Some chemistry of Iron

Similar documents
Rusting is an example of corrosion, which is a spontaneous redox reaction of materials with substances in their environment.

Oxidation and Reduction

Electrochemistry Written Response

Project: Corrosion of Iron

CO forms CO 2. forms. (a) The coke reacts with the oxygen in the air to form carbon dioxide. C + O 2

2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate

Mat E 272 Lecture 26: Oxidation and Corrosion

Corrosion and batteries

TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY. Unit 2 Metals

85 Q.51 Which of the following carbonates would give the metal when heated with carbon? (1) MgCO 3 (2) PbCO 3 (3) K 2 CO 3 (4) CuCO 3

Reactivity Series. Question Paper. Cambridge International Examinations. Score: /39. Percentage: /100

The ion with Vanadium in its oxidation state of 5 exists as a solid compound in the form of a VO 3

GraspIT AQA GCSE Chemical changes

Corrosion of metals and their protection

Pre-Lab Exercises Lab 5: Oxidation and Reduction

The final oxidation product, iron (III), then combines with oxygen and water to form iron (III) oxide, or "rust".

Types of corrosion. 1)Uniform or General Corrosion

UNIT-I ELECTROCHEMISTRY PART-A

Topic: Gases in the Atmosphere

Thermodynamics and Electrode Potential ME Dr. Zuhair M. Gasem

Materials are all substances and include metals, ceramics and plastics as well as natural and new substances.

GraspIT AQA GCSE Chemical changes

Corrosion of Metals. Industrial Metallurgists, LLC Northbrook, IL Copyright 2013 Industrial Metallurgists, LLC

Corrosion. Cause of Corrosion: Electrochemical Mechanism of Corrosion (Rusting of Iron)

Topic 9 National 4 Chemistry Summary Notes. Metals and Alloys. Materials

(a) To find out which is the more reactive metal, zinc or tin, the following experiment could be carried out. piece of zinc shiny surface

Trivalent Black Layers With Cathodic Corrosion Protection

APPLICATIONS OF ELECTROCHEMISTRY

Title. Author(s)Tamura, Hiroki. CitationCorrosion Science, 50(7): Issue Date Doc URL. Type. File Information

Chapter 17: Corrosion and Degradation of Materials

Properties A Metal B Non- metal Electronic configuration?? Nature of oxides?? Oxidizing or reducing action?? Conduction of heat and electricity??

There s also got to be a wire, but that s kind of taken for granted.

Chapter 6b Applications of Stability Diagrams

Module 5 : Electrochemistry Lecture 25 : Corrosion

Chemical reactions and electrolysis

Electricity and Chemistry

NATURAL SURFACE PHENOMENA AND THE IMPACT OF CORROSION INDUCING SALTS. Harry Peters, Jr. CHLOR*RID International, Inc.

ICSE-Science 2 (Chemistry) 2004

What happens if we connect Zn and Pt in HCl solution? Corrosion of platinum (Pt) in HCl. 1. If Zn and Pt are not connected

CORROSION of Metals CORROSION CORROSION. Outline ISSUES TO ADDRESS... Why does corrosion occur? What metals are most likely to corrode?

Explain this difference. [2] [Total: 12] PhysicsAndMathsTutor.com

JSUNIL TUTORIAL, SAMASTIPUR

Distribution Review. Corrosion Control. Corrosion Control Vocabulary. American Water College 1. Corrosion Control Training Objectives

METALS AND THEIR COMPOUNDS

1. Scaling. H.O.: H-5/21, KRISHNA NAGAR, DELHI Tel.: , Fax:

5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC 9: METALS 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 9: METALS

CORROSION & ITS CONTROL -Content. Introduction Classification Galvanic series Factors affecting Protection methods Summary

Anodizing of aluminium

1. Which of the given statements about the reaction below are incorrect?

One of the main ores of zinc is zinc blende, ZnS. There are two stages in the extraction of zinc from this ore.

