Contents. Microfluidics - Jens Ducrée Flow Control 1

Similar documents
Aero MEMS. Micro electronics. Pressure sensor Shear stress sensor Hot wire sensor

The Role of Micro Diaphragm Pumps in Medical Technologies

ANALOG MULTISTABLE FLOW-CONTROLLER FOR PORTABLE DELIVERY SYSTEMS

Lecture 10 Part II: Micro f b a i ca i tion for Microfluidics Microfluidics and aand Microfluidics Devices

THE ELECTRICAL AND MECHANICAL CHARACTERIZATION OF SILICON BASED ELECTROMAGNETIC MICRO-ACTUATOR FOR FLUID INJECTION SYSTEM

MOVING AND NON-MOVING MICRO PUMPS FOR FLUID DELIVERY: A STUDY OF CURRENT TECHNOLOGIES. ME2082 Dr. Wang Class Project Presenter: Susan Felix

Application Note. Operating Micropumps at Low Flow Rates

PERFORMANCE EVALUATION OF FLAT WALLED DIFFUSER/NOZZLE MICROPUMP FOR FUEL DELIVERY IN SMALL GASOLINE ENGINE

Drive Elements Made of Piezoelectric Materials

Contacting Schemes for Liquid-Liquid Systems

On-chip MEMS for automated chip-to-chip assembly

Smart Materials for Automotive and Aircraft Design

MICROFLUIDICS DEVICES and MICROSYSTEMS Technologies and Perspectives

Bonded Neo Magnetization Guide

MICROFLUIDIC STRUCTURES FOR SINGLE CELL ANALYSIS

Tutorial on Micro Electro Mechanical Systems (MEMS)

MEMSAND MICROSYSTEMS Design, Manufacture, and Nanoscale Engineering

NiC: A new functional layer with high sensitivity for pressure and force sensors

Tackling the optical interconnection challenge for the Integrated Photonics Revolution

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

E 443 E 453 E 463 E 643. Tank top mounting Connection up to SAE 2 Nominal flow rate up to 550 l/min e

AN EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF TWO-PHASE FLOW OF CRYOGENIC FLUIDS THROUGH MICRO-CHANNEL HEAT EXCHANGER

Chapter 4 Fabrication Process of Silicon Carrier and. Gold-Gold Thermocompression Bonding

Technical Specification. Wire Saw DS 271. Frame Agreement Appendix 3

Beam Leads. Spider bonding, a precursor of TAB with all-metal tape

Analytical Chemistry

Model LMM-H03 Mass Air Flow Sensor

Preface Preface to First Edition

HYPRES. Hypres MCM Process Design Rules 04/12/2016

Ceramic Microchannel Devices for Thermal Management. C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT

E 094 E 103 E 143 Tank top mounting Connection up to G1 Nominal flow rate up to 135 l/min

ELASTIC-PLASTIC RESPONSE OF POLYMER COATING UNDER REPETITIVE IMPACT

Thomas M. Adams Richard A. Layton. Introductory MEMS. Fabrication and Applications. Springer

Change in stoichiometry

Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, Freiburg, Germany

MicroFluidics. Product Overview MASS FLOW CONTROLLERS SOLENOID CONTROL VALVES SOLENOID VALVES PROCESS VALVES PNEUMATICS SENSORS

Enhancement Mode GaN FETs and ICs Visual Characterization Guide

Vibrational energy harvesting microgenerators based on piezoelectric thick films and MEMS

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

FABRICATION OF MICROFLUIDIC CHANNELS USING MICROFIBERS FOR APPLICATIONS IN BIOTECHNOLOGY

Energy, Power, and Transportation Technology 11

Tuchenhagen. Product Recovery Systems

Design of Highly Sensitive MEMS cantilever beam Using COMSOL Multiphysics

Polymer Microfabrication (Part II) Prof. Tianhong Cui, Mechanical Engineering ME 8254

ECAL Mechanics and thermal studies

Wireless implantable chip with integrated Nitinol-based pump for radio-controlled local drug delivery

Is atmospheric plasma potential-free?

