Agriculture. Application of Waste Calcium CarbonatePowder from Marble Sawingin the Tire Industry

MATERIALS COMPOUNDING GUIDE

Millathane. Millathane

ASTM D256 Standard test methods for determining the izod pendulum impact resistance of plastics

Simpler, Lower Cost, Better Performing CASE Formulas with Harmonite Powders. Detroit Rubber Group 2018 Fall Technical Meeting November 28, 2018

Research Article Development of Glass/Jute Fibers Reinforced Polyester Composite

The Influence of Different Types of Rubber on Curing Behaviour and Dynamic Properties of Rubber Compound

Topic 1 - Properties of Concrete. 1. Quick Revision

Contribution of Carbon Black to Thermal Conductivity of Natural Rubber

Preparation Optimization Design of Tennis Ball Adhesive Formula Cai Yun-tao 1,a, Shi Bo-qiang 2, b,

Carbon black/silica masterbatch from fresh natural rubber latex

Transcription:

American Journal of Applied Scientific Research 21; 2(2): -11 http://www.sciencepublishinggroup.com/j/ajasr doi: 1.1/j.ajasr.22.11 ISSN: 2471-9722 (Print); ISSN: 2471-973 (Online) Swelling and Mechanical Behaviour of Natural Rubber Vulcanisate Filled with Leather Wastes (Buffing Dust) and Its ing Michael Ifeanyichukwu Ugbaja 1, Francis Ngozichi Onuoha 2, *, Uche Ibeneme 1, Maryann Ifeoma Uzochukwu 1, Henry Opara 1, Isaac Ndubuisi Mbada 3 1 Department of Polymer Technology, Nigerian Institute of Leather and Science Technology (NILEST), Zaria, Nigeria 2 Department of Polymer and Textile Engineering, Federal University of Technology Owerri, Imo State, Nigeria 3 Department of Transport Centre, Nigerian Institute of Transport Technology, Zaria, Nigeria Email address: ugboajamichael@yahoo.com (M. I. Ugbaja), francorev27@yahoo.com (F. N. Onuoha) * Corresponding authors To cite this article: Michael Ifeanyichukwu Ugbaja, Francis Ngozichi Onuoha, Uche Ibeneme, Maryann Ifeoma Uzochukwu, Henry Opara, Isaac Ndubuisi Mbada. Swelling and Mechanical Behaviour of Natural Rubber Vulcanisate Filled with Leather Wastes (Buffing Dust) and Its ing. American Journal of Applied Scientific Research. Vol. 2, No. 2, 21, pp. -11. doi: 1.1/j.ajasr.22.11 Received: April 1, 21; Accepted: May 17, 21; Published: August 4, 21 Abstract: The swelling and mechanical behavior of untreated leather waste particles (buffing dust, BD) in natural rubber have been studied. Mechanical and swelling properties of the natural rubber (NR) composites containing the buffing dust have been discussed. The properties of the composites were found to increase with the increase in filler loading. Polymer composites based on leather wastes as fillers are reported to be useful for many applications such as in construction materials, automobile interior moldings, heat and sound insulating boards, shoe soles, flooring materials and moldings with good anti-static properties, air permeability, and good appearances. Keywords: Leather Waste (Buffing Dust), Natural Rubber, Swelling, Mechanical, Polymer Composites, ing, Vulcanizate 1. Introduction In natural rubber compounding, fillers are major additives. Incorporation of fillers into natural rubber matrix enhances properties such as tensile strength, modulus, tear strength, abrasion resistance, stiffness and processibility. Also significantly reduced by the addition of additives is the cost of the manufactured rubber products [1, 2]. The mechanism of elastomeric reinforcement by fillers has been reviewed by several workers [3]. One of the mechanisms by which particulate fillers reinforces elastomers is that reported by Beueche and Fleminert [4]. They considered that the effect of filler is to increase the number of chains, which shared the load of a broken polymer chain. Fillers used in rubber industries may be classified on the basis of sources, properties and colour. Those grouped on the basis of sources could be organic or inorganic fillers. Inorganic fillers are calcium carbonate, barites, silica etc. while that of the organic fillers are phenolic resins, cyclised natural rubber etc. they are categorized either as reinforcing or non-reinforcing. While reinforcing filler on inclusion into a rubber mix increase the tensile strength, tear strength and abrasion resistance, the non-reinforcing only help to reduce the cost of product and act as diluents. Examples of reinforcing fillers are carbon black, silica etc. while examples of nonreinforcing fillers are mica powder, barium sulphate etc. [5]. In the rubber industry, fillers that are commonly in use are carbon black, calcium carbonate and china clay. Calcium carbonate (CaCO 3 ) had attracted considerable interest in recent years due to its availability and low cost [3]. For filled vulcanizates, the efficiency of reinforcement depends on a complex interaction of several filler related parameters. These include particle size, particle shape, particle dispersion, surface areas, surface reactivity, structure

