Alternative Electrocoagulation for Livestock Wastewater Treatment

Similar documents
Removal of Water Turbidity by the Electrocoagulation Method

Reuse of dye wastewater through colour removal with electrocoagulation process

RecShow '08. Middle East Recycling, Waste & Environmental Management Exhibition & Congress. Kempinski Hotel, Dead Sea - Jordan February 2008

Iraqi Journal of Chemical and Petroleum Engineering Vol.9 No.3 (December 2007) ISSN:

Treatability of Tannery Wastewater by Electrocoagulation Process

Assessment of Electrocoagulation for Groundwater Purification

Removal of Dye from Textile Wastewater by Electrolytic Treatment

Water Purification by Electrocoagulation

Electrocoagulation of Drinking Water in Continuous Flow Mode for Fluoride Removal

Analytical & Bioanalytical Electrochemistry

REDUCTION OF COD IN WASTEWATER FROM A TEXTILE INDUSTRY BY ELECTRO-FENTON PROCESS

Electrocoagulation. Achieving clean, clear, treated and reusable water: The process, technology and benefits. CALL US (631)

Removal of Copper Ions Present in Waste Offset. Electroflotation Process

Electrochemical Treatment Of Rice Grain Based Distillery Effluent Using Iron Electrode

TREATMENT OF COLORED DOMESTIC WASTEWATER BY ELECTROCOAGULATION

A Research on treatability of leather industry wastewater by using electro-fenton process

TREATING WASTE WATER USING ELECTROCOAGULATION APPROACH

COMPARISON OF FE AND AL ELECTRODES IN THE TREATMENT OF BLUE CA DYE EFFLUENT USING ELECTRO COAGULATION PROCESS.

Treating oil wastewater with pulse electro-coagulation flotation technology

Electrocoagulation Of Distillery Spentwash For Complete Organic Reduction

Electrocoagulation (with Iron electrodes) as a pre-treatment part of brackish groundwater desalination system

HKICEAS-671 Optimization of Reactive Dyes Degradation by Fenton oxidation Using Response Surface Method

Treatment of Rice Mill Wastewater Using Continuous Electrocoagulation Technique: Optimization and Modelling

CHAPTER 1 INTRODUCTION

Electrocoagulation of Simulated Quick Service Restaurant Wastewater using Aluminum-Iron Electrode Pair

The Effects Of Operating Parameters On Temperature And Electrode Dissolution In Electrocoagulation Treatment Of Petrochemical Wastewater

New Methods of Textile waste water treatment. Leture 37

Iranian journal of health sciences 2014; 2(1):16-29

Domestic Wastewater Treatment by Electrocoagulation Using Copper and Aluminum Electrodes

Using an anodic Fenton process for degradation of nitrobenzene in waste water

International Journal of Advance Engineering and Research Development TREATMENT OF SUGAR INDUSTRY WASTE WATER BY ELECTROCOAGULATION (EC) TECHNIQUE.

Fenton Oxidation Process Control Using Oxidation-reduction Potential Measurement for Pigment Wastewater Treatment

Treatment of tannery wastewater by electrocoagulation technology

Evaluation of Electrocoagulation and Fenton's reagent for Arsenic removal from drinking water

Treatment of Sewage by Electrocoagulation and the Effect of High Current Density

A treatment of oily waste water by electrocoagulation

SEWAGE WATER TREATMENT VIA ELECTROCOAGULATION USING IRON ANODE

Journal of Engineering Science and Technology Review 9 (1) (2016) Research Article

Coloration Technology

Application of a hybrid Electrocoagulation-Fenton process in yarn dye wastewater: Kinetic study

Treatment of landfill leachate by electrocoagulation using aluminum electrodes

Electrochemical Treatment of Oily wastewaters (shipyards) for removal of organics and water Reclamation

DECOLOURISATION OF REACTIVE BLUE 28 FROM DYE WASTE WATER BY PHOTO FENTON PROCESS AND SONO FENTON PROCESSES

Electro-Pure Technology. Advanced Water Treatment Technology. Ability to treat a wide range of contaminants simultaneously

