Research Article Tapered Fiber Coated with Hydroxyethyl Cellulose/Polyvinylidene Fluoride Composite for Relative Humidity Sensor

Similar documents
MONITORING OF YEAST CELL CONCENTRATION USING A COUPLED MICROFIBER BASED OPTICAL SENSOR

Polymer optical fiber tapering using chemical solvent and polishing

Humidity Sensor Based on a Photonic Crystal Fiber Interferometer

Research Article Development of Glass/Jute Fibers Reinforced Polyester Composite

Characterisation of Fe-Ni amorphous thin films for possible magnetostrictive sensor applications

Research Article Feasibility Studies on Underwater Laser Surface Hardening Process

Highly Sensitive Pressure Measurement based on Multimode Fiber Tip Fabry-Perot Cavity

Research Article A Surface Acoustic Wave Ethanol Sensor with Zinc Oxide Nanorods

Corn Oil Concentrations Detection for Food Industry Research Development by Using Application of Fiber Optic Liquid Sensor Concept

Research Letter Properties of Reinforced Concrete Steel Rebars Exposed to High Temperatures

Introducing Jie Huang. Presentation to the Academy of Electrical and Computer Engineering, April 21, 2016

Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass

Fiber Bragg Gratings. Research, Design, Fabrication, and Volume Production. All capabilities within one company

Miniature fibre optic probe for minimally invasive photoacoustic sensing

A comparison of brazed metal and epoxied fibre Bragg grating strain sensors under high strain regimes

Research Article Vol. 54, No. 18 / /Applied Optics 1

UV15: For Fabrication of Polymer Optical Waveguides

Investigations on sensing properties of tapered photonic crystal fiber refractive index sensor

Longitudinal Strain Sensitive Effect in a Photonic Crystal Cavity

DETECTION OF LASER ULTRASONIC SURFACE DISPLACEMENT BY WIDE APERTURE FIBER OPTIC AMPLIFIER M.L. Rizzi and F. Corbani CESI, Milano, Italy

Optically thin palladium films on silicon-based substrates and nanostructure formation: effects of hydrogen

Nanophotonics: principle and application. Khai Q. Le Lecture 11 Optical biosensors

Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1

FRAUNHOFER INSTITUTE FOR PHOTONIC MICROSYSTEMS IPMS SMART MATERIALS

Strain Gauge Technology

Research Article A Study of the Quench Sensitivity of 6061-T6 and 6069-T6 Aluminum Alloys

Research Article Behaviour of NiTi SMA Helical Springs under Different Temperatures and Deflections

Efficient multi-mode to single-mode conversion in a 61 port Photonic Lantern

Enhanced Erbium Zirconia Yttria Aluminum Co-Doped Fiber Amplifier

Strain and Temperature Sensors Using Multimode Optical Fiber Bragg Gratings and Correlation Signal Processing

Photonic Crystal Fiber Half-Taper Probe Based Refractometer

Utilizations of two-stage erbium amplifier and saturable-absorber filter for tunable and stable power-equalized fiber laser

Simultaneous Reflection and Transmission Measurements of Scandium Oxide Thin Films in the Extreme Ultraviolet

TOTAL INTERNAL REFLECTION IN PRISM Analyzing purity of liquids based on sensor characteristics

Short Length High Gain ASE Fiber Laser at 1.54µm by High Co-doped Erbium and Ytterbium Phosphate Laser Glasses

CALIBRATION OF THE MICRON OPTICS TEMPERATURE SENSORS FOR FIBER OPTIC THEMO-HYGROMETERS FOR CMS TRACKER

Lecturer: Ivan Kassamakov, Docent Assistants: Risto Montonen and Anton Nolvi, Doctoral

FBG-BASED DISPLACEMENT AND STRAIN SENSORS FOR HEALTH MONITORING OF SMART STRUCTURES

Polymer optical fiber grating as water activity sensor

An overview of optical fiber sensor applications in liquid concentration measurements

Microfurnace Design for Fabrication of Tapered Optical Fiber Conveyor Belts

Fiber and Electro-Optics Research Center Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061

Optical-Based Sensors for Monitoring Corrosion of Reinforcement Rebar via an Etched Cladding Bragg Grating

TEMPERATURE-DEPENDENT REFRACTIVE INDICES OF OPTICAL PLANAR WAVEGUIDES

CONTENTS. Introduction. NSOM Optical Fiber Probes

Research Article Span Length Variance Effect on the Fatigue Life of FRP Bridge Deck

Supplementary Information: Hybrid polymer photonic crystal fiber with integrated chalcogenide. glass nanofilms

Fiber Bragg grating sensor based on external cavity laser

REAGENTLESS SENSORS WAVEGUIDE GRATING COUPLING SENSORS MACH-ZEHNDER INTERFEROMETER SENSORS SURFACE PLASMON RESONANCE SENSORS

sensors ISSN

A modified cup-method for lightweight and highly permeable materials.