NANOINDENTATION OF SILICON CARBIDE WAFER COATINGS

Laser Micromachining - Market Focus. Dr. Andrew Kearsley

Micro and Smart Systems

oil cleaner Electrostatic Product brochure

Microfluidic Systems for Cell Growth and Cell Migration Studies

Sensor. Device that converts a non-electrical physical or chemical quantity into an electrical signal. Sensor Processor Display Output signal

Fabrication Technology, Part II

IMM Bologna. S3T Workshop, Porto, 6 th -9 th Apr. 2010

Abstract. 1 Introduction

E 444 E 454 E 464 E 644 Tank top mounting Connection up to SAE 2 Nominal flow rate up to 680 l/min / gpm

PROPORTIONAL VALVE SERVOTRONIC FOR FLOW CONTROL OR PRESSURE CONTROL ON PNEUMATIC SYSTEM. P 330-GB-R0a

Flexible, Centralised, Decentralised & Local Solutions for Automation of Hygienic Processes

MEMS and Nanotechnology Research at TST

Type Type 2000 Transducers. I/P & E/P Transducers

II. A. Basic Concept of Package.

SET PROJECT STRUCTURAL ANALYSIS OF A TROUGH MODULE STRUCTURE, IN OPERATION AND EMERGENCY Luca Massidda

PRESSURE SENSORS CHALLENGES IN DESIGN AND PRODUCTION DR. MATTHIAS PESCHKE

Surface Micromachining

Over / Under Conveyor

Microsystem Technology: A Survey of the State of the Art

Department of Mechanical Engineering and Mechanics

A Study on the Damping Characteristics of SAE Oil Containing Suspended Nano Ferrous Oxide (Fe 2 O 3 ) Particles

Stainless Steel Products Products for use in offshore, instrumentation, and compatiblity applications.

Passive TCF Compensation in High Q Silicon Micromechanical Resonators

PIEZOELECTRIC CERAMICS

ISO 6281 INTERNATIONAL STANDARD. Plain bearings Testing under conditions of hydrodynamic and mixed lubrication in test rigs

bans the use of lead, mercury, cadmium, hexavalent chromium and polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE).

Vibration Control SCHWINGMETALL. The Original Rubber-To-Metal Bonding from ContiTech

Applications of High-Performance MEMS Pressure Sensors Based on Dissolved Wafer Process

Surface Micromachining

HDPE WATER CONTROL DEVICES

METAL & DUAL SEATED PISTON VALVES

Fraunhofer ENAS Current results and future approaches in Wafer-level-packaging FRANK ROSCHER

DESIGN, ANALYSIS AND FABRICATION OF A HYDRAULIC DIE EJECTOR FOR A POWDER METALLURGY COMPONENT

Wafer-to-Wafer Bonding and Packaging

PES INSTITUTE OF TECHNOLOGY - BANGALORE SOUTH CAMPUS (Hosur Road, 1KM before Electronic City, Bangalore ) Department of Mechanical Engg.

Product Information. Pallet change system NSR-A 100

TOPSPOT- A NEW METHOD FOR THE FABRICATION OF MICROARRAYS

Three-Dimensional Molded Interconnect Devices (3D-MID)

Development and Characterization of Large Silicon Microchannel Heat Sink Packages for Thermal Management of High Power Microelectronics Modules

Poly-SiGe MEMS actuators for adaptive optics

Preprint - Mechatronics 2008, Le Grand-Bornand, France, May

POLYMER TUBE EMBEDDED IN-PLANE MICROPUMP: DESIGN, ANALYSIS AND FABRICATION ASHUTOSH SHYAMRAO KOLE. Presented to the Faculty of the Graduate School of

ViscoTec Pumpen- u. Dosiertechnik GmbH. Adhesives & Chemicals

Research Projects in Microelectromechanical Systems (MEMS) and Microfluidics

A novel pick-and-place process for ultra-thin chips on flexible smart systems Thomas Meissner (Hahn-Schickard)

VOGEL - Submersible Pumps in Stainless Steel Design TVS

Masoneilan * Series Control Valve

LTCC SYSTEMS and LTCC DESIGN RULES

MEASURING THE DYNAMIC TWISTING BEHAVIOUR OF SAW BLADES IN THE KERF DURING THE SAWING PROCESS

Inkjet. A microtool for Nanotechnology

SECTION TERRA COTTA CLAY TILE RAINSCREEN SYSTEM

TSV Processing and Wafer Stacking. Kathy Cook and Maggie Zoberbier, 3D Business Development

Transcription:

Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors 12.Analytical Chips 13.Particle-Laden Fluids a. Measurement Techniques b. Fundamentals of Biotechnology c. High-Throughput Screening Microfluidics - Jens Ducrée Flow Control 1

1. Check Valves 2. Fixed-Geometry Valves 3. Actuation Principles 4. Active Micro-Valves 5. Fluerics 5. Flow Control Microfluidics - Jens Ducrée Flow Control 2

1. Check Valves 2. Fixed-Geometry Valves 3. Actuation Principles 4. Active Micro-Valves 5. Fluerics 5. Flow Control Microfluidics - Jens Ducrée Flow Control 3

5.1. Definition Passive Valve Definition: Flow rectifier Controlled by hydrodynamic pressure (p 1 p 2 ) Built up by flow itself Interplay with geometrical structure Characteristics: valve seat flow channel silicon Flow rate / leakage Hydrodynamic actuation force F = p A p 2 Hydraulic capacitance Resonance curve valve membrane p 1 0,5 mm Microfluidics - Jens Ducrée Flow Control 4

5.1. Types of Passive Valves Note: Different effective areas A for force F = p A generated by pressure p Microfluidics - Jens Ducrée Flow Control 5

5.1. Check Valves 1. Membrane Valves 2. Flap Valves 3. Bivalvular Valves 4. Leakage Microfluidics - Jens Ducrée Flow Control 6

5.1.1. Membrane Valves Components: Peripherally fixed membrane Central hole Advantages: High force due to large effective area for pressure valve seat flow channel silicon Drawbacks: Large size Large capacitance Large dead volume valve membrane 0,5 mm Microfluidics - Jens Ducrée Flow Control 7

5.1.1. Theoretical Background Calculation of flow for gases Main impact factor Smallest cross section A min h < A/U A min = h s h > A/U A min = A Expansion flow through nozzle m M p A min 2 v A,2 1 1 Microfluidics - Jens Ducrée Flow Control 8

5.1.1. Membrane Valves Flow Rate Gap opening; pressure-dependent s ~ p Flow through narrow gap (laminar friction / viscosity prevails) I V ~ p 4 Flow through short constriction (e.g.: b < s) (conversion of potential to kinetic energy prevails) V ~ p 3/2 Microfluidics - Jens Ducrée Flow Control 9

5.1.1. Flow Rate Gap height h Circumference s Pressure surface A valve seat flow channel silicon Elastic module k elast valve membrane 0,5 mm Microfluidics - Jens Ducrée Flow Control 10

5.1.1. Theoretical Background Enhancement of flow (A min = U s) valve opening Ventilöffnung sealing Dichtkante Einlaufkanal inlet channel Auslaufkanal outlet channel quadratic rectangular meander-like Microfluidics - Jens Ducrée Flow Control 11

5.1.1. Construction Principles Microfluidics - Jens Ducrée Flow Control 12

5.1.1. Membrane Valves - Fabrication a b c o 54,7 d a 3 a 2 a 1 e a 4 a 5 f g Microfluidics - Jens Ducrée Flow Control 13

5.1.1. Membrane Valves Components: Peripherally fixed membrane Central hole Advantages: High force due to large effective area for pressure Drawbacks: Large size Large capacitance Large dead volume Microfluidics - Jens Ducrée Flow Control 14

5.1.1. Theoretical Background Structural mechanics l a A Restoring force by elastic support of valve plate A F el1 4 2 2 3 E ba,1 4 ba,1 ba,2 ba,2 ha z 2 Vp 1 b b l 3 3 a,1 a,2 a ba,1 Schnitt A-A ha ba,2 Microfluidics - Jens Ducrée Flow Control 15

5.1.1. Membrane Valves Gap flow (b > h) Constriction flow (b < h) 4000 10000 Flux [µl/min] 3500 3000 2500 2000 1500 1000 500 Type M1; a 3 = 15 µm; a 5 = 75 µm valve with broad valve seat Flux [µl/min] 8000 6000 4000 2000 Type M1; a 3 = 9 µm; a 5 = 5 µm valve with narrow valve seat 0 0 50 100 150 200 Pressure [hpa] gap-like 0 0 20 40 60 80 100 120 Pressure [hpa] constriction-like Microfluidics - Jens Ducrée Flow Control 16