Characteristic Study of Electroplating and Dye Industrial Effluents

REMOVAL OF NATURAL ORGANIC MATTER FROM AQUEOUS SOLUTIONS BY ELECTROCOAGULATION

Mat E 272 Lecture 26: Oxidation and Corrosion

Pilot-Scale Electrocoagulation with Bipolar Aluminum Electrodes for On-Site Domestic Greywater Reuse

Treatment of cutting-oily wastewater by electrocoagulationflotation (ECF) process: Modeling approach

Process water treatment by oxidative and electrolytic

Impact of Applying Electrocoagulation Pre-treatment Step on Grey Water Treatment by Submerged Membrane Bioreactor

Electrochemical Process For Removal Of Color From Effluent Of Maize Based Starch Processing Unit

Performance Evaluation of Electrochemical Oxidation System to Treat Domestic Sewage

Expanded Shale Flue Dust as an Additive for the Coagulation-Flocculation of Wastewater

Electrocoagulation in a Plugflow Reactor: The Treatment of Cattle Abattoir Wastewater by Iron Rod Anodes

OPTIMAL CHEMICAL DOSING RATES FOR HEAVEY METALS REMOVAL FROM LEATHER WASTE WATER EFFLUENT

Electrocoagulation applications for industrial wastewaters: a critical review

Simultaneous Removal of Heavy Metals from Surface Water by Physico-chemical Treatment Process

EVALUATION OF OPERATIONAL PARAMETERS INVOLVED IN ELECTROLYTIC DEFLUORIDATION PROCESS

Removal of Heavy Metal Ions by Electrocoagulation for Continuous Use of Fe 2+ /Fe 3+ -Mediated Electrochemical Oxidation Solutions

Decolorization of Textile Wastewater by Electrochemical Process in the Presence of Hydrogen peroxide and Poly Aluminum Chloride

Electrochemical Degradation of Acridine Orange Dye at Ru-Doped Platinum Anode in Aqueous Solution

Optimization of Coagulation Process for Landfill Leachate Pre-Treatment Using Response Surface Methodology (RSM)

Separation of pollutants from restaurant wastewater by electrocoagulation

Investigation of Color Removal of Sunflower Oil Industrial Wastewater with Fenton Process

Thickening of Biological Sludge by Electro-Coagulation- Flotation Process

ScienceDirect. Electrocoagulation Process by Using Aluminium and Stainless Steel Electrodes to Treat Total Chromium, Colour and Turbidity

REMOVAL OF COD AND TURBIDITY TO IMPROVE WASTEWATER QUALITY USING ELECTROCOAGULATION TECHNIQUE

Application of Electrocoagulation Process in Removal of Zinc and Copper From Aqueous Solutions by Aluminum Electrodes

Experimental Design for the Elimination of Fluoride from Pretreated Photovoltaic Wastewater by Electrocoagulation

Rusting is an example of corrosion, which is a spontaneous redox reaction of materials with substances in their environment.

MEETING NEVADA DEP-BMRR PROFILE II PARAMETERS WITH ELECTROCOAGULATION BASED TREATMENT SOLUTIONS

Influence of operating parameters on treatment of egg processing effluent by electrocoagulation process

The Electro Coagulation Wastewater Treatment System (Patent Pending) Principles of Electro Coagulation Process

ASIAN JOURNAL OF CHEMISTRY

Study of Dairy Wastewater Treatment Using Monopolar Series System of Electrocoagulation Process with Aluminium Electrodes

Pelagia Research Library

The Water-Energy Nexus: Electrocoagulation and Energy Conservation

The Performance of Electro-Fenton Oxidation in the Removal of Pesticides from Wastewater Using Stainless Steel Electrodes

Removal of copper and fluoride from wastewater by the coupling of electrocoagulation, fluidized bed and micro-electrolysis (EC/FB/ME) process