7 Michael Ifeanyichukwu Ugbaja et al.: Swelling and Mechanical Behaviour of Natural Rubber Vulcanisate Filled with Leather Wastes (Buffing Dust) and Its ing of the filler and the bonding quality between the fillers and the rubber matrix []. Again, reinforcing fillers should possess a small particle size that is 1nm, a chemical active surface and a surface which is both porous and very irregular in shape to maximize surface contact between rubber and filler [7, ]. The leather is a natural polymer consisting of collagen fibrescrosslinked in a three dimensional structure. Chrome leather tanning results in improved appearance, physical properties and chemical and biological resistance to leather but the process leads to the emission of solid and liquid wastes into the environment. The entire leather operations such as trimming, shaving and cutting result with more than 5% of the raw hide being rejected as waste. Processing of one ton wet salted hide yields only 2kgs of leather but over Kgs is rejected as solid waste. Of the total waste, more than 5% is considered as potentially hazardous because of the presence of the chromium. An important consideration is the possibility of the oxidation of trivalent chromium to hexavalent chromium, which is considered to be even more hazardous. When waste leather fibres are added to elastomers, it could function as short fibre reinforcement for the matrix provided the inherent fibrous nature of the former is retained during processing. Since processing of elastomers is carried out relatively at high temperatures, retention of the fibrous nature in the leather under such conditions, however, is very difficult. It is, therefore, prudent to use and consider the leather waste in the particulate form and study its effectiveness either as filler or as a processing aid in elastomeric formulations. Use of leather in rubber formulations is then bound to affect the vulcanization characteristics and vulcanisate properties of the rubber significantly as it is a biomaterial with many reactive functional groups present in it, apart from large quantities of trivalent chromium. Natural rubber- scrap rubber vulcanisates containing untreated leather particles reduces the vulcanization characteristics and mechanical properties of the compound, but improves the incorporation and higher amount of loading of scrap rubber [9]. In this article, the effect of untreated leather particles on the mechanical and swelling properties of natural rubber composites has been investigated. 2. Experimental 2.1. Material Natural rubber (NSR 1) was collected from the Polymer recycling workshop of the Department of Polymer Technology, NILEST, Zaria. The leather waste (buffing dust) used in this study, were obtained from the tannery section of the Nigerian Institute of Leather and Science Technology (NILEST), Zaria. The leather waste was dried at 1 o C for 15 minutes in an air oven and finally was shredded into fine particles. Other materials such as zinc oxide (ZnO), stearic acid, sulphur, processing oil, and MBTS were used as supplied. Waste chrome leather shavings obtained from a local tannery usually contains 2.5% chromium and 11.21% nitrogen. 2.2. Compounding Compounding was done on a two roll mill (Reliable, model no. 513, USA), as per the base formulation is given in Table 1. Natural rubber was masticated and after a smooth band was formed on the mill. Then zinc oxide (ZnO) and stearic acid were introduced into the smooth rubber band, followed by the addition of the filler particles and the processing oil. After complete mixing and band formation were ensured, accelerators and sulphur were added. Appropriate nip gaps were maintained and 3/4 cut were made during the mixing process in order to get the uniform mix. Table 1. Typical formulation for leather waste (buffing dust)- filled natural rubber (NR). Materials Pbw (g) %phr NR 4 1 Filler -1-4 Stearic acid.4 1. Zinc oxide 2. 5. MBTS. 1.5 TMQ. 1.5 Processing oil. 1.5 Sulphur. 1.5 2.3. Swelling and Mechanical Properties Measurement Tensile sheets for the evaluation of mechanical properties were compression moulded using a 1 tons hydraulic press (Carver 351-) at 15 C for 15minutes. Mechanical properties of the moulded specimens were measured according to ASTM D 4 and ASTM D 24 standards [1], using a tensometer ( Zwick/Roell Type: BDO-FBO- 5 th Serial no: 5344) at a cross head speed of 5mm/min. The shore A hardness of the vulcanisate was measured in a Durometer according to ASTM D 224. Swelling ratio, expressed as % weight, was determined in water after immersing the vulcanisates in the medium for about 24hrs. 3. Results and Discussion The effects of leather particles (buffing dust) on the mechanical properties of the natural rubber vulcanisates are shown in Table 2. Vulcanisates containing leather particles have exhibited significant improvements in mechanical properties when compared to the natural rubber vulcanisate that does not contain any filler. The tensile strength (T. S) increases with increase in filler content of the filled NR vulcanisates. The result on modulus showed that the modulus of the NR vulcanizates increases as the filler content in the filled NR vulcanisates was increased. For the % elongation at break (E. b), the results showed a decrease in % elongation at

