EFFECT OF HYDROGEN, CERIUM AND TUNGSTEN DOPING ON INDIUM OXIDE THIN FILMS FOR HETEROJUNCTION SOLAR CELLS

Similar documents
Transparent oxides for selective contacts and passivation in heterojunction silicon solar cells

Deposited by Sputtering of Sn and SnO 2

Available online at ScienceDirect. Energy Procedia 92 (2016 ) Mathieu Boccard*, Nathan Rodkey, Zachary C.

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates.

ZnO-based Transparent Conductive Oxide Thin Films

Research Article Effects of Hydrogen Plasma on the Electrical Properties of F-Doped ZnO Thin Films and p-i-n α-si:h Thin Film Solar Cells

REAR SURFACE PASSIVATION OF INTERDIGITATED BACK CONTACT SILICON HETEROJUNCTION SOLAR CELL AND 2D SIMULATION STUDY

Amorphous silicon / crystalline silicon heterojunction solar cell

Fabrication of the Amorphous Silicon Thin Layers in HIT Solar Cells

Light-Induced Degradation of Thin Film Silicon Solar Cells

Study for double-layered AZO/ATO transparent conducting thin film

Presented at the 33rd European PV Solar Energy Conference and Exhibition, September 2017, Amsterdam, The Netherlands

Recrystallization in CdTe/CdS

Thin film solar cells

Polycrystalline and microcrystalline silicon

Sputtered Zinc Oxide Films for Silicon Thin Film Solar Cells: Material Properties and Surface Texture

Silicon thin film e coating per il fotovoltaico

Thin Film PV Transparent Conductive Oxide History, Functions, and Developments. Chris Cording AGC Flat Glass North America

KGC SCIENTIFIC TYPES OF SOLAR CELL

Preprint 29th EUPVSEC, September 22-26, 2014, Amsterdam

PV research in Neuchâtel: from high efficiency crystalline cells to novel module concepts

The next thin-film PV technology we will discuss today is based on CIGS.

Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted deposition

ITO. Crystal structure: Cubic, space group Ia3 No. 206, ci80, a = nm, Z = 16

Influence of Annealing Temperature on the Properties of ITO Films Prepared by Electron Beam Evaporation and Ion-Assisted Deposition

Summary and Scope for further study

Architectures for high-efficiency. crystalline silicon solar cells

xsi PV Technologies: Status and Outlook of Passivated Contacts and Rear Contacted Solar Cells

ET3034TUx High efficiency concepts of c- Si wafer based solar cells

Amorphous silicon thin film solar cells

7 µc-si:h n-i-p solar cells on textured Ag ZnO:Al back reflectors

Electronic band structure of photoanode heterojunctions dedicated to water splitting

1 Introduction 1.1 Solar energy worldwide

Laser-Crystallised Thin-Film Polycrystalline Silicon Solar Cells. Jonathon Dore SPREE Research Seminar - 27th June, 2013

Hydrogenated Indium Oxide (IO:H) for Thin Film Solar Cell

Optically Assisted Metal-Induced Crystallization of Thin Si Films for Low-Cost Solar Cells

Technologie Evolutives et Disruptives pour les prochaines générations de cellules solaires Silicium

Development of Amorphous Silicon Solar Cells with Plasmonic Light Scattering

Band offset engineering in ZnSnN 2 -based heterojunction for low-cost solar cells

Research on high efficiency and low cost thin film silicon solar cells. Xiaodan Zhang

Two-dimensional Computer Modeling of Single Junction a-si:h Solar Cells

ITO SPUTTER COATED FILMS FOR TOUCH PANEL APPLICATIONS USING ROTARY SINTERED CERAMIC ITO TARGETS: WHAT CAN BE LEARNED FROM GLASS COATING?

Lifetime Enhancement and Low-Cost Technology Development for High-Efficiency Manufacturable Silicon Solar Cells. A. Rohatgi, V. Yelundur, J.