Available online at ScienceDirect. Procedia Chemistry 12 (2014 ) 66 72

Treatment of Sugar Industry Waste Water using Zinc Electrodes

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

UNIT-I ELECTROCHEMISTRY PART-A

DECOLORIZATION OF LANDFILL LEACHATE USING ELECTROCHEMICAL TECHNIQUE

CTI Water Treatment Process. From Science to Technology

COMPARISON OF ELECTROCOAGULATION AND COAGULATION TECHNIQUES FOR THE MUNICIPAL WASTEWATER TREATMENT

EFFECT OF ALUMINIUM SULPHATE AGING ON COAGULATION PROCESS FOR THE PRUT RIVER WATER TREATMENT

The Wastewater Treatment by Electrocoagulation & It s Reuse

Removal of Malachite Green Dye from aqueous solution by Fenton Oxidation

CHEMISTRY 112 EXAM 3 JUNE 17, 2011 FORM A

Suspended Solids Sedimentation of River Water Influenced by Electrocoagulation

Study of Electrochemical Degradation of Bromophenol Blue at Boron-doped Diamond Electrode by Using Factorial Design Analysis

Photo-Oxidation Process Application for Removal of Color from Textile Industry Effluent

A New Development For (Textile Mill) Wastewater Treatment. Prepared for Publication in The American Dyestuff Reporter June 1988

ENVIRONMENTAL ENGINEERING LECTURE 3: WATER TREATMENT MISS NOR AIDA YUSOFF

Polyphosphate Removal from Synthetic Wastewater by Electrochemical Process

Available online at Scholars Research Library. Archives of Applied Science Research, 2011, 3 (2):

Influence of operating parameters on ammonia nitrogen removal from micro-polluted water by electro-coagulation-flotation with aluminum electrodes

Degradation of wine distillery wastewaters by the combination of aerobic biological treatment with chemical oxidation by Fenton s reagent

Transcription:

Portugaliae Electrochimica Acta 2016, 34(4), 277-285 DOI: 10.4152/pea.201604277 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Alternative Electrocoagulation for Livestock Wastewater Treatment José Pinedo-Hernández, * Roberth Paternina-Uribe and José Marrugo-Negrete University of Córdoba, Faculty of Basic Sciences, Department of Chemistry, Water, Applied and Environmental Chemistry Group, Monteria, Colombia Received May 17, 2016; accepted August 23, 2016 Abstract This project assessed the technical feasibility of organic matter (COD) removal in livestock effluents, by electrocoagulation. An experimental design was used to block two factors at three levels, to evaluate the effect of the variables distance between electrodes and ph, using aluminum sacrificial electrodes. Maximum removal (90.16%) was obtained at 7 units ph, and 2.0 cm distance between electrodes. This study demonstrated the technical feasibility of electrocoagulation (EC) for the removal of organic matter as COD, present in wastewater from the livestock industry. Keywords: Livestock effluents, Electrocoagulation, Chemical Oxygen Demand (COD). Introduction Colombian livestock represents a very important sector for the economy's main axis of the Caribbean region, especially in the department of Córdoba, due to certain geographical conditions characteristic of the area [1]. In livestock industry, the wastewater generated as cattle bath product represents a great threat to the environment; it contains traces of recalcitrant pesticides, toxic compounds and high levels of organic matter [2]. Electrocoagulation (EC) may be used as an alternative system of wastewater treatment, because it is inexpensive, the equipment used is simple and of easy operation, compared to the conventional methods (chemical coagulation), no chemical substances are used, and produces large and more stable flocs than those formed by chemical coagulation [3, 4]. Electrocoagulation is receiving an increasing acceptance by industry, in view of its advantages compared to other methods. The method is based on anodic dissolution of metallic aluminium and the formation of aluminium ions in the vicinity of the anode, these ions being immediately converted to the corresponding hydroxides. The hydroxide, in the process of coagulation and flocculation, has highly adsorptive and adherent qualities, and is colloidally * Corresponding author. E-mail address: josejph@hotmail.com