American Journal of Applied Scientific Research 21; 2(2): -11 break as more filler are being added to the NR vulcanisates. The hardness increases steadily with the increasing quantity of filler in the rubbervulcanisates. Table 2. Mechanical properties of NR vulcanisates filled with leather waste Filler content T.S Modulus Hardness E.b (%) (%) (MPa) (MPa) (15sec). 21. 32.27 24.7 1 1. 1.7 11.44 27. 2 11..2 9.5 29. 3.2.95 175.34 37.7 4 13. 5. 237.2 49. 3.1. Tensile Strength Examining Figure 1, with regard to tensile strength shows great improvement in reinforcement of filled NR vulcanisates. The tensile strength was observed to increase with increasing filler content. Several workers [11, ] that significant reinforcement is only attainable when the particle size of the filler is of the order of.2-.5 µm. Parkinson [], found that decreasing the particle size of carbon black filler generally enhanced mechanical properties such as tensile and tear strength. The tensile strength at 3 wt% is double the strength of unfilled natural rubber. 13 Elongation at Break (%) 22 2 1 1 1 4 5 1 15 2 25 3 35 4 Fig. 2. % elongation at break as a function of filler content for leather waste 3.3. Modulus As for the modulus properties, figure 3 shows that the modulus of the NR vulcanisate increases as the filler content in the vulcanisate was increased. Parkinson () and Wagner (15) reported that stiffness or modulus for filled vulcanized NR can be enhanced by improving the surface area and surface reactivity of fillers. 25 Tensile Strength (MPa) 11 1 9 Modulus (MPa) 2 15 1 7 5 1 15 2 25 3 35 4 Fig 1. Tensile strength as a function of filler content for leather waste 3.2. % Elongation at Break (E. b) Figure 2 shows that the elongation at break of the filled NR vulcanisates decreases with increasing filler content. Decreased elongation at break with increasing filler content may be due to the stiffening of the polymer chain and hence resistance to stretch when strain is applied [13, ]. 5 5 1 15 2 25 3 35 4 Fig. 3. Modulus at 1% as a function of filler content for leather waste 3.4. Hardness Figure 4 shows that the hardness increases with increasing filler content. The hardness enhancement can be attributed to better wetting and dispersion of the fillers which happen to be a biomaterial.

9 Michael Ifeanyichukwu Ugbaja et al.: Swelling and Mechanical Behaviour of Natural Rubber Vulcanisate Filled with Leather Wastes (Buffing Dust) and Its ing Hardness (15 Sec) 5 45 4 35 3 25 2 5 1 15 2 25 3 35 4 Fig. 4. Hardness as a function of filler content for leather waste (buffing dust). 3.5. Swelling Analysis Water plays an important role on the properties of leather as with other proteins. Earlier studies on water vapour absorption [1] indicate that within the range of water uptake which is possible from the vapour phase, the affinity of water uptake for collagen is not diminished by chrome tanning. Both hide and leather become brittle and unpleasant to touch if the water present in the system is completely removed. During vulcanization at high temperatures, some of the water molecules present in the leather fibres would be completely removed. Since leather is known for its excessive swelling in aqueous media, it would be of great interest to study the swelling behavior of natural rubber vulcanisates containing leather. The swelling behavior of natural rubber vulcanisates containing untreated leather waste (buffing dust) in water is shown in Figure 5. 3.. ed Results 3..1. Tensile Strength equation for the tensile strength is: f(x) =.35x 3 -.24x 2 +.93x +.9 SSE:.53 R-square:.999 Adjusted R-square:.9993 RMSE:.7171 The modeled graph is shown in Figure a while the analysis curve is represented in Figure b.there was a slight deviation observed in the modeled data. Between 2 to 3 wt %, the model curve showed an upward deviation. The optimum tensile strength is observed at 24wt% of the filler content. Tensile Strength (MPa) 13 11 1 9 7 5 1 15 2 25 3 35 4 Fig. a. ed graph for tensile strength as a function of filler content. 15 Analysis of fit "fit 1" for dataset "y vs. x" y vs. x Data 1 5 1.5 Fig. 5. Swelling behavior in water as a function of filler content for leather waste Integral from 4 2 5 1 15 2 25 3 35 4 Fig. b. Analysis Curve for Tensile Strength.

