Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda:

Similar documents
Lecture 7 CMOS MEMS. CMOS MEMS Processes. CMOS MEMS Processes. Why CMOS-MEMS? Agenda: CMOS MEMS: Fabrication. MEMS structures can be made

MEMS II: January 23. Lab 1: Pop-up mirror - PolyMUMPS - Thermal actuators - Mirror CoventorWare

Lecture 10: MultiUser MEMS Process (MUMPS)

Fabrication Technology, Part II

SOIMUMPs Design Handbook

Surface Micromachining

Surface Micromachining

Welcome MNT Conference 1 Albuquerque, NM - May 2010

Surface micromachining and Process flow part 1

Design and fabrication of MEMS devices using the integration of MUMPs, trench-refilled molding, DRIE and bulk silicon etching processes

6.777J/2.732J Design and Fabrication of Microelectromechanical Devices Spring Term Solution to Problem Set 2 (16 pts)

EE C245 ME C218 Introduction to MEMS Design Fall 2011

FABRICATION PROCESSES FOR MAGNETIC MICROACTUATORS WITH POLYSILICON FLEXURES. Jack W. Judy and Richard S. Muller

EE C245 ME C218 Introduction to MEMS Design

MICRO-ELECTRO-MECHANICAL VARIABLE BLAZE GRATINGS

Lecture 6. Through-Wafer Interconnect. Agenda: Through-wafer Interconnect Polymer MEMS. Through-Wafer Interconnect -1. Through-Wafer Interconnect -2

Proceedings Post Fabrication Processing of Foundry MEMS Structures Exhibiting Large, Out-of-Plane Deflections

4/10/2012. Introduction to Microfabrication. Fabrication

Regents of the University of California 1

Lecture 3: Integrated Processes

EE C245 ME C218 Introduction to MEMS Design Fall 2007

Cambridge University Press A Guide to Hands-on MEMS Design and Prototyping Joel A. Kubby Excerpt More information.

Dr. Lynn Fuller Webpage:

Regents of the University of California

Today s Class. Materials for MEMS

Surface Micromachining II

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

Regents of the University of California

Micro-Scale Engineering I Microelectromechanical Systems (MEMS) Y. C. Lee

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam

Chapter 3 CMOS processing technology

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects

Invited Paper. Berkeley, CA, USA Davis, CA, USA ABSTRACT 1. INTRODUCTION

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

EECS130 Integrated Circuit Devices

5.8 Diaphragm Uniaxial Optical Accelerometer

Thomas M. Adams Richard A. Layton. Introductory MEMS. Fabrication and Applications. Springer

Process Integration. NMOS Generic NMOS Process Flow. CMOS - The MOSIS Process Flow

VLSI Digital Systems Design

Sensors and Actuators Designed and Fabricated in a. Micro-Electro-Mechanical-Systems (MEMS) Course. Using Standard MEMS Processes

Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system

Preface Preface to First Edition

Interconnect Issues for Integrated MEMS Technology

Integrated Processes. Lecture Outline

Lect. 2: Basics of Si Technology

GAS TURBINE ENGINE PROGNOSTICS AND EQUIPMENT HEALTH MANAGEMENT

Lecture 8-1 MCNC/MUMPS Process

4. Process Integration: Case Studies

Silicon Nitride Biaxial Pointing Mirrors with Stiffening Ribs

Chapter 3 Silicon Device Fabrication Technology

Process Integration. MEMS Release Techniques Sacrificial Layer Removal Substrate Undercut

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects

EE C245 ME C218 Introduction to MEMS Design Fall 2007

MEMS Devices. Fraunhofer Institute for Silicon Technology ISIT. Itzehoe, Germa. any

PiezoMUMPs Design Handbook

MEMS Surface Fabrication

9/4/2008 GMU, ECE 680 Physical VLSI Design

EE 143 FINAL EXAM NAME C. Nguyen May 10, Signature:

Fabrication Technology, Part I

EE 330 Lecture 9. IC Fabrication Technology Part 2

Waferlevel Vacuum Packaged Microscanners: A High Yield Fabrication Process for Mobile Applications

3. Overview of Microfabrication Techniques

Lecture #18 Fabrication OUTLINE

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005

Vertical high voltage devices on thick SOI with back-end trench formation

Lecture 5: Micromachining

EE 330 Lecture 8. IC Fabrication Technology Part II. - Masking - Photolithography - Deposition - Etching - Diffusion

This Appendix discusses the main IC fabrication processes.