dispersed. When a current is passed through Al anodic dissolution, it takes place according to the following reaction: Al Al 3+ + 3e - (1) Simultaneously, water is reduced at the cathode to hydrogen gas and hydroxyl ion (OH - ) 2H 2 O + 2e - 2OH+H 2 (2) Thus, electrocoagulation introduces metal cations in situ, electrochemically, using sacrificial anodes. Al 3+ hydrolyzes in water, forming the corresponding hydroxide; Eqs. (3) (5) illustrate this, in the case of aluminium anode charge on the organic matter, which is responsible for the stability: Al 3+ + H 2 O AlOH 2+ + H + (3) AlOH 2+ + H 2 O Al(OH) 2+ + H + (4) Al(OH) 2+ + H 2 O Al(OH) 3 + H + (5) The main objective of this study was to evaluate the removal of organic matter (COD) in livestock effluents by electrocoagulation, controlling ph and distance variables between electrodes. On this basis, it was expected that using Al anode would improve the process of electrocoagulation, through enhancing the rate of mass transfer of Al 3+ from the anode surface to the bulk solution, to be applied to continuous flow process. This would reduce the concentration of polarization, and hence, reduce the passivation tendency of the anode, which adversely affects the process of electrocoagulation. Materials and methods Sample collection and preservation Wastewater sample under study was taken from a cattle farm in the town of Monteria, Cordoba - Colombia, in a day of cattle bath. Effluents were collected in plastic tanks, sufficient for processing in the EC system. The processing was performed before and after ph treatment, and the COD analysis was based on Standard Methods 4500H B and 5220 D [5] procedures references. Initial ph and COD were 6.5 units and 680 mg L -1. Electrocoagulation cell Fig. 1 shows the experimental scheme of the EC process. Volume was used for each 4.0 L test sample. Six iron electrodes in the reactor were used as cathodes, and three aluminium anodes with effective dimensions of 18 X 2.5 X 0.5 cm were connected to DC - PHYWE 0-50 V fluent potential. The entire submerged surface of every electrode was 25 cm 2. 278

Figure 1. Electrocoagulation cell. Experimental design Statgraphics Centurion 15.2.06 software was used for the statistical design of experiments and data analysis. The two most important operating variables, initial wastewater ph (x1) and distance (x2), were optimized for both wastewaters. Their range and levels are shown in Table 1. Levels of every factor were evaluated in triplicate; there were 27 essays in the whole process. Percentage of COD removal was established as the response variable. Time and potential were 30 min and 50 V. Aluminium was used as sacrificial electrode. Fixed variables sets were selected based on tests conducted by Mestra and Pineda [6]. Table 1. Experimental design factors and levels. Independent variable Factor Range and level Xi -1 0 1 ph X1 4.0 7 8.0 Distance (cm) X2 2.0 3.5 5.0 Statistical analysis The data were submitted to ANOVA test, and mean comparisons were performed when needed using Tukey tests. Response Surface Methodology (RSM) was applied to evaluate the simple and combined effects of three independent parameters on removal and optimizing of the operating conditions. Statgraphics Centurion 15.2.06 statistical software was used for all analysis. A significance level of 0.05 was selected. 279

Figure 2. COD removal: ph 4 (a), ph 7 (b) and ph 8 (c). Results and discussion COD removal function of ph and distance The removal of COD in function of ph and distance between electrodes is shown in Fig. 2. Removal values are higher than 80% at initial ph of 4 and 7, independently of distance. However, initial ph of 8 and 5 cm distance show 67.21% removal (Fig. 2c). It is observed that decreasing the distance between electrodes increases the removal of COD, reaching maximum values (> 80%) at a distance of 2 cm for different ph values. This is possibly due to the electrostatic field formed during the electrocoagulation process, which depends on the distance between electrodes [7-8], and causes the metal ions production by the anode (sacrificial electrode): its function is to destabilize loads possessing contaminant particles present in water, neutralize the systems that keep the particles in suspension allowing the formation of aggregates of contaminants, and initiating the coagulation process in less time, with higher removal [9]. Fig. 2b shows that, at ph 7, COD removal decreases according to the distance, with no statistically significant difference (p > 0.05), unlike ph 4 and 8, which have a statistically major difference (p < 0.05). This can be attributed to ph < 7, because the formed hydroxides are not stable enough to react with the aluminum cation, not allowing coagulant formation [10-12]. A ph near 7 facilitates the generation of hydroxyl radicals and, in its turn, the formation of agglomerates, which are ultimately removed from the solution [13]. With ph values > 7 the oxidative potential in question decreases; this justifies the reduction in the removal of reactions involved in the process, and therefore, a decrease in pollutant removal [14]. 280