5.1.1. Hydraulic Capacitance Microfluidics - Jens Ducrée Flow Control 17

5.1. Check Valves 1. Membrane Valves 2. Flap Valves 3. Bivalvular Valves 4. Leakage Microfluidics - Jens Ducrée Flow Control 18

5.1.2. Flap Valves Components: Unilaterally fixed flap Opening underneath end of flap flap Ventilklappe silicon Silizium Advantages: Compact size Low capacitance High resonance frequency Moderate dead volume Drawbacks: Low actuation force due to low effective area Klappenauflage valve plate Microfluidics - Jens Ducrée Flow Control 19

Components: Unilaterally fixed flap Opening underneath end of flap 5.1.2. Flap Valves Advantages: Compact size Low capacitance High resonance frequency Moderate dead volume Drawbacks: Low actuation force due to low effective area Microfluidics - Jens Ducrée Flow Control 20

5.1.1. Comparison: Flap / Membrane Valves Microfluidics - Jens Ducrée Flow Control 21

5.1. Check Valves 1. Membrane Valves 2. Flap Valves 3. Bivalvular Valves 4. Leakage Microfluidics - Jens Ducrée Flow Control 22

5.1.3. Bivalvular Valves Microfluidics - Jens Ducrée Flow Control 23

5.1. Check Valves 1. Membrane Valves 2. Flap Valves 3. Bivalvular Valves 4. Leakage Microfluidics - Jens Ducrée Flow Control 24

5.1.4. Leakage Leakage: Causes Assembly Internal stress Particles / contamination Possible solutions Integrated filters Combination of materials - Hard - soft Microfluidics - Jens Ducrée Flow Control 25

1. Check Valves 2. Fixed-Geometry Valves 3. Actuation Principles 4. Active Micro-Valves 5. Fluerics 5. Flow Control Microfluidics - Jens Ducrée Flow Control 26

1. Diffuser/Nozzle Valves 2. Tesla Valves 3. Hydrophobic Barriers 5.2. Fixed-Geometry Valves Microfluidics - Jens Ducrée Flow Control 27

Components: Conical channel 5.2.1. Diffuser-Nozzle Valves Advantages: Simple structure Compact size vorwärts Drawbacks: Low forward-backward ratio High leakage rate A. Olson; Valveless Diffuser Micropumps; Stockholm 1998 rückwärts Microfluidics - Jens Ducrée Flow Control 28

5.2.1. Diffuser-Nozzle Valves A. Olson; Valveless Diffuser Micropumps; Stockholm 1998 nozzle direction vorwärts diffuser direction Flow through narrow constriction Microfluidics - Jens Ducrée Flow Control 29

5.2.1. Diffuser / Nozzle Valves in Silicon Microfluidics - Jens Ducrée Flow Control 30

1. Diffuser/Nozzle Valves 2. Tesla Valves 3. Hydrophobic Barriers 5.2. Fixed-Geometry Valves Microfluidics - Jens Ducrée Flow Control 31

5.2.2. Bypass-Valves Components: Bypass with deviating angles Advantages: Simple structure Compact size forward Drawbacks: Low forward-backward ratio High leakage rate backwards Microfluidics - Jens Ducrée Flow Control 32

5.2.2. Bypass-Valves Components: Bypass with deviating angles Advantages: Simple structure Compact size vorwärts Drawbacks: Low forward-backward ratio High leakage rate rückwärts Microfluidics - Jens Ducrée Flow Control 33

1. Check Valves 2. Fixed-Geometry Valves 3. Actuation Principles 4. Active Micro-Valves 5. Fluerics 5. Flow Control Microfluidics - Jens Ducrée Flow Control 34

5.3. Actuation Principles 1. Thermal Actuators 2. Piezoelectric Actuation 3. Electrostatic Actuation 4. Electromagnetic Actuation 5. Pneumatic Actuation 6. Hydrogel Actuators 7. Bubble-Spring Actuation Microfluidics - Jens Ducrée Flow Control 35

5.3.7. Bubble-Spring Actuation Microfluidics - Jens Ducrée Flow Control 36

1. Check Valves 2. Fixed-Geometry Valves 3. Actuation Principles 4. Active Micro-Valves 5. Fluerics 5. Flow Control Microfluidics - Jens Ducrée Flow Control 37