IC/MEMS Fabrication - Outline. Fabrication

Surface Micromachining of Uncooled Infrared Imaging Array Using Anisotropic Conductive Film

Introduction to Microeletromechanical Systems (MEMS) Lecture 5 Topics. JDS Uniphase MUMPs

Review of CMOS Processing Technology

Ultrasonic Micromachining in the fabrication of MEMS Micro-sensors

CMOS Technology. Flow varies with process types & company. Start with substrate selection. N-Well CMOS Twin-Well CMOS STI

EE 330 Lecture 8. IC Fabrication Technology Part II. - Oxidation - Epitaxy - Polysilicon - Interconnects

EE 434 Lecture 9. IC Fabrication Technology

CS/ECE 5710/6710. N-type Transistor. N-type from the top. Diffusion Mask. Polysilicon Mask. CMOS Processing

2242 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 12, december 2005

Fabrication of Nanoscale Silicon Membranes on SOI Wafers Using Photolithography and Selective Etching Techniques:

Design Handbook. amems Process Technology. A RSC MEMS Technology. Rockwell Scientific Company, LLC. Revision 1.0

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width

Fabrication technique for microelectromechanical systems vertical comb-drive actuators on a monolithic silicon substrate

ASIM-X MEMS-Specific Design Rules

EE C245 ME C218 Introduction to MEMS Design Fall 2011

EE C247B ME C218 Introduction to MEMS Design Spring 2014

An SOI Process for Fabrication. of Solar Cells, Transistors and Electrostatic Actuators. Berkeley Sensor and Actuator Center

MEMS Fabrication. Beyond Integrated Circuits. MEMS Basic Concepts

Mikrosensorer. Microfabrication 1

Mostafa Soliman, Ph.D. May 5 th 2014

Surface Micromachining and Inertial Sensors

INF5490 RF MEMS. LN02: MEMS Fabrication. Spring 2012, Oddvar Søråsen Department of Informatics, UoO

Isolation Technology. Dr. Lynn Fuller

MEMS Packaging Techniques for Silicon Optical Benches

Poly-SiGe MEMS actuators for adaptive optics

CMOS Manufacturing process. Design rule set

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS

EE C247B ME C218 Introduction to MEMS Design Spring 2015

Chemical Vapor Deposition

Transcription:

EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie SOI Micromachining Agenda: SOI Micromachining SOI MUMPs Multi-level structures Lecture 5 Silicon-on-Insulator Microstructures Single-crystal silicon Flatness (optical MEMS) Robustness High-Q High-power capacity Good temperature stability High resolution, low noise (Inertial sensors) Thickness control SOI CMOS compatibility A big trend for optical MEMS and inertial sensors EEL6935 Advanced MEMS 2005 H. Xie 1/19/2005 1 EEL6935 Advanced MEMS 2005 H. Xie 2 SOI MUMPs process Silicon as structural layer Silicon as structural and sacrificial material Two-level beam structures Multilevel beam structures Buckled beam structures Many others SOI Micromachining SOI MUMPs Features: Silicon-on-insulator (SOI) wafer as the starting substrate: Silicon thickness: 10 ± 1 µm or 25 ± 1 µm Oxide thickness: 1 ± 0.05 µm Handle wafer (Substrate) thickness: 400 ± 5 µm Silicon layer is doped and can be used for mechanical structures, resistor structures, and/or electrical routing. Backside Substrate etch allows for through-hole structures. Shadow-masked metal process for coarse Metal features such as bond pads, electrical routing, and optical mirror surfaces. A second pad-metal feature that allows finer metal features and precision alignment but limited to areas not etched in the silicon device layer. EEL6935 Advanced MEMS 2005 H. Xie 1/12/2005 3 http://www.memscap.com/memsrus/svcssoirules.html EEL6935 Advanced MEMS 2005 H. Xie 4

