Logging solutions for optimizing field development. Well Evaluation for Coalbed Methane

Similar documents
GAMMA RAY AND SPONTANEOUS POTENTIAL LOGGING CORE COPYRIGHT. Introduction. By the end of this lesson, you will be able to:

Cased Hole Coal Bed Methane Measurements Written by Hermann Kramer

SPECIAL PETROPHYSICAL TOOLS: NMR AND IMAGE LOGS CORE

Fundamentals of Well Logging and Petrophysics for Non-Technical Professionals

Coalbed Methane- Fundamental Concepts

Acoustics and Ultrasonics for Downhole Oil and Gas Logging

POROSITY LOGGING CORE COPYRIGHT. Density Log. By the end of this lesson, you will be able to:

SPE Abstract. Copyright 2011, Society of Petroleum Engineers

Schlumberger WATER SERVICES. Schlumberger Water Services. Solutions for Water Exploration and Sustainable Supply

Advanced Well Log Interpretation

GAS WELL/WATER WELL SUBSURFACE CONTAMINATION

THIRTY YEARS OF LESSONS LEARNED. Coal

Open and Cased Hole Log Interpretation

Injection Wells for Liquid-Waste Disposal. Long-term reliability and environmental protection

Advanced Reservoir Monitoring

Engineered Water Solutions. Aquifer Storage and Recovery

The Use of Advanced Downhole Geophysical Tools for Detailed Aquifer Characterization. By Shawky, I., Labaky, W. and Delhomme, J.P.

Comparative analysis of sonic and neutron-density logs for porosity determination in the South-eastern Niger Delta Basin, Nigeria

2 SECARB Anthropogenic Test SP030414

An excursion through water saturation methods from cased hole logging

Ultra-slim logging aids economic development of Ghawar field

How to maximize the value of mature HC fields? Workshop. Budapest, 18. November 2010.

PowerFlex PowerEcho. Annular barrier evaluation services

Approach Optimizes Frac Treatments

Pre-Mining Methane Drainage Drilling Applications

Borehole Condition Assessment

Petrophysics. DecisionSpace. Rock Physics. Formation evaluation like never before. Collaborate across domains. DATA SHEET

Marcellus Shale Water Group

Water Management for Mines. Solutions and Technology

A five-step method for optimizing perforating design and placement to engineer more profitable completions

Production prediction model of coalbed methane wells at stable production stage

Importance and Role of Isotopes in the Petroleum Industry

CO 2 Well Integrity and Wellbore Monitoring

TVN-01 TABLE OF CONTENT. Standard Disclaimer

RECOPOL. Reduction of CO 2 emission by means of CO 2 storage in coal seams in the Silesian Coal Basin of Poland RECOPOL

COPYRIGHT PETROSKILLS LLC

When the energy source is unconventional, so are we. Unconventional Gas

Examining the Technology of CBM Multiple-lateral Horizontal Well

Prediction of Water Production in CBM wells

The Use of Water Injection for CO 2 Sequestration in Coalbeds

INCREASING THE EFFICIENCY OF HORIZONTAL IN-SEAM DRAINAGE. Global Methane Forum, March 28-30, 2016

A Comparison of Coalbed Methane Drilling Practices in the Southern Shanxi Province, China, through Advanced Reservoir Modeling

Petrophysics Workshop. By Dwi Kurniawan Said Society of Petroleum Engineers Universitas Gadjah Mada Student Chapters

Characterization and Simulation of ECBM: History Matching of Forecasting CO2 Sequestration in Marshal County, West Virginia.

WELL CONTROL AND INTERVENTION Controlling depth errors Snubbing safely every day

Coal Bed Methane (black coal, green future.)

INJEÇÃO DE CO 2 PARA PRODUÇÃO ACRESCIDA DE METANO DE CARVÃO EM CAMADA CO 2 INJECTION FOR ENHANCED COALBED METHANE (ECBM)

Petrotechnical Expert Services. Multidisciplinary expertise, technology integration, and collaboration to improve operations

Basics of Geophysical Well Logs_Porosity

Risk, Wells and Hydraulic Fracturing Monitoring

BOREHOLE CONDITION ASSESSMENT

CEMENT EVALUATION ITS NOT JUST ABOUT A BOND LOG GLEN BENGE SENIOR ADVISOR CEMENTING PRESSURE PUMPING

GX TECHNOLOGY. Full-Wave Imaging

RESERVOIR PERFORMANCE MONITOR (RPM)

Coal Mine Methane Drainage Considerations. Sabinas Basin, Coahuila Mexico. for the. Presented to: M2M Technical Workshop Monterrey, Mexico

Westbay System. Multilevel Technology for Subsurface Characterization and Monitoring

Jerzy M. Rajtar* SHALE GAS HOW IS IT DEVELOPED?