Mechanical Properti es of ZnO:Mo Transparent Conducting Oxide Thin Film Prepared by Sputtering

METALLIZATION OF PASSIVATING AND CARRIER SELECTIVE CONTACTS: STATUS AND PERSPECTIVES AT FRAUNHOFER ISE

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator

Organic Light-Emitting Diodes. By: Sanjay Tiwari

Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers

Ceramic Processing Research

PASSIVATION OF A METAL CONTACT WITH A TUNNEL LAYER

HF last passivation for high efficiency a-si:h/c-si heterojunction solar cells

Available online at ScienceDirect. Energy Procedia 84 (2015 ) 17 24

Simulation of High Efficiency Heterojunction Solar Cells with AFORS-HET

LOW TEMPERATURE GROWTH OF SMOOTH INDIUM TIN OXIDE FILMS BY ULTRAVIOLET ASSISTED PULSED LASER DEPOSITION

Development of High Efficiency SHJ/Poly-Si Passivating

The Potential of Photovoltaics

Nanoparticle generation using sputtering plasmas

Preparation and characterization of solid-state sintered aluminum-doped zinc oxide with different alumina contents

Crystalline Silicon Solar Cells With Two Different Metals. Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi

METALLIZATION OF SILICON CARBIDE- AND SILICON OXIDE-BASED LAYER STACKS AS PASSIVATING CONTACTS FOR SILICON SOLAR CELLS

AMORPHOUS SILICON DIOXIDE LAYER FOR HIGH EFFICIENCY CRYSTALLINE SOLAR CELLS

Preparation and structural characterization of thin-film CdTe/CdS heterojunctions

OPTICAL, ELECTRICAL AND STRUCTURAL PROPERTIES OF PECVD QUASI EPITAXIAL PHOSPHOROUS DOPED SILICON FILMS ON CRYSTALLINE SILICON SUBSTRATE

Available online at ScienceDirect. Energy Procedia 92 (2016 )

INVESTIGATION OF PHOTOVOLTAIC PROPERTIES of p-inse/n-cds HETEROJUNCTION SOLAR CELLS

Materials, Electronics and Renewable Energy

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

Red luminescence from Si quantum dots embedded in SiO x films grown with controlled stoichiometry

PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS

Thin silicon solar cells: Pathway to cost-effective and defecttolerant

Available online at ScienceDirect. Energy Procedia 84 (2015 )

MRS Fall Meeting, Boston, USA, 28 November 2 December 2011

Etch-Back Silicon Texturing for Light-Trapping in Electron Beam Evaporated Thin-Film Polycrystalline Silicon Solar Cells

SnO 2 Thin Films Prepared by Sol Gel Method for Honeycomb Textured Silicon Solar Cells

Research Article Silicon Nitride Film by Inline PECVD for Black Silicon Solar Cells

Effect of Doping Concentration on the Structural Properties of Zn: SnO 2

ISSN GANENDRA, Vol. V, No. 1. PREPARATION AND CHARACTERIZATION OF TRANSPARENT CONDUCTIVE ZnO THIN FILMS BY DC MAGNETRON SPUTTERING

Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods

Properties of Indium-Zinc-Oxide Thin Films Prepared by Facing Targets Sputtering at Room Temperature

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu

Cu(In,Ga)Se 2 FILM FORMATION FROM SELENIZATION OF MIXED METAL/METAL-SELENIDE PRECURSORS

Amorphous silicon thin film solar cells deposited entirely by Hot-Wire Chemical. Vapour Deposition at low temperature (<150 ºC)

Study of a-sige:h Films and n-i-p Devices used in High Efficiency Triple Junction Solar Cells.

Poly-Si thin-film solar cells (TFSCs) fabricated on

SUPPLEMENTARY INFORMATION

Investigation on the Impact of Metallic Surface Contaminations on Minority Carrier Lifetime of a-si:h Passivated Crystalline Silicon

RightCopyright 2006 American Vacuum Soci

Optimization of optical performances in submicron silicon-on-insulator rib and strip waveguides by H 2 thermal annealing

G.Pucker, Y.Jestin Advanced Photonics and Photovoltaics Group, Bruno Kessler Foundation, Via Sommarive 18, Povo (Trento) Italy

Research Article Polycrystalline Silicon Thin-Film Solar Cells on AIT-Textured Glass Superstrates

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film

Solar Cell Properties of CdS/CdTe Heterojunctions Prepared by using Spray Pyrolysis Technique

Effects of CdCl 2 treatment on ultra-thin MOCVD-CdTe solar cells

Materials Characterization

Impact of Si Surface Topography on the Glass Layer Resulting from Screen Printed Ag-Paste Solar Cell Contacts

the Netherlands Key words: Sputtering Deposition; ZnO; Resistivity; Transmittance

Activation Behavior of Boron and Phosphorus Atoms Implanted in Polycrystalline Silicon Films by Heat Treatment at 250 C

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs.