SOI MUMPs Process Flow (1) SOI MUMPs Process Flow (2) Silicon layer: 10um Oxide layer: 1um Substrate: 400um Bottom oxide present Starting Substrate SOI Wafer First mask (PAD METAL) 20nm Cr/500nm gold (E-beam evaporation) Metal Liftoff PSG deposition Annealing: 1050 C, 1 hour Remove PSG Silicon Doping Photoresist as mask DRIE Silicon Patterning EEL6935 Advanced MEMS 2005 H. Xie 5 EEL6935 Advanced MEMS 2005 H. Xie 6 SOI MUMPs Process Flow (3) SOI MUMPs Process Flow (4) Protection material applied to front side Pattern backside oxide DRIE silicon from back side, stopping on the middle oxide Remove photoresist Wet etch oxide (both middle layer and backside layer) Substrate Patterning Release Separate silicon wafer DRIE silicon Shadow Mask Shadow Mask Bonding and Metal Deposition Dry etch protection material Vapor HF etch oxide Expose silicon layer and substrate for electrical contacts Temporarily bond the shadow mask Metal deposition: 50nm Cr /600nm Au EEL6935 Advanced MEMS 2005 H. Xie 7 EEL6935 Advanced MEMS 2005 H. Xie 8

SOI MUMPs Process Flow (5) SOI MUMPs Example Remove the shadow mask Shadow Mask Removal In-Plane Vibrating Diffraction Grating Scanning an optical angle of 15.9 at a resonant frequency of 8.34 khz for a 635-nm wavelength incident laser beam, electrostatically driven by 15-V dc bias and 15-Vac voltages EEL6935 Advanced MEMS 2005 H. Xie 9 G. Zhou et al, IEEE Photonics Technology Letters, Vol.16, no. 10, (2004) EEL6935 Advanced MEMS 2005 H. Xie 10 SOI MEMS Processes -2 SOI MEMS Processes -3 Backside Etch Angular Comb Drive Actuator Frontside HF Release SOI wafer DRIE Si etch LPCVD Si3N4 Light-weight SOI MEMS Mirror LPCVD poly-si Oxidize poly-si CMP LPCVD poly-si Si DRIE RTA 750~900 C to form tensile stress HF release Supercritical drying Patterson et al, OFC 2002 EEL6935 Advanced MEMS 2005 H. Xie 11 J.T. Nee et al, MEMS 2000 EEL6935 Advanced MEMS 2005 H. Xie 12

Multilevel Beam Microstructures Multilevel Beam Fabrication Process (1) Torsional Mirror Concept SOI wafer DRIE Si etch LPCVD Si3N4 Vertical Comb- Drive Mirror V. Milanovic, JMEMS, vol.13 (2004) EEL6935 Advanced MEMS 2005 H. Xie 13 EEL6935 Advanced MEMS 2005 H. Xie 14 (e) (f) (g) Multilevel Beam Fabrication Process (2) SOI wafer DRIE Si etch LPCVD Si3N4 SOI substrate Two-side alignment DRIE silicon on both sides Timed DRIE Si Thickness variations of Upper beams and Lower beams EEL6935 Advanced MEMS 2005 H. Xie 15 Torsional Micromirrors Multilevel Beam Fabrication Process (3) Flat Lightweight High speed Low power Electrostatic actuation V. Milanovic, JMEMS, vol.13 (2004) EEL6935 Advanced MEMS 2005 H. Xie 16

SOI MEMS Processes -5 SOI MEMS Processes -6 Vertical Comb Drive SOI Epitaxial MEMS Micromirror Vertically buckled bridge Wet etch SiO2 Poly-Si as HF etching mask Sasaki et al, JMEMS, vol.13 (2004) EEL6935 Advanced MEMS 2005 H. Xie 17 Epitaxial Si/SiGe/Si multilayer structures Vertical symmetry for flat surface Vertical asymmetry for bending Size: 0.1mm by 0.27mm Maximum rotation (static): 10 Tokuda et al, Electronics Letters, vol.40 (2004), no.21 EEL6935 Advanced MEMS 2005 H. Xie 18