American Journal of Applied Scientific Research 21; 2(2): -11 1 22 2 25 1 2 Elongation at Break (%) 1 1 Modulus (MPa) 15 1 5 4 5 1 15 2 25 3 35 4 Fig. 7a. ed graph for elongation at break as a function of filler content. Fit with 95% pred bounds Integral from 4 2-2 -.5-1 -1.5 4 2 Fig. 7b. Analysis Curve for elongation at break as a function of filler content. 3..2. Elongation at Break Linear model Poly3: Analysis of fit "fit 1" for dataset "el vs. x" fit 1 95% prediction bounds el vs. x 5 1 15 2 25 3 35 4 f(x) = -.417x 3 +.524x 2 1.452x +2.92 Coefficients (with 95% confidence bounds): SSE:.41 R-square:.9972 Adjusted R-square:.99 RMSE:.454 The modeled graph is represented in Figure 7a and the analysis curve in Figure 7b. There was an upward deviation between 5 to 7.5 wt%, a downward deviation between 15 to 25 wt% and then an upward deviation between 3 to 35 wt %. Optimum elongation at break was obtained at 27.5 wt%. Fit with 95% pred bounds Integral from 5 1 15 2 25 3 35 4 Fig. a. ed graph for modulus as a function of filler content. 5-5 15 1 5 4 2 Fig. b. Analysis curve for modulus as a function of filler content. 3..3. Modulus Linear model Poly3: f(x) =.27X 3.32x 2 + 1.31x +33.4 Coefficients (with 95% confidence bounds): SSE: 131.9 R-square:.9943 Adjusted R-square:.9773 RMSE: 11.4 The modeled graph of modulus versus filler content is shown in Figure a and the analysis curve in Figure b. Optimum modulus was obtained at 2 wt%. 3..4. Hardness Linear model Poly3: Analysis of fit "fit 1" for dataset "y vs. x" fit 1 95% prediction bounds y vs. x 5 1 15 2 25 3 35 4 f(x) =.2417x 3 +.33x 2 +.95x + 24. SSE: 1.7 R-square:.995

11 Michael Ifeanyichukwu Ugbaja et al.: Swelling and Mechanical Behaviour of Natural Rubber Vulcanisate Filled with Leather Wastes (Buffing Dust) and Its ing Adjusted R-square:.923 RMSE: 1.327 The model curve of hardness vs. filler content is shown in Figure 9(a) while the analysis curve is in Figure 9(b). Hardness (15 sec) 2 5 1 15 2 25 3 35 4 Filler Content Fit with 95% pred bounds Integral from 55 5 45 4 35 3 25 Fig. 9a. ed graph for hardness as a function of filler content. 1 5 2 1 15 1 5 Fig. 9b. Analysis Curve for hardness as a function of filler content. 4. Conclusion Analysis of fit "fit 1" for dataset "y vs. x" fit 1 95% prediction bounds y vs. x 5 1 15 2 25 3 35 4 Buffing dust can be incorporated into formulations of natural rubber vulcanisate as reinforcing filler. The resulting composites showed an improvement in hardness and tensile properties. The presence of leather waste in natural rubber vulcanisate can lead to increase in swelling when immersed in water. References [1] Mark H. F. (21) Encyclopedia of Polymer Science and Technology, Interscience, New York Vol. : 42 [2] Okieimen, F. E. and Imanah, J. E. (23); The Characterisation of Agricultural Waste Products as Fillers in NR Formulation, Nig. J. Polym.Sci. and Tech, Vol. 3, 1: 21-21. [3] Danneberg, E. M. (191), Proceeding of International Rubber Conference, Loughborough. [4] Fleminert, G and Bueche, C. (1957); Light Reinforcement Filler A Paper presented before the Swedish institute of Rubber Technology. [5] Blow, C. and Hepburn, C. (1971); Rubber Technol and Manufacture, Butter Worth Publishers London, 3 rd Ed. 1. [] Parkinson, D. (1957); Reinforcement of Rubber, Lakeman and Co. London,. [7] Hepburn, C. (194); Filler reinforcement of Rubber Plastic and Rubber international No. 9:11-15. [] Morton, M. (197); Rubber Technology, 3 rd Edn. Van Nostrand, New York; 74. [9] Ravichandran, K. & Natchimuthu, N. (25). Polimeros., Anna University, India, 15, 2. [1] ASTM 151 (193); American Society for Testing and Materials. [11] Nasir, M. and Choo, C.H. (197) Euro. Polym J. 25,355. [] Mehta, P.K. and Pitt, N. (1974) Rice by-products conference Valencia, 7. [13] Rivin, D. (193); RubbChem & Tech 3, 729. [] Hepburn, C and Blow, C. M. (1971); Rubber Technology and Manufacture 3 rd Edition, Butter Worth Publishing 1. [15] Wagner, M. P. (197); Rubb. Chem. Tech. 49,74. [1] Kremen, S. S. and Lollar, R. M. (1951). J. Am. Leather Chem., Ass. 4: 34.