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

Near Infrared Reflecting Properties of TiO 2 /Ag/TiO 2 Multilayers Prepared by DC/RF Magnetron Sputtering

Transcription:

EFFECT OF HYDROGEN, CERIUM AND TUNGSTEN DOPING ON INDIUM OXIDE THIN FILMS FOR HETEROJUNCTION SOLAR CELLS A. Valla, P. Carroy, F. Ozanne, G. Rodriguez & D. Muñoz 1

OVERVIEW Description of amorphous / crystalline Silicon Heterojunction solar cell (HET) Transparent Conducting Oxides (TCO) Hydrogen impact Experimental Simulation Doping W, Ce impact Experimental Simulation 2

DESCRIPTION OF AMORPHOUS / CRYSTALLINE SILICON HETEROJUNCTION SOLAR CELL AT CEA-INES Ag η = 25.1 % Kaneka η = 24.7 % Sanyo On large area devices TCO a-si:h (n/i) c-si(n) a-si:h (i/p) TCO M. Taguchi et al., IEEE J. Photovoltaics, 4 (2013) pp.1-3 Adachi et al., Appl. Phys. Lett. 107, 233506 (2015); http://dx.doi.org/10.1063/1.4937224 3

WHY A TRANSPARENT CONDUCTING OXIDE? a-si:h thin films demonstrate very high passivation levels (Voc > 740mV) BUT: Ag 1 TCO 1 Optical issue : No adapted as antireflection J sc 2 Electrical issue : Low conductivity Poor lateral collection FF 2 a-si:h (n/i) c-si(n) Need to add a layer with: - Good anti-reflection properties : n air < n TCO < n a Si:H - Good lateral conduction TCO! 4

REFERENCE TCO IN HETEROJUNCTION SOLAR CELLS: ITO @ CEA-INES: Indium Tin Oxide : ITO: In 2 O 3 95% - SnO 2 5% SEM observations As deposited Annealing 200ºC 20 min in air Post-annealing ρ [W.cm] 9.2.10-4 6.8.10-4 N [cm -3 ] 2.2.10 20 2.3.10 20 μ [cm².v -1.s -1 ] 32 40 1 µm a-si:h are modified at > 200 C Maximal T for TCO : challenging (Limitation of HET technology) Can we do better? 5

HOW TO IMPROVE THE PROPERTIES OF A TCO? 1 directly ρ = N. μ. q BUT ALSO! Electrical properties μ ρ Optical properties μ ω p in NIR by Drude Model α NIR graph obtained by calculations T.J. Coutts and al., MRS Bull. Vol. 25, Iss. 08 (2005), pp.58-65 6

μ HOW TO IMPROVE THE MOBILITY? Scattering mechanisms μ ii Ionized impurities μ ni Neutral impurities Structural elements Amorphous state V O (oxygen vacancies) Points defects Deposition parameters Low temperature deposition Hydrogen Doping μ gb Grain boundaries S. Calnan and al., Thin Solid Films, 518 (2010) pp.1839-1849 N. Mori and al., e-j Surf. Sci. Nanotech., 10 (2012) pp.471-475 E. Kobayashi and al., Proc. 29th Eur. PVSEC, Hamburg Ger., 2014 Z. Lu and al., J. Phys. D. Appl. Phys. 46 (2013) pp. 75103-75107 P.F. Newhouse and al., Appl. Phys. Lett.87 (2005) 1121081 Y. Abe and al., Mater. Lett. 61 (2007) 566 Lattice distortion Grain size Grain Boundaries Deposition energy Substrate Post deposition annealing 7

DEPOSITION CONDITIONS Alliance Concept CT-200 Jusung ITO reference New TCO Type PVD-DC PVD-DC Temperature 200 C Target In 2 O 3 : SnO 2 wt. 5% RT In 2 O 3 : SnO 2 wt. 1% In 2 O 3 : CeO 2 wt. 3% In 2 O 3 W wt. 1% Low temperature deposition Doping Atmosphere Ar (315 sccm) Ar / Ar:H (50 sccm) Hydrogen O 2 (6 sccm) O 2 (0.7-1.1 sccm) Pressure 1.7.10-3 mbar 2.10-3 mbar Power 2.5 kw 50 W 8