CONCENTRATE AND BRINE MANAGEMENT THROUGH DEEP WELL INJECTION. Abstract

Online Mechanical Integrity Assessment Training Coalbed Methane Example

CMYK. Pantone. Westbay System. Greyscale. Black on White. White on Black. Multi-level Technology for Subsurface Characterization and Monitoring

Multidisciplinary Workflow applied to Multiple Stage Hydraulic Fracturing of Horizontal Wellbores: Evolving the Process in the Lebada Field, Black Sea

Recent Advances in the Analytical Methods Used for Shale Gas Reservoir Gas-in-Place Assessment*

CO2 Storage Experience in Japan including Impacts of Earthquakes. Ziqiu Xue Research Institute of Innovative Tech.

PA PETROLEUM INDUSTRY APPROACH TO COAL MINE GAS DRAINAGE

CO 2 Storage in Geological Media

FRACTURED AND UNCONVENTIONAL RESERVOIRS

CO 2 Geological storage - TOTAL Approach. SCA 2003 Symposium 14/12/2003

Geological Sequestration of Carbon Dioxide

Global Climate & Energy Project

Managing guncertainty in Geologic Storage. Dwight Peters Schlumberger Carbon Services

Integrated Sensor Diagnostics (ISD) Subsurface Insight for Unconventional Reservoirs

Unconventional Resources

Reservoir Modeling for the Design of the RECOPOL CO 2 Sequestration Project, Poland. Topical Report

Monitoring Plan for a Cyclic Steam Stimulation (CSS) Pilot Test in Orinoco Oil Belt, Venezuela

Enhanced Coalbed Methane (ECBM) Field Test at South Qinshui Basin, Shanxi Province, China

White Paper: Shale Gas Technology. September Shale Gas Technology 2011 NRGExpert Page 1 of 8

Enhanced Coalbed Methane Recovery and CO 2 Sequestration in Coal: An Overview of Current Research at Imperial College

Hydraulic Fracturing Test Site (HFTS)

New (? Logging) Developments in Reservoir Monitoring

New Logging Technology Brings New Perspective To Mature Oil Fields

Effect of Filtering Techniques on Interpretation of Production Log Data

Master of Engineering Program in Mining and Georesources Engineering (International Program)

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

Deriving Mineralogy and Reservoir Properties in the Oil Sands Using X-Ray Fluorescence (XRF)

Understanding Mechanical Integrity Testing and Underground Gas Storage: The Key to Success

Leg 123: Geochemical Processing Report

Reservoir characterization of coals in the Powder River Basin, Wyoming, USA, for CO 2 sequestration feasibility studies

AL BAYAN TECHNICAL EQUIPMENT L.L.C are the authorized distributers of Robertson Geologging in GCC.

Natural Gas A Game Changer

Sand Management Solutions

Hydraulic Fracturing Test Site (HFTS)

Comparison of Image Logs to Nuclear Magnetic Resonance Logs*

New Geophysical Approaches For Providing Hydrogeologists With What They Need:

Storage options 1. Geological storage. CO2 capture and storage Storage options

Impact Factors on Fracturing Results of Coal Seams and Appropriate Countermeasures

An Approach for Estimating Porosity from Sonic-Logs in Shaly Formations

MOBILIZATION / DEMOBILIZATION AND MONTHLY FIXED CHARGES

ENDURA DUAL-STRING SECTION MILL. Set a rock-to-rock barrier and know that it s done right. WELL ABANDONMENT

POSSIBILITIES OF GEOLOGICAL CO 2 STORAGE IN DEPLETED/PARTIALLY DEPLETED LAYERS OF HYDROCARBONS IN NORTH EAST SLOVENIA

Storing CO 2 in Coal Seams

Transcription:

Logging solutions for optimizing field development Well Evaluation for Coalbed Methane