SAMPLE PAGES PAGES. Extraction of metals from metal oxides. mixture of iron sand and coal are heated as they move down kiln, by force of gravity

I. PHYSICAL PROPERTIES. PROPERTY METALS NON-METALS 1.Lustre Metals have shining surface. They do not have shining surface.

look down at cross on paper paper cross on paper

1. CORROSION OF REINFORCEMENT

Atmospheric Corrosion Process for Weathering Steel

CHEMISTRY. SECTION I (40 Marks) Attempt all questions from this Section

Corrosion and Protection of Metal in the Seawater Desalination

CORROSION TYPES CHAPTER 4 6) FILIFORM CORROSION LECTURER SAHEB M. MAHDI

Learn Chemistry. Starter for Ten 9. Redox. Registered Charity Number

CHAPTER 23: CORROSION

Key Points. ATOMIC STRUCTURE Atom: the smallest part of an element that still has the characteristics/ properties of that element.

Thermal decomposition. Metal carbonates

Corrosion Control and Cathodic Protection Data Sheet

Chemistry Test Paper

*20GSD5201* Double Award Science: Chemistry. Unit C2 Higher Tier WEDNESDAY 15 JUNE 2016, AFTERNOON [GSD52] *GSD52* *G5802* TIME 1 hour 15 minutes.

Set 3 Marking Scheme : Electrochemistry Na +, H + -, NO 3, OH -, OH - Na +, H + OH - Its lower than in electrochemical series

Chapter 6a Interpreting Stability (Pourbaix) Diagrams

KULLEĠĠ SAN BENEDITTU Boys Secondary, Kirkop

Iron is found in an oxidized state and is mined from the ground as an iron ore.

Electrochemical Considerations

CORROSION AND CORROSION CONTROL An Introduction to Corrosion Science and Engineering

Test sticks and test papers for semi-quantitative determinations

Corrosion and Corrosion Protection

ICSE-Science 2 (Chemistry) 1996

IGCSE Chemistry: Electrochemistry and Redox Whole Unit Overview

Chapter 3: Metals and Non-metals Question 1: Define amphoteric oxides. Give two examples. Answer: Oxides that react with both acids and bases to form

Experimental technique. Revision 1. Electroplating an iron key with copper metal

Zinc 17. Part 2 Practical work

ppm Dissolved Oxygen Measurement

Metals. N4 & N5 Homework Questions

EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1)

Partner: Cathy 22 March Separation and Qualitative Determination of Cations and Anions

Chem 1120 Pretest 3 Fall 2015

PREMATURE FAILURE OF REPAINTED EPOXY ON THE BOTTOM PLATE OF A MAIN FUEL OIL TANK - A CASE STUDY 1

CORROSION. 2Fe /2 O2 + 3H2O 2Cu 2+ + moisture + CO2

Reactivity Series. Question Paper. Save My Exams! The Home of Revision. Module Double Award (Paper 1C) Chemistry of the Elements.

National 5 Unit 3 Nature s Chemistry. Past Paper Book by Key Area

Prevention Strategies Design and Coatings

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy.

Evaporative Condenser Passivation. Cameron Klein Strand Associates, Inc.

I. PHYSICAL PROPERTIES PROPERTY METALS NON-METALS

Cambridge International Examinations Cambridge International General Certificate of Secondary Education. Published

Chemistry 2000 Lecture 16: Batteries and fuel cells

DURABILITY of CONCRETE STRUCTURES

Boiling point in C. Colour in aqueous solution. Fluorine 188 colourless. Chlorine 35 pale green. Bromine X orange.

Environmental Interactions

9.2.1 Similarities and trends in the properties of the Group II metals magnesium to barium and their compounds

UNIT-III: ELECTRO CHEMISTRY AND CORROSION

Angel International School - Manipay 3 rd Term Examination July, 2015

*20GSD5201* Double Award Science: Chemistry. Unit C2 Higher Tier TUESDAY 9 JUNE 2015, AFTERNOON [GSD52] *GSD52* *G5802* TIME 1 hour 15 minutes.