5.4. Active Microvalves Microvalve NC 1500 Redwood Microsystems Microvalve Twente MicroProducts Microvalve MegaMic Hoerbiger-Origa

5.4. Active Microvalves 1. Definition and Concepts 2. Design Principles 3. Microvalve Actuation 4. 2-Way Microvalves 5. Microvalves for Pneumatic Systems 6. 3-Way Microvalves 7. Modeling of Flow in Microvalves Microfluidics - Jens Ducrée Flow Control 39

5.4.1. Definition and Nomenclature Valves Flow control elements Control of fluid flow in binary or continuous fashion Binary switch - Open and close position Continuous control - Continuous adjustment of flow rate between open and close closed open Anschluß 1 Anschluß 2 Anschluß 1 Anschluß 2 port 1 port 2 port 1 port 2 Microfluidics - Jens Ducrée Flow Control 40

5.4.1. Definition and Nomenclature 2- and 3-way valves Switching between different inlet and outlet ports Categorization according to number of ports Two idle modes Normally open Normally closed Microfluidics - Jens Ducrée Flow Control 41

5.4.1. Definition and Nomenclature Miniature valves: Miniaturized conventional valves Precision machining Conventional driving mechanism - Overwhelmingly electromagnetic Microvalves: Microfabrication Implementation of microactuators Miniaturized size Minimized power requirements Microfluidics - Jens Ducrée Flow Control 42

5.4. Active Microvalves 1. Definition and Concepts 2. Design Principles 3. Microvalve Actuation 4. 2-Way Microvalves 5. Microvalves for Pneumatic Systems 6. 3-Way Microvalves 7. Modeling of Flow in Microvalves Microfluidics - Jens Ducrée Flow Control 43

5.4.2. Construction Principles Typical design of 2-way microvalve: membrane Membran valve plate Ventilplatte Anschluß port 1 1 Anschluß port 2 2 valve Dichtkante seat Microfluidics - Jens Ducrée Flow Control 44

5.4.2. Construction Principles Equilibration of pressure for valve plate: Minimized effective area for pneumatic force pneumatic force: Membranöffnung membrane opening backside of membrane Membranrückseite Ventildeckel cover F pn p1 p2 Apn p1 p1 Fpn p1 p1 inlet (p 1 ) outlet (p 2 ) valve seat Einlaß (p1) Auslaß (p2) Dichtkante Microfluidics - Jens Ducrée Flow Control 45

5.4.2. Construction Principles Normally-open 2-way valve: membrane Membranöffnung opening membrane Membran valve Ventilplatte plate Einlaß Auslaß Auslaß Einlaß inlet outlet outlet inlet a.) equilibrated b.) non-equilibrated Microfluidics - Jens Ducrée Flow Control 46

5.4.2. Construction Principles Normally closed 2-way valves: elastic membrane Ausgleichsmembran p1 p1 Auslaß inlet p 2 p 2 Einlaß Einlaß outlet inlet Auslaß outlet a.) pretension on membrane b.) elastic valve-seat membrane Microfluidics - Jens Ducrée Flow Control 47

5.4. Active Microvalves 1. Definition and Concepts 2. Design Principles 3. Microvalve Actuation 4. 2-Way Microvalves 5. Microvalves for Pneumatic Systems 6. 3-Way Microvalves 7. Modeling of Flow in Microvalves Microfluidics - Jens Ducrée Flow Control 48

5.4.3. Microvalve Actuation Thermomechanical actuation: ( bimetallic membrane) T0+dT T0 r0 Material a Ftherm da db a b z Material b Feste Einspannung membrane am Rand attached to frame valve Mittenversteifung plate (movable in vertikaler in Richtung vertical direction) beweglich Microfluidics - Jens Ducrée Flow Control 49

5.4.3. Microvalve Actuation Thermomechanical actuation: ( bimetallic membrane) Maximum deflection of membrane: Maximum blocking force: (W. C. Young; Roark s Formulas for Stress & Strain; McGraw-Hill; 6. Auflage, New York, USA, 1989. ) Microfluidics - Jens Ducrée Flow Control 50

5.4.3. Microvalve Actuation Piezoelectric actuation: (piezo-bimorph) +z h U1 U2 -z Idle amplitude: Blocking force: Valvo Unternehmensbereich Bauelemente der Philips GmbH; Piezooxide (PXE) Eigenschaften und Anwendungen; Dr. Alfred Hüthig Verlag GmbH, Heidelberg, 1988 Microfluidics - Jens Ducrée Flow Control 51