Logging solutions for optimizing field development Maximizing the net present value (NPV) from coalbed methane (CBM) production requires maximizing the reserves and rate of gas extraction while keeping costs down. Well design is key. Optimizing well design, placement, and completions, as well as stimulation and production, are key elements of this process. A successful project requires knowledge of the subsurface characteristics of the target CBM reservoir, such as: location and distribution of the coal gas reserves producibility of these reserves mechanical characteristics of the coals and surrounding beds likelihood of water production from adjacent aquifers potential of commingled gas production from adjacent reservoirs. Well evaluation is the primary means of delivering this information. Wireline geophysical logs, in particular, provide rapid measurements that can be used in wellsite decision making. Full range of well evaluation services Schlumberger offers a comprehensive range of cased and openhole logging services giving data on coal thickness, depth, quality, and gas content, as well as the permeability and mechanical properties of the target coal seams and surrounding beds. These services can be adapted to meet the changing needs of the field based on the levels of existing knowledge. Applications CBM exploration Optimizing well completion, stimulation, and production Guiding selective stimulation for individual coals benefits Significantly increases information about CBM reserves Guides well completion, stimulation, and production programs Reduces reliance on cores Produces rapid answers to assist decision making Allows comprehensive CBM evaluation in cased holes Features In situ method for evaluating critical CBM production characteristics Discrete and cumulative coal gas content estimates Coal cleating evaluation using geochemical signatures or resistivity Coal and surrounding bed mechanical properties and stress profiles Cased hole and openhole evaluation options RST* reservoir saturation tool results in comparison to core coal proximate and gas desorption results.

Gas adsorbed to coal cannot be measured directly, but in situ gas content can be derived by correlating the coal properties, measured with logs, to the coal composition and gas content of representative core analyses. Coal cleat porosity is the primary mechanism controlling gas producibility and is also difficult to measure directly. Proven Schlumberger logging techniques for delivering these key CBM properties in situ include traditional logs, such as the high-resolution density log, linked with innovative analysis algorithms to develop local models derived from existing core and production data advanced logs, such as geochemical logs, with processing and analysis tailored to the specific needs of CBM, providing answers that are more accurate and comprehensive. Comparison between openhole and cased hole ECS* elemental capture spectroscopy sonde mineral results across a coalbed in a well. Cased hole geochemical logging Two cased hole tools in particular, the ECS* elemental capture spectroscopy tool and the RST* reservoir saturation tool, increase operational efficiency by providing valuable CBM evaluation information without the need for openhole logging. These tools directly measure the chemical makeup of coal and ash mineralogy and are used to estimate the discrete and cumulative coal gas volume and the degree of cleating. Total coal gas content and the gas adsorption isotherm at discrete depths are determined from the coal and ash content measurements. This is achieved by using an empirical relationship derived from proxi mate analysis and gas desorption/adsorption tests performed on core samples. This relationship is applied within a physical gas absorption model, such as the Langmuir equation. The degree of cleating at discrete depths is indicated by geochemical log measurements of the mineral ash constituents of coalbeds. These are typically carbonate, quartz, pyrite, and clay. In order to determine the degree of cleating, relationships that use the cutoffs on the mineral ash volume measurements have been developed. The inferred degree of cleating, in turn, indicates the gas producibility of the coal at that depth. Cleating and coal gas content estimates are enhanced when coal proximate, gas desorption/adsorption analysis, and CBM production data are available from at least one well in the field. The geochemical measurement is largely unaffected by fluid in the well, and the contribution of the casing and annular fill to the overall measurement can be easily subtracted because the depth of investigation extends to 178 mm [7 in]. The ECS sonde delivers greater measurement precision than the RST tool. However, the RST tool can be run in casing as small as 50 mm [2 in], whereas the ECS sonde is limited to casing of 152 mm [6 in] or larger. In addition, the RST tool uses a pulsed neutron generator, whereas the ECS sonde uses a chemical radioactive neutron source.