Figure 3. Response surface removal of COD. Optimization of the treatment conditions The application of RSM based on the parameters estimation generates the second order regression model, where the removal percentage of COD (y) and the independent variables studied are related (Eq. 6). y = 90.4033 5.89833*x1 2.40333*x2 2.245*x1 2 6.18*x2 2 3.1175*x1 *x2 (6) The coefficient of determination (r 2 ) was 0.843, which implies that 84.3 % of the variations in COD removal are explained through independent variables, and 15.7 % of variations cannot be explained by the model. According to Montgomery [15], it is satisfactory that (r 2 ) is at least 75%, when considering proceeding with the methodology. The model generates the optimum values for the maximum COD removal, as a function of ph and distance. The response surface calculated on the basis of the model (Fig. 3) allows visualizing the behavior of the response variable, and clearly indicates the factors levels combination that leads to a maximum value. In this study, it is observed that the best results are in the orange region, where factors interaction leads to results between 92.5 and 95 %. Significant differences were not observed (p < 0.05) when the response was compared to the corresponding experimental value, which confirms that RSM can be used to optimize the process parameters (Table 2). Additionally, it is observed that the results of the second order regression model present significant correlations with the experimentally obtained results (r=0.996, p=0.01, n=27; Fig. 4). Table 2. Optimum values of the process parameters for COD removal. Parameter Optimum value Experimental value Removal (%) 94.08 92.43 ph 6.11 6.1 Distance (cm) 2.0 2.0 281

Figure 4. Experimental percentage of COD removal and percentage of mercury removal predicted by the second order model regression. The variance analysis is shown in Table 3. It is observed that the independent variables are not statistically significant (p > 0.05). However, the distance factor has a value close to 0.05, which can reveal the removal difference based on this factor. To assess the adequacy of the developed model, the difference between Experiment and Predicted (waste) response is used to graphically analyze the effectiveness of the model. Waste is considered as unexplained variations by the model, and they will have a normal distribution if the model accurately predicts normal residue probability graph and normal distribution. This should give a linear fashion, and graphic of residuals versus predicted values should represent a random pattern of residues around zero [16]. Fig. 5a shows the normal probability graph waste for use as Al anode electrode in the optimization model for COD removal from effluents of livestock industry, where it meets the criteria of statistical normality by its linear trend. Fig. 5b shows the graph of actual versus predicted residuals for the removal of COD, exhibiting a random pattern around zero waste, which represents a normal distribution. Table 3. Variance analysis. The electrical energy consumption was calculated in terms of KHz. E (kwh) = U* I*t /1000, where U is cell voltage (V), I is current (A), t is the time of EC (h). The implementation of EC unit in large scale level mainly depends on the treatment process cost. In order to find out the economy of the proposed treatment method, the economic evaluation was made in optimum operating 282

conditions. It was found that the energy supplied to wastewater treatment by EC is 0.03 KHz, given that KHz price in Colombia ($ 349.7; $US 0.13) is $ 4.37 for volume of solution (0.004 m 3 ), i.e., 1092.8 $/m 3 (0.39 $US/m 3 ). Related to the consumption of Al per test (0.0643 g / L) by m 3 (64.25 g / m 3 ), the A1 material price ($ 4313.7 / kg) is obtained by m 3 ($ 277.2 / m 3 ; $ 0.11 US / m 3 ). This result illustrates the economical feasibility of the proposed treatment in the on-field implementation, i.e., wastewater treatment plants (WTP s). ph and temperature should be taken into account to develop processes to improve electrocoagulation process. It has been determined in some cases that greater removal of a contaminant occurs within a specific ph range. This range can be even wider. In general, the literature indicates that the best removals were obtained for ph values close to 7, which improves electrocoagulation process [18]. Figure 5. a) Normal probability plot waste. b) Graphic waste. The pre treatment temperature was 28 C, and post treatment temperature increased 2 C. Chen [19] indicates that the system temperature must be lower than or equal to 60 C, to achieve greater removal. Conclusions Electrocoagulation (EC) and effluent treatment bath livestock is a technically viable alternative for the removal of organic matter as COD. The results showed that, for a distance between electrodes of 2 cm, COD removal percentage was significantly higher. The applied electrochemical treatment allowed the removal of COD in 90.16%, under conditions of optimal electrocoagulation: ph (7.0), distance (2 cm), voltage (50 V), time (30 min). These results indicated that electrochemical treatment process is an effective treatment method, in terms of removal efficiency, with reasonable operating costs. Acknowledgements The authors wish to thank the Water, Applied and Environmental Chemistry Group, Laboratory of Toxicology and Environmental Management, University of Cordoba, Montería-Colombia. References 1. Lombana J, Martínez D, Valverde M, et al. Caracterization the livestock sector of the Colombian Caribbean. Editorial Universidad del Norte; 2012. 283