OVERVIEW 1 ST PART Deposition parameters μ Scattering mechanisms μ ii Ionized impurities μ ni Neutral impurities Structural elements Amorphous state V O (oxygen vacancies) Points defects Low temperature deposition Hydrogen Doping μ gb Grain boundaries S. Calnan and al., Thin Solid Films, 518 (2010) pp.1839-1849 N. Mori and al., e-j Surf. Sci. Nanotech., 10 (2012) pp.471-475 E. Kobayashi and al., Proc. 29th Eur. PVSEC, Hamburg Ger., 2014 Z. Lu and al., J. Phys. D. Appl. Phys. 46 (2013) pp. 75103-75107 P.F. Newhouse and al., Appl. Phys. Lett.87 (2005) 1121081 Y. Abe and al., Mater. Lett. 61 (2007) 566 Lattice distortion Grain size Grain Boundaries Deposition energy Substrate Post deposition annealing 9

r [W.cm] RESULTS ITO VS ITO:H ELECTRICAL PROPERTIES (1/2) SEM observations 3,0E-03 asdep. 2,5E-03 2,0E-03 ITO 99/1 ann. 1 µm 1,5E-03 1,0E-03 ITO 95/5 5,0E-04 0,0E+00 1,20% 1,70% 2,20% 2,70% Amorphous-ITO H ρ O 2 U behaviour for ITO 99/1 Flat tendancy for ITO:H 99/1 ITO:H 99/1 Annealing conditions : 200ºC 20 min in air K. Zhang and al., J. Appl. Phys., 86 (1999) pp.974-980 L. Barraud and al., Solar Energy Materials & Solar Cells, 115 (2013) pp.151-156 10

N [cm -3 ] m [cm².v -1.s -1 ] RESULTS ITO VS ITO:H ELECTRICAL PROPERTIES (2/2) SEM observations 8,E+20 60 7,E+20 6,E+20 5,E+20 4,E+20 ITO:H 99/1 asdep. 50 40 30 ann. 2 µm 3,E+20 20 2,E+20 ann. ITO 95/5 ITO 99/1 1,E+20 1,4% 1,9% 2,4% 10 asdep. 0 1,4% 1,9% 2,4% As-Deposited : H Trap O 2- V O N O 2 N After annealing : Oxidation V O N N ITO:H > N ITO J. Liu and al., J. Wuhan Univ. Technol.-Mater. Sci.Ed. 25 (2010) pp.753-759 R. Wang, Ph.D thesis, University of Hong-Kong (2005) M. Huang and al., Phys. Status Solidi A 212, 10 (2015), pp.2226-2232 As-Deposited : H Trap O 2- V O μ ii μ O 2 μ After annealing : a-ito:h polycrystalline ITO:H : Grain size ITO:H > grain size ITO μ gbito:h μ Annealing conditions : 200ºC 20 min in air 11

HOW TO CHARACTERIZE OPTICAL PROPERTIES OF TCO? TCO on glass substrate Spectrophotometer ( HET cell) TCO on c-si substrate Ellipsometer fitting Air (semi- ) R Reflected energy by front face (lost) n, k and thickness of TCO Optical simulation with HET stack TCO a-si:h(n+in) c-si (semi- ) A TCO Absorbed energy by TCO (lost) A a Si:H Absorbed energy by a-si:h (lost) Conditions for optical simulations (home made) - Method Matrix Transfer - No rear side (c-si semi-infinite) - Spectrum : 300-1200 nm - Textured regular pyramids T Transmitted energy to c-si 100% generated current 12

[ma.cm-2] RESULTS OPTICAL SIMULATIONS ITO VS ITO:H Results after annealing ITO 95/5 47 ITO 99/1 ITO:H 99/1 46 R Reflected energy by front face (lost) 45 44 43 42 A TCO Absorbed energy by TCO (lost) R A a Si:H Absorbed energy by a-si:h (lost) TCO a-si:h T T reference 41 40 1,9% 1,4% 1,6% 1,8% 2,0% 2,2% 1,8% 2,0% 2,2% 2,4% 2,6% T transmitted Energy to c-si Over 2% O 2 ITO 99/1 ITO:H 99/1 Lower absorption better than reference 13

SUMMARY Low temperature deposition Hydrogen Amorphous state V O (oxygen vacancies) μ ii μ Post deposition annealing Amorphous state Grain size (Polycrystalline) μ gb 14