Density, photoelectric effect, and gamma ray CBM evaluation solution product using a local model. As well as providing evaluation of the coals, both tools deliver accurate lithology characterization throughout the logged borehole. The geochemical data shown have a standard vertical resolution of 500 mm [20 in], but 200 mm [8-in] vertical resolution is possible if a high-resolution neutron porosity tool is also run. High-resolution density measurement The standard Schlumberger openhole logging suite for CBM well evaluation includes both bulk density and gamma ray measurements. It provides high-resolution delineation of the depth and thickness of coals because the bulk density measurement has a vertical resolution as high as 50 mm [2 in]. Coal quality is indicated by the magnitude of the bulk density drop. A local model can be developed to quantitatively predict coal grade, rank, and gas content from the log. This is achieved by calibrating the density and coincident photoelectric absorption factor (Pe) or the neutron porosity measurements with reliable core coal proximate, core gas content, and production data. Integrated openhole logging suite The Platform Express* integrated wireline logging tool adds resistivity, microresistivity, and neutron porosity to the stand-alone density log. This provides a coal cleat porosity estimate from the resistivity and classical formation evaluation along with the coal quality and gas content estimate. The Platform Express suite also allows computation of synthetic compressional and shear velocities, using neural network local models. These velocities can be used to estimate mechanical properties and stress profiles for stimulation design. Openhole geochemical logging A more accurate and reliable estimate of gas reserves, coal quality, and degree of cleating can be obtained by openhole geochemical logging with the ECS or RST tools. The geochemical log is a dry measurement with a 178 mm [7-in] depth of investigation, allowing both washouts and other environmental effects to be eliminated. Openhole geochemical logs can also provide a ground truth for subtracting contributions from casing and annular fill. Combining the geochemical log with a density measurement enables a more general coal gas estimate to be made and increases the coalbed vertical resolution from 500 mm [20 in] to as sharp as 50 mm [2 in]. In addition, performing a full wet formation evaluation with density porosity of beds adjacent to the coal indicates how much water these beds may produce, which is important in deciding whether to perforate the coal or perforate an adjacent bed before fracturing into the coal. Sonic imaging measurements A direct calculation of mechanical properties and stress profiles for stimulation design can be made when the DSI* dipole shear sonic imager tool is run. This tool measures actual compressional and shear velocities in coals and surrounding beds. It also allows computation of velocity anisotropy to assist in advanced oriented completions, for CBM basin evaluation, or as a secondary local indicator of cleating.

Cased hole sonic-neutron evaluation In coal zones, compressional velocity decreases dramatically (delta t compressional increases), the same as in open hole. The neutron also increases dramatically because of the high hydrogen index of coals. If sands in the section are gascharged, again the compressional delta t increases, though not as significantly. The sonic increase is a function of the longer acoustic travel time through the gas than through the connate water of a wet zone. This is particularly evident through well-cemented casing where the gas has migrated directly behind the cement sheath. The neutron porosity decreases in these gas sands as a function of reduced hydrogen index relative to water- or oil-filled porosity. Platform Express CBM evaluation solution product using a local model. When run with the CNL* compensated neutron log and gamma ray (GR) log, the Sonic Scanner* acoustic scanning platform, GR, and CCL casing collar locator suite works very well for identifying coal zones determining coal zone thickness qualitatively differentiating wet from gas-charged sands. Each of the above factors can play a key role in CBM completion strategies. Openhole ECS CBM evaluation solution product using a basin-wide model.

The Sonic Scanner tool provides the benefits of axial, azimuthal, and radial information from both the monopole and the dipole measurements for near-wellbore and far-field slowness information. Sonic Scanner platform The new Sonic Scanner acoustic scanning platform offers significant advances in evaluating coals. To enable a deeper understanding of acoustic behavior in and around the borehole, the Sonic Scanner acoustic scanning platform allows accurate radial and axial measurements of the stress and anisotropydependent properties of rocks near the wellbore. Its platform provides multiple depths of investigation, excellent waveform quality, and presentations that reduce the complexity of sophisticated sonic logging without compromising the depth of information. The acoustic scanning platform provides advanced types of acoustic measurements, including borehole compensated monopole with long and short spacings cross-dipole low frequency Stoneley cement bond quality. These measurements are then converted into useful information about the drilling environment and the reservoir, which assists in making decisions that reduce overall drilling costs, improve recovery, and maximize productivity. Sonic Scanner results processed for input to fracturing design.

CBM production rate prediction computed from Platform Express results using a local model. DSI-CNL-GR cased hole evaluation product for consistent interpretation and efficient perforation selection.

Worldwide Experience More than 150 CBM projects completed Knowledge base of every coal basin in the US Experience from over 65 coal basins in 25 countries on 6 continents CBM client base exceeding 100 - major production companies - large and small independents - national companies - mining operators More than 150 years combined experience Schlumberger consulting specialists have completed more than 100 CBM projects and made geologic evaluations of 28 major coal basins worldwide (indicated in blue). Our project experience includes every major coal basin in the US. www.slb.com/coalbedmethane *Mark of Schlumberger Other company, product, and service names are the properties of their respective owners. Copyright 2009 Schlumberger. All rights reserved. 08-OS-141