Transcription:

1 of 7 21/11/2006 04:05 PM Some chemistry of Iron History For some background information on the origin and history of Iron see the Rossell Forge Site in Andorra Introduction Iron is the most abundant transition metal on Earth (62000 ppm). The International Centre for Environmental and Nuclear Sciences (ICENS) has an on-going programme of mapping the geochemical content of Jamaica. 'A Geochemical Atlas of Jamaica' was published in 1995 and is available from Amazon or ICENS. The results found for Iron are shown below (courtesy of Prof G.C. Lalor). Properties of iron An excellent site for finding the properties of the elements, including iron, is at

2 of 7 21/11/2006 04:05 PM Extraction of Iron Iron is generally extracted in a Blast furnace. Iron Halides Preparations: Iron(III) halides Formula Colour MP Structure FeF 3 green 1000 sublimes FeCl 3 black 306 sublimes BiI3 FeBr 3 dark-red-brown decomposes above 200 C BiI3 Prepared by reaction of Fe + X 2 FeX 3. Note that FeBr 3.aq when boiled gives FeBr 2. An important application of the chloride is as an etching material for copper electrical printed circuits. Preparations: Iron(II) halides Formula Colour MP BP Structure FeF 2 white 1000 1100 rutile FeCl 2 pale yellow-grey 670-674 - CdCl2 FeBr 2 yellow-green 684 - CdI2 FeI 2 grey red heat - CdI2 Fe +HX at red heat FeX 2 for X=F,Cl and Br Fe + I 2 FeI 2 Iron Oxides and Aqueous Chemistry Iron oxides Formula Colour Oxidation State MP Structure / comments Fe 2 O 3 red brown Fe 3+ 1560d α-form Haematite, β-form used in cassettes Fe 3 O 4 black Fe 2+/3+ 1538d magnetite/lodestone FeO black Fe 2+ 1380 pyrophoric Preparations: α-fe 2 O 3 is obtained by heating alkaline solutions of Fe(III) and dehydrating the solid formed. FeO,Fe 3 O 4, γ-fe 2 O 3 ccp α-fe 2 O 3 hcp

3 of 7 21/11/2006 04:05 PM The Fe(III) ion is strongly acidic: [Fe(H 2 O) 6 ] 3+ + H 2 O [Fe(H 2 O) 5 (OH)] 2+ + H 3 O + K=10-3.05 [Fe(OH)(H 2 O) 5 ] 2+ + H 2 O [Fe(OH) 2 (H 2 O) 4 ] + + H 3 O + K=10-3.26 olation 2Fe(H 2 O) 6 3+ + 2H2 O [Fe 2 (OH) 2 (H 2 O) 8 ] 4+ + 2H 3 O + K=10-2.91 The Fe 2+ ion is barely acidic: Fe(H 2 O) 6 2+ + H 2 O [Fe(OH)(H 2 O) 5 ] + + H 3 O + K=10-9.5 Rusting of Iron The economic importance of rusting is such that it has been estimated that the cost of corrosion is over 1% of the world's economy. (25% of the annual steel production in the USA goes towards replacement of material that has corroded.) Rusting of iron consists of the formation of hydrated oxide, Fe(OH) 3 or FeO(OH), and is an electrochemical process which requires the presence of water, oxygen and an electrolyte - in the absence of any one of these rusting does not occur to any significant extent. In air, a relative humidity of over 50% provides the necessary amount of water and at 80% corrosion is severe. The process is complex and will depend in detail on the prevailing conditions, for example, in the presence of a small amount of O 2 the anodic oxidation will be: Fe Fe 2+ + 2e - and the cathodic reduction: 2H 2 O + 2e - H 2 + 2OH - i.e. overall: Fe + 2H 2 O H 2 + Fe 2+ + 2OH - i.e Fe(OH) 2 and this precipitates to form a coating that slows further corrosion. If both water and air are present, then the corrosion can be severe with oxygen now as the oxidant the anodic oxidations: 2Fe 2Fe 2+ + 4e - and the cathodic reduction: O 2 + 2H 2 O + 4e - 4OH - i.e. overall: 2Fe + O 2 + 2H 2 O 2Fe(OH) 2 with limited O 2, magnetite is formed (Fe 3 O 4 ), otherwise the familiar red-brown Fe 2 O 3 H 2 O rust is found. The presence of an electrolyte is required to provide a pathway for the current and, in urban areas, this is commonly iron(ii) sulfate formed as a result of attack by atmospheric SO 2 but, in seaside areas, airborne particles of salt are important. The anodic oxidation of the iron is usually localized in surface pits and crevices which allow the formation of adherent rust over the remaining surface area.