OVERVIEW 2 ND PART Deposition parameters μ Scattering mechanisms μ ii Ionized impurities μ ni Neutral impurities Structural elements Amorphous state V O (oxygen vacancies) Points defects Low temperature deposition Hydrogen Doping μ gb Grain boundaries S. Calnan and al., Thin Solid Films, 518 (2010) pp.1839-1849 N. Mori and al., e-j Surf. Sci. Nanotech., 10 (2012) pp.471-475 E. Kobayashi and al., Proc. 29th Eur. PVSEC, Hamburg Ger., 2014 Z. Lu and al., J. Phys. D. Appl. Phys. 46 (2013) pp. 75103-75107 P.F. Newhouse and al., Appl. Phys. Lett.87 (2005) 1121081 Y. Abe and al., Mater. Lett. 61 (2007) 566 Lattice distortion Grain size Grain Boundaries Deposition energy Substrate Post deposition annealing 15

r [W.cm] RESULTS ICO:H - IWO:H ELECTRICAL PROPERTIES (1/2) Annealing conditions : 200ºC 20 min in air 1,E-03 9,E-04 ITO 95/5 8,E-04 asdep. 7,E-04 6,E-04 5,E-04 4,E-04 ann. IWO:H 3,E-04 ICO:H 2,E-04 1,6% 1,8% 2,0% 2,2% 2,4% 2,6% 2,8% As-Deposited : O 2 ρ After annealing : ρ Best results with ICO:H at 2.4% O 2 : 2.7.10-4 W.cm 16

N [cm -3 ] m [cm 2.V -1.s -1 ] RESULTS ICO:H - IWO:H ELECTRICAL PROPERTIES (2/2) SEM observations ICO:H =IWO:H 9,E+20 70 8,E+20 ICO:H 60 ann. 7,E+20 6,E+20 asdep. 50 40 ICO:H =IWO:H 2 µm 5,E+20 30 4,E+20 3,E+20 IWO:H ann. 20 10 asdep. ITO 95/5 2,E+20 1,8% 2,0% 2,2% 2,4% 2,6% As-Deposited : N similar and stable with O 2 After annealing : Oxidation V O N but N ICO:H less than N IWO:H P.F. Newhouse and al., Appl. Phys. Lett.87 (2005) 1121081 Y. Abe and al., Mater. Lett. 61 (2007) 566 0 1,8% 2,0% 2,2% 2,4% 2,6% As-Deposited : O 2 μ μ ICO:H > μ IWO:H After annealing : a-tco:h polycrystalline TCO:H : μ gb μ High μ IWO:H (62 cm².v -1.s -1 ) Annealing conditions : 200ºC 20 min in air 17

[ma.cm-2] RESULTS OPTICAL SIMULATIONS ICO:H - IWO:H Results after annealing ITO 95/5 47 ICO:H IWO:H 46 R Reflected energy by front face (lost) 45 A TCO Absorbed energy by TCO (lost) 44 43 42 41 40 1,9% 1,8% 2,0% 2,2% 2,4% 2,6% 1,8% 2,0% 2,2% 2,4% 2,6% AR a Si:H Absorbed energy by a- Si:H TCO (lost) a-si:h T T reference T transmitted to c-si ICO:H : Over 2.4% O 2 better than reference IWO:H : Over 2.2% O 2 better than reference Less absorption 18

SUMMARY Low temperature deposition Amorphous state μ ii Hydrogen Doping V O (oxygen vacancies) μ Treatment post deposition Amorphous state Grain size (Polycrystalline) μ gb 19

FINAL CONCLUSION Best candidates for HET solar cells integration with our tools : Results after annealing TCO ρ [W.cm] N [cm -3 ] μ [cm².v -1.s -1 ] T [ma.cm -2 ] ITO 95/5 6,8.10-4 2,3.10 20 40,1 41,71 ITO 99/1 1,9.10-3 1,4.10 20 23,0 41,87 ITO:H 99/1 4,3.10-4 2,6.10 20 55,9 42,49 ICO:H 2,7.10-4 4,8.10 20 48,6 42,16 IWO:H 3,5.10-4 2,9.10 20 61,8 42,41 The best candidate is IWO:H : better compromise between electrical and optical properties 20

ACKNOWLEDGEMENTS CEA-INES team: Perrine, Fabien, Wilfried, Charles and Delfina; LETI team: Guillaume, Magalie, Chiara, Frederic for the TCO deposition and XRD characterizations; PVTC organizers; HERCULES for the funding; Helen McEwan for the English speech language 21

DO YOU HAVE ANY QUESTIONS? 22

MERCI POUR VOTRE ATTENTION THANKS FOR YOUR ATTENTION Commissariat à l énergie atomique et aux énergies alternatives Alternative Energies and Atomic Energy Commission 17 av des martyrs F-38000 GRENOBLE France http://liten.cea.fr Établissement public à caractère industriel et commercial Public establishment with commercial and industrial character RCS Paris B 775 685 019 INES Site Institut National de l Energie Solaire National Solar Energy Institute 50 avenue du lac Léman F-73375 Le Bourget-du-Lac France +33 4 79 79 20 00