5.4.3. Piezo-Electric Actuation Microfluidics - Jens Ducrée Flow Control 52

5.4.3. Microvalve Actuation Electrostatic actuation: Working principle Oppositely charged parallel plates E-field between plates One plate movable Plates attract + Isolator + + + + + + + + + + ++ ++++++++++++++++++ --------------------------------- Luft - Electrostatic force Microfluidics - Jens Ducrée Flow Control 53

5.4.3. Microvalve Actuation Electrostatic actuation: Balance of forces Snapping voltage Microfluidics - Jens Ducrée Flow Control 54

Paschen curve 5.4.3. Microvalve Actuation Microfluidics - Jens Ducrée Flow Control 55

5.4. Active Microvalves 1. Definition and Concepts 2. Design Principles 3. Microvalve Actuation 4. 2-Way Microvalves 5. Microvalves for Pneumatic Systems 6. 3-Way Microvalves 7. Modeling of Flow in Microvalves Microfluidics - Jens Ducrée Flow Control 56

5.4.4. Redwood Microsystems Redwood Microsystems NC-1500 Valve type: 2-way normally-closed Actuation: thermopneumatic Media: Gases Maximum pressure: 7 bar Flow rates: 0.1 ml / min 1.500 ml / min Response time: 1 s Power: 1.5 W Temperature range: 0 55 o C Tolerable particle size: 1 µm Internal volume: 0,6 ml Dimensions 6x6x2mm³ Operating voltage: 0-15 V Proportional mode possible Microfluidics - Jens Ducrée Flow Control 57

5.4.4. Redwood Microsystems www.redwoodmicro.com Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rstand ard-ze el Flow controller Microfluidics - Jens Ducrée Druckregler Flow Control 58

5.4.4. IC-Sensors IC-Sensors (USA) Valve type: 2-way normally-closed Actuation: Thermomechanical Media: Gases Maximum pressure: 1 bar Flow rate: 0.15 l / min Response time: 50 ms Power: 0.4 W Temperature range: -20 70 o C Tolerable particle size: 25 µm Operating voltage: 5 V Gas flow (sccm) 400 mw 300 mw 200 mw Input pressure (PSI) Microfluidics - Jens Ducrée Flow Control 59

5.4.4. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory: Valve type: 2-way normally-open Actuation: electrostatic with 1-µm polyimide cantilever Valve amplitude:200 µm Media: Gases Maximum pressure: 0.2 bar Flow rate:? Response time:? Power: 10 µw Temperature range:? Size? Microfluidics - Jens Ducrée Flow Control 60

5.4.4. Twente Microproducts Twente Microproducts: Valve type: 2-way Bistable (NO / NC) Rubber-membrane Actuation: electromagnetic Combination of permanent magnet and electromagnet Microfluidics - Jens Ducrée Flow Control 61

5.4.4. Electromagnetic Actuation Microfluidics - Jens Ducrée Flow Control 62

5.4.4. Twente Microproducts Twente Microproducts: Media: Gases, Liquids Maximum pressure: 2 bar Gap diameter: 0.2 mm Response time:? Operating current: 0.5 A Power: no blocking power Dead volume: < 5 µl Dimensions: 6 x 6 x 6 mm³ Microfluidics - Jens Ducrée Flow Control 63

5.4.4. Industrial Microelectronics Center (IMC) IMC (Sweden): Valve type: 2-way normally-open Actuation: Pneumatic Silicone membrane Comparison of deflections of 0.2 x 0.2 mm membrane made of different materials. (Thickness adapted for maximum pressure head of 5 bars) Microfluidics - Jens Ducrée Flow Control 64

5.4.4. Industrial Microelectronics Center (IMC) IMC (Sweden): Valve type: 2-way normally-open Actuation: pneumatic Media: Gases or liquids Actuation pressure depends on hydrodynamic pressure of flow to be switched Microfluidics - Jens Ducrée Flow Control 65

5.4. Active Microvalves 1. Definition and Concepts 2. Design Principles 3. Microvalve Actuation 4. 2-Way Microvalves 5. Microvalves for Pneumatic Systems 6. 3-Way Microvalves 7. Modeling of Flow in Microvalves Microfluidics - Jens Ducrée Flow Control 66