4 of 7 21/11/2006 04:05 PM The illustration above shows 2 nails immersed in an agar gel containing phenolphthalein and [Fe(CN) 6 ] 3-. The nails can be seen to have started to corrode since the Prussian blue formation indicates the formation of Fe(II) (the Anodic sites which correspond to the end of the nails and the bend in the middle). The phenolphthalein (change to pink in presence of base) shows the build up of OH - and shows that essentially the whole length of the nail is acting as the cathode. Eventually the lateral extension of the anodic area undermines the rust to produce loose flakes. Moreover, once an adherent film of rust has formed, simply painting over gives but poor protection. This is due to the presence of electrolytes such as iron(ii) sulfate in the film so that painting merely seals in the ingredients for anodic oxidation. It then only requires the exposure of some other portion of the surface, where cathodic reduction can take place, for rusting beneath the paint to occur. The protection of iron and steel against rusting takes many forms, including: simple covering with paint; coating with another metal such as zinc (galvanizing) or tin; treating with "inhibitors" such as chromate(vi) or (in the presence of air) phosphate or hydroxide, all of which produce a coherent protective film of Fe 2 O 3. Another method uses sacrificial anodes, most usually Mg or Zn which, being higher than Fe in the electrochemical series, are attacked preferentially. In fact, the Zn coating on galvanized iron is actually a sacrificial anode. Rust prevention Galvanised iron is the name given to iron that has been dipped into molten zinc (at about 450 C) to form a thin covering of zinc oxide. One level of rust prevention occurs through a purely mechanical method since it is more difficult for water and oxygen to reach the iron. Even if the layer becomes somewhat worn though another reason corrosion is inhibited is that the anodic processes are affected. The E for zinc oxidation (0.76V) is considerably more positive that E for iron oxidation (0.44V) so the zinc metal is oxidized before the iron. Zn 2+ is lost to the solution and the zinc coating is called a sacrificial anode. Foodstuffs are often distributed in "tin cans" and it has generally been easier to coat the iron with a layer of tin than with zinc. Another benefit is that tin is less reactive then zinc so does not react as readily with the contents. However the electrode oxidation potential for Sn/Sn 2+ is 0.14V so once again iron becomes the anode and rust will occur once the coating is worn or punctured. Another technique is to treat the iron surface with dichromate solution.