2. Barrios J, Yepez J. Evaluation model of solar photocatalytic degradation kinetic in a cpc reactor of pesticide used in the bathroom of cattle. Graduation Project: Universidad de Cartagena, Facultad de Ingeniería, Cartagena-Colombia; 2010. 3. Rios GB, Almerava F, Herrera MT. Electrode Passivation in the Electrocoagulation Process. Port Electrochim Acta. 2005;23:17-35. 4. Holt PK, Barton GW, Mitchell CA. The future for electrocoagulation as a localised water treatment technology. Chemosphere. 2005;59:355-367. 5. APHA, Standard Methods for the Examination of Water and Wastewater. 21th ed. Washington, DC: American Public Health Association, American Water Works Association, Water Pollution Control Federation; 2005. 6. Mestra D, Pineda R. Electrocoagulación como alternativa para el tratamiento de aguas residuales del baño de ganado bovino en el departamento de Córdoba. Universidad de Córdoba, Colombia; 2015. 7. Holt P, Barton G, Mitchell C. Electrocoagulation as a Wastewater Treatment. The Third Annual Australian Environmental Engineering Research Event; 1999. 8. Daneshvar N, Sorkhabi HA, Kasiri MB. Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. J Hazard Mater. 2004;112:55-62. 9. Chen G. Electrocoagulation and Electroflotation of Restaurant Wastewater. J Environ Eng. 2000;126:858-863. 10. Chen G. Electrochemical technologies in wastewater treatment. Sep Purifi Technol. 2004;38:11-41. 11. Kumar P, Chaudhari S, Khilar K, et al. Removal of arsenic from water by electrocoagulation. Chemosphere. 2004;55:1245-1252. 12. Bayramoglu M, Kobya M, Can O, et al. Operating cost analysis of electrocoagulation of textile dye wastewater. Sep Purif Rev. 2004;37:117-125. 13. Heidmann I, Calmano W. Removal of Zn (II), Cu (II), Ni (II), Ag (I) and Cr (VI) present in aqueous solutions by aluminium electrocoagulation. J Hazard Mater. 2008;152:934-941. 14. Linares I, Martínez V, Barrera C, et al. Oxidation of persistent organic matter in industrial wasterwater by electrochemical treatments. Avances Ciencias Ingeniería. 2011;2:21-36. 15. Montgomery DC. Design and analysis of experiments. Nebraska: John Wiley & Sons; 2000. 16 Sarabia LA, Ortiz MC. Response surface methodology. In: Brown SD, Tauler R, Walczak B. editors. Comprehensive chemometrics. Oxford: Elsevier; 2009. pages 345-390. 17. Thirugnanasambandham K, Sivakumar V, Maran JJP. Response surface modelling and optimization of treatment of meat industry wastewater using electrochemical treatment method. J Taiwan Inst Chem Eng. 2015;46:160-167. 284

18. Chen G. Electrochemical Technologies in Wastewater Treatment. Sep Purif Technol. 2004;38:11-41. 19. Chen G, Chen X, Yue PL. Electrocoagulation and electroflotation of restaurant wastewater. J Environ Eng. 2000;858-863. 285