5.4.5. Miniature Valves State of the Art Trends in Automation Technology: Intelligent, decentralized subsystems Communicating over common data bus Miniaturization Integration of electronics Present Situation: Reduction of electric power consumption electromagnetic and piezoelectric actuation Typical power consumption 0.5 1 W Various miniaturized valves already feature power consumption below 10 mw which can be controlled by bus system Microfluidics - Jens Ducrée Flow Control 67

5.4.5. Miniature Valves State of the Art Electromagnetically actuated miniature valve: Manufacturer: SMC Type: 3-way, normally-closed Pressure range: 0 7 bar Flow rate:8 l / min Media: Temperature range: < 50 C Power: 500 mw Response time: < 10 ms Width of housing: 10 mm filtered, compressed air Quelle: Fa. SMC Microfluidics - Jens Ducrée Flow Control 68

5.4.5. Miniature Valves State of the Art Electromagnetically actuated miniature valve: Manufacturer: Bürkert Type: 3-way, normally closed Pressure range: 0 10 bar Flow: 4 l / min Media: dry, filtered air Temperature range: -25 C - 80 C Power: 10 mw Response time: 20 ms Source: Fa. Bürkert Microfluidics - Jens Ducrée Flow Control 69

5.4.5. Miniature Valves State of the Art Piezoelectrically actuated miniature valve: Manufacturer: Hoerbiger-Origa Type: 3-way, normally closed Pressure range: 0 2 bar Flow: 1.5 l / min Media: dry, filtered compressed air Temperature range: -10 C - 60 C Power: 6 mw Response time: 2 ms Housing: 19 mm Source: Hoerbiger-Origa Microfluidics - Jens Ducrée Flow Control 70

5.4. Active Microvalves 1. Definition and Concepts 2. Design Principles 3. Microvalve Actuation 4. 2-Way Microvalves 5. Microvalves for Pneumatic Systems 6. 3-Way Microvalves 7. Modelling of Flow in Microvalves Microfluidics - Jens Ducrée Flow Control 71

5.4.6. MegaMic Valve Series of HSG-IMIT Normally-open, electrostatically actuated 2-way valve valve plate chip Ventilplattenchip elastische Aufhängung elastic support opening Zuluftöffnung valve plate Ventilplatte valve gap Ventilspalt outlet Auslaßöffnung outlet chip Auslaßchip valve Ventilsitz seat Isolationsschicht insulation layer Microfluidics - Jens Ducrée Flow Control 72

5.4.6. Microvalves for Gases System concept 3-way valve (switch) Electrostatic actuation Normally-closed by mechanical pretension Gehäuse housing pressure port ceramics Keramik Auslass port pressure Druckanschluss port Entlüftung outlet port outlet Microfluidics - Jens Ducrée Flow Control 73

5.4.6. Microvalves for Gases System concept 3-way valve (switch) Electrostatic actuation Normally-closed by mechanical pretension U housing Gehäuse pressure port ceramics Keramik Druckanschluss Auslass port pressure port Entlüftung outlet port outlet Microfluidics - Jens Ducrée Flow Control 74

5.4.6 Microvalves Characteristics: Housing: Response time: Power: Pressure range: Max. flow: 7 x 10 x 16 mm³ < 1 ms 3 mw 10 bar (16 bar) 1 l / min Pneumatics (10 bar) Microfluidics - Jens Ducrée Flow Control 75

5.4.6 MegaMic-Valve Series of HSG-IMIT manufacturing of outlet wafer a e b f c g d 54,7 h Microfluidics - Jens Ducrée Flow Control 76

5.4.6 MegaMic-Valve Series of HSG-IMIT manufacturing process of valve plate chip a e b f c g d h Microfluidics - Jens Ducrée Flow Control 77

5.4.6 MegaMic-Valve Series of HSG-IMIT manufacturing of cover chip a Si e SiO2 Si b f c g d Microfluidics - Jens Ducrée Flow Control 78

5.4.6 MegaMic-Valve Series of HSG-IMIT full-wafer bonding and dicing of valve chip b a c Microfluidics - Jens Ducrée Flow Control 79