5 of 7 21/11/2006 04:05 PM 2 Fe + 2 Na 2 CrO 4 + 2 H 2 O -> Fe 2 O 3 + Cr 2 O 3 + 4 NaOH The iron oxide coating formed has been found to be impervious to water and oxygen so no further corrosion can occur. The FeIII/FeII Couples A selection of standard reduction potentials for some iron couples is given below, from which the importance of the participating ligand can be judged. Thus Fe(III), being more highly charged than Fe(II) is stabilized (relatively) by negatively charged ligands such as the anions of edta and derivatives of 8-hydroxyquinoline, whereas Fe(II) is favoured by neutral ligands which permit some charge delocalization in π-orbitals (e.g. bipy and phen). Table E at 25 C for some FeIII/FeII couples in acid solution FeIII FeII E /V [Fe(phen) 3 ] 3+ + e - [Fe(phen) 3 ] 2+ 1.12 [Fe(bipy)3] 3+ + e - [Fe(bipy) 3 ] 2+ 0.96 [Fe(H 2 O) 6 ] 3+ + e - [Fe(H 2 O) 6 ] 2+ 0.77 [Fe(CN) 6 ] 3- + e - [Fe(CN) 6 ] 4-0.36 [Fe(C 2 O 4 )3] 3- + e - [Fe(C 2 O 4 ) 2 ] 2- + (C 2 O 4 ) 2-0.02 where quin- = 5-methyl-8-hydroxyquinolinate, [Fe(edta)] - + e - [Fe(edta)] 2- -0.12 [Fe(quin) 3 ] + e - [Fe(quin) 2 ] + quin- -0.30 The value of E for the couple involving the simple aquated ions, shows that Fe(II)(aq) is thermodynamically stable with respect to hydrogen; which is to say that Fe(III)(aq) is spontaneously reduced by hydrogen gas. However, under normal circumstances, it is not hydrogen but atmospheric oxygen which is important and, for the process 1/2O 2 + 2H + + 2e - H 2 O, E = 1:229 V, i.e. oxygen gas is sufficiently strong an oxidizing agent to render [Fe(H 2 O) 6 ] 2+ (and, indeed, all other Fe(II) species in the Table) unstable with respect to atmospheric oxidation. In practice the oxidation in acidic solutions is slow and, if the ph is increased, the potential for the Fe(III)/Fe(II) couple remains fairly constant until the solution becomes alkaline and hydrous Fe 2 O 3 (considered here for convenience to be Fe(OH) 3 ) is precipitated. But here the change is dramatic, as explained below. The Redox chemistry of Iron is ph dependent: Fe(H 2 O) 6 3+ + e- Fe(H2 O) 6 2+ E =0.771V The actual potential E of the couple is given by the Nernst equation, where E= E when all activities are unity. However, once precipitation occurs, the activities of the iron species are far from unity; they are determined by the solubility products of the 2 hydroxides. These are: [Fe(III)][OH - ] 2 ~ 10-14 (mol dm -3 ) 3 and [Fe(III)][OH - ] 3 ~ 10-36 (mol dm -3 ) 4 Therefore when [OH - ] =1 mol dm -3 ; [FeII]/[FeIII] ~ 10 22

6 of 7 21/11/2006 04:05 PM Hence E ~ 0.771-0.05916 log 10.(10 22 ) = 0.771-1.301 = -0.530 V Thus by making the solution alkaline the sign of E has been reversed and the susceptibility of Fe(II)(aq) to oxidation (i.e. its reducing power) enormously increased. In base the white, precipitated Fe(OH) 2 and FeCO 3 is a good reducing agent and samples are rapidly darkened by aerial oxidation and this explains why Fe(II) in alkaline solution will reduce nitrates to ammonia and copper(ii) salts to metallic copper. Representative complexes An important Fe complex which is used in Actinometry since it is photosensitive is K 3 [Fe(C 2 O 4 ) 3.3H 2 O. It can be prepared from: Fe(C 2 O 4 ) in K 2 C 2 O 4 by reacting with H 2 O 2 in H 2 C 2 O 4 to give green crystals. It is high spin µ =5.9 BM at 300K and has been resolved into its two optical isomers, although they racemise in less than 1 hour. In light the reaction is: K 3 Fe(C 2 O 4 ) 3.3H 2 O 2Fe(C 2 O 4 ) + 2CO 2 + 3K 2 C 2 O 4 Another important complex is used as a redox indicator since the Fe(II) and Fe(III) complexes are both quite stable and have different colours: Fe(phen) 3 3+ + e- Fe(phen) 3 2+ E =1.12V blue red The ligand is 1,10 phenanthroline and the indicator is called ferroin. An interesting example of how acetates can bind to metal ions is seen in what has been described as a "molecular ferric wheel". The structure was determined in 1990 and contains [Fe(OMe) 2 (O 2 CCH 2 Cl)] 10 see J. Amer. Chem. Soc., 1990, 112, 9629. References: "Complexes and First-Row Transition Elements", D. Nicholls "Basic Inorganic Chemistry", F.A. Cotton, G. Wilkinson and P.L. Gaus "Advanced Inorganic Chemistry", F.A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann

7 of 7 21/11/2006 04:05 PM "Chemistry of the Elements", Greenwood and Earnshaw return to the C21J course outline Return to Chemistry, UWI-Mona, Home Page Copyright 2006 by Robert John Lancashire, all rights reserved. Created and maintained by Prof. Robert J. Lancashire, The Department of Chemistry, University of the West Indies, Mona Campus, Kingston 7, Jamaica. Created October 2001. Links checked and/or last modified 1st November 2006. URL http://wwwchem.uwimona.edu.jm/courses/iron.html