5.4.6 MegaMic-Valve Series of HSG-IMIT packaging and assembly cap contacts steel ball valve chip gasket metallization carrier (ceramics) gasket (flat) Microfluidics - Jens Ducrée Flow Control 80

5.4.6 MegaMic-Valve Series of HSG-IMIT Electrostatically actuated 3-way microvalve MegaMic Characteristics: -Pressure range: 10 bar -Flow rate: typ. 0.5 l / min -Response time: < 1 ms -Power: 3 mw -Temperature range: -40 C 80 C Microfluidics - Jens Ducrée Flow Control 81

5.4.6 MegaMic-Valve Series of HSG-IMIT Measurement of volume flow from pressure to working port Volume discharge 12 dv /dt [ml/min] 600 500 400 300 200 100 p 2 = 0 bar p 3 = 0 bar U e = 200 V Measurement valve 1_2 valve 2_2 valve 3_2 valve 4_2 pressure Druckanschluß 0 0 1 2 3 4 5 6 7 8 Pressure at pressure port p 1 [bar] working port Arbeitsanschluß outlet Entlüftung Microfluidics - Jens Ducrée Flow Control 82

5.4.6 MegaMic-Valve Series of HSG-IMIT Measurement of volume flow from pressure to outlet Volume discharge dv 23 /dt [ml/min] 600 500 400 300 200 100 p 1 = p 2 p 3 = 0 bar U e = 0 V 0 0 1 2 3 4 5 6 7 8 Pressure at working port p 2 [bar] Measurement valve 1_2 valve 2_2 valve 3_2 valve 4_2 pressure Druckanschluß working port Arbeitsanschluß outlet Entlüftung Microfluidics - Jens Ducrée Flow Control 83

5.4.6 MegaMic-Valve Series of HSG-IMIT Measurement of electric switching characteristics Volume discharge dv 12 /dt [ml/min] 500 400 300 200 100 U p s,2 U 1 = 6 bar s,1 p 2 = 0 bar p 3 = 0 bar 0-20 0 20 40 60 80 100 120 140 160 180 200 220 Voltage U e [V] Measurement valve 1_2 pressure Druckanschluß working port Arbeitsanschluß outlet Entlüftung Microfluidics - Jens Ducrée Flow Control 84

5.4.6. Applications for MegaMic Kooperation mit HOERBIGER-ORIGA Microfluidics - Jens Ducrée Flow Control 85

5.4.6. FhG-Institut für Siliziumtechnologie Valve type: 3-way normally-open Pressure distribution principle Nozzle / collision plate Actuation: thermomechanical Gap opening: 60 µm Media: Maximum pressure: Flow rate: Response time: Power: Gases 9 bar 1.5 l / min 35 ms 600 mw Temperature range:? Dimensions 6x6x2 mm³ Microfluidics - Jens Ducrée Flow Control 86

5.4.6. FhG-Institut für Siliziumtechnologie Valve type: 3-way normally-open Pressure distribution principle Nozzle / collision plate pressure Druckanschluß Arbeitsanschluß working port Entlüftung = outlet Drossel Microfluidics - Jens Ducrée Flow Control 87

5.4. Active Microvalves 1. Definition and Concepts 2. Design Principles 3. Microvalve Actuation 4. 2-Way Microvalves 5. Microvalves for Pneumatic Systems 6. 3-Way Microvalves 7. Modelling of Flow in Microvalves Microfluidics - Jens Ducrée Flow Control 88

1. Check Valves 2. Fixed-Geometry Valves 3. Actuation Principles 4. Active Micro-Valves 5. Fluerics 5. Flow Control Microfluidics - Jens Ducrée Flow Control 89

5.5. Flow Switches 1. Hydrodynamic Flow Switches 2. Microfluidic Flip-Flop 3. Hydrodynamic Oscillator 4. Microfluidic Proportional Amplifier Microfluidics - Jens Ducrée Flow Control 90

5.5.1. Hydrodynamic Flow Switch Microfluidics - Jens Ducrée Flow Control 91

5.5.2. Microfluidic Flip-Flop Microfluidics - Jens Ducrée Flow Control 92

5.5.3. Microfluidic Oscillator Microfluidics - Jens Ducrée Flow Control 93

5.5.4. Microfluidic Proportional Amplifier Microfluidics - Jens Ducrée Flow Control 94