Design of an Enhanced Sensitivity FBG Strain Sensor and Application in Highway Bridge Engineering

Strain Sensitivity Enhancement in Suspended Core Fiber Tapers

Plasma Quest Limited

Design considerations for large-mode-area polarization maintaining double clad fibers

Preparation and characterization of highly thulium- and alumina-doped optical fibers for single-frequency fiber lasers

SUPPLEMENTARY INFORMATION

Optical and Quantum Electronics Characterization of Arc-shaped Side-polished Fiber

High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers

AN INEXPENSIVE TECHNIQUE TO FABRICATE HYBRID GLASS/PLASTIC OPTICAL FIBER SENSORS FOR STRUCTURAL HEALTH MONITORING

High Sensitivity of Phase-based Surface Plasmon Resonance in Nano-cylinder Array

Title: Localized surface plasmon resonance of metal nanodot and nanowire arrays studied by far-field and near-field optical microscopy

Structure and Luminescence Properties of Y 2 O 3 :Eu 3+ Nanophosphors

Attorney Docket No Date: 6 November 2007

Research Article Structural, Thermal, Optical, Electrical, and Adhesive Characteristics of FePdB Thin Films

DEVELOPMENT OF OPTICAL FIBER INSTRUMENTATION FOR USE IN SODIUM COOLED FAST REACTORS

Optimization of Water based Optical Filter for Concentrated Crystalline Si PV/T System - A Theoretical Approach

ECE 541/ME 541 Microelectronic Fabrication Techniques

Superstructure Fiber Bragg Grating based Sensors

Ellipsometry as a tool for identifying process issues in roll-to-roll sputter deposited metal-oxide coatings

Ytterbium-doped Aluminum-codoped Sol-Sel Silica Glass Fiber Laser

Shur-Shot X-Proof Hydrogen Fluoride Alarm Operations Manual

INNOVATION IN CORROSION MONITORING IN SEWERS USE OF NOVEL PHOTONIC SENSORS FOR HUMIDITY MEASUREMENTS IN GRAVITY SEWERS

Research Article The Study for Saving Energy and Optimization of LED Street Light Heat Sink Design

Fiber Bragg Grating Strain Sensors for Marine Engineering

OPTICAL FIBRES. MULTIMODE Multimode Optical Fibres 50/125 Multimode Optical Fibres 62,5/125. SINGLEMODE Singlemode Optical Fibre

Smart Oxygen Cuvette for Optical Monitoring of Dissolved Oxygen in Biological Blood Samples

Fiber Lasers: Technology, Applications and Associated Laser Safety

Confocal Microscopy of Electronic Devices. James Saczuk. Consumer Optical Electronics EE594 02/22/2000

Shufan Chen, Chuanqun Huang, Xiaodong Jiang, Xuan Luo, Yu Fang, and Weidong Wu

Pattern Formation in PMMA Film Induced by Electric Field

Evanescent field sensors based on fibre optic structures

Near Infrared Characterization of Hetero-Core Optical Fiber SPR Sensors Coated with Ta 2 O 5 Film and Their Applications

Supporting Information: Gold nanorod plasmonic upconversion microlaser

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

Research Article Cutting NiTi with Femtosecond Laser

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Development and Comparison of Fiber-Optic Water Temperature Sensors with Different Sized Metal Caps

The prospective for the biodegradable microstructured optical fibers

Solar Cells and Photosensors.

Oligomer-Coated Carbon Nanotube Chemiresistive Sensors for Selective Detection of Nitroaromatic Explosives

Research Article Development and Performance Assessment of the High-Performance Shrinkage Reducing Agent for Concrete

Intrinsic Fabry-Perot Interferometeric Sensor Based on Microfiber Created by Chemical Etching

Micro-Structured Fiber Interferometer as Sensitive Temperature Sensor

High Gain Coefficient Phosphate Glass Fiber Amplifier

Quantum Dot Band Gap Investigations

Robert Wiegmann, Yiyun Zhang, Alexander Yarin. 31 July Contact:

City, University of London Institutional Repository

Evaluation of Corrosion Growth on SS304 Based on Textural and Color Features from Image Analysis

Transcription:

Advances in Materials Science and Engineering Volume 2013, Article ID 624314, 4 pages http://dx.doi.org/10.1155/2013/624314 Research Article Tapered Fiber Coated with Hydroxyethyl Cellulose/Polyvinylidene Fluoride Composite for Relative Humidity Sensor M. Z. Muhammad, 1 A. Lokman, 1 M. Batumalay, 1,2 H. Arof, 1 H. Ahmad, 2 and S. W. Harun 2 1 Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence should be addressed to M. Z. Muhammad; mzuhdin73@yahoo.com Received 15 June 2013; Accepted 23 August 2013 Academic Editor: Moh Yasin Copyright 2013 M. Z. Muhammad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A simple relative humidity (RH) sensor is demonstrated using a tapered fiber coated with hydroxyethyl cellulose/polyvinylidene fluoride (HEC/PVDF) composite as a probe. This coating acts as an inner cladding whose refractive index decreases with the rise in humidity and thus allows more light to be transmitted in humid state. A difference of up to 0.89 db of the transmitted optical power is observed when RH changes from 50% to 80% in case of the silica fiber probe. The proposed sensor has a sensitivity of about 0.0228 db/%rh with a slope linearity of more than 99.91%. In case of the plastic optical fiber (POF) probe, the output voltage of the sensor increases linearly with a sensitivity of 0.0231 mv/%rh and a linearity of more than 99.65% as the relative humidity increases from 55% to 80%. 1. Introduction Recently, many efforts have been focused on developing various optical fiber sensors. Compared with the conventional electrical sensors, the fiber sensors are cheaper and more suitable to be used in hazardous or explosive environments or places where electromagnetic interference immunity is required. They also offer the possibility of multiplexing a large number of different sensors (temperature, displacement, pressure, ph value, humidity, high magnetic field, and acceleration) into the same optical fiber, thus reducing the need for multiple cabling required in traditional electronic sensing [1]. On the other hand, tapered fibers have also attracted considerable interests in recent years, as they exhibit a number of exciting properties[2 4]. The tapered fibers have a large evanescent field that travels along the cladding, which can be manipulated for various sensing applications. For instance, Muto et al. demonstrated humidity sensors which are based on reversible absorption of water (H 2 O) from the ambient atmosphere into a porous thin-film interferometer that sits on the tapered fiber [5]. The water absorbed from the ambience changes the refractive index of the thin films and subsequently transforms the lossy fiber into a light guide. Humidity sensing was also demonstrated using a tapered fibre with agarose gel [6]. In this paper, we present innovative optical fiber humidity sensors based on microfiber structures coated with a polymer blend of hydroxyethyl cellulose/polyvinylidene fluoride (HEC/PVDF) composite. The composite coating changes its optical properties in response to the change in relative humidity of its surrounding. The measurement is based on intensity modulationtechniquewheretheoutputintensityorvoltage of the transmitted light is investigated for changes in relative humidity. The performance of the sensor is investigated for two different types of fiber: standard communication single-modefiber(smf)andmultimodeplasticopticalfiber (POF). Compared with silica based fiber, plastic optical fibers (POFs) possess several advantages such as ease of handling, mechanical strength, disposability, and easy mass production of components and system.

2 Advances in Materials Science and Engineering Humidity-temperature meter Seal chamber Sensor probe He-Ne laser Humidity-temperature meter Chopper Seal chamber Sensor probe Silicon detector ASE SMF Saturated salt SMF Modulator Saturated salt OSA Lock-in amplifier Computer (a) Silica nonadiabatic tapered fiber probe (b) Tapered POF probe Figure 1: Experimental setup of the proposed relative humidity sensor based on two different probes (a) silica nonadiabatic tapered fiber (b) tapered POF which are coated with HEC/PVDF composite. Inset of (a) shows the sample of HEC/PVDF solution and its microscopic image. 2. Experimental Arrangement Preliminary research has reported a variety of sensing materials, such as polyimide, crystal violet, porous silica xerogel [7], agarose, and a variety of methyl polymers that can be used to coat the tapered especially for humidity measurement. Here, we chose a combination of hydroxyethyl cellulose (HEC) and polyvinylidene fluoride (PVDF), as the sensing materials since they are relatively common and inexpensive. First, 1 g of PVDF powder (Mw = 275,000) was dissolved in 120 ml dimethyl sulfoxide (DMSO) and 100 ml of distilled water. Then 4 g of hydroxyethyl cellulose (HEC) was added to the PVDF solution. The mixed solution was continuously stirred at room temperature for about 10 hours in order to generate three-dimensional structure of the mesh gel (hydrogel). DMSO was used in the preparation of HEC/PVDF as solvent sincehecisonlysolubleinwaterwhilepvdfisinsolublein water. A tapered fiber was then prepared from a standard communication SMF using a flame brushing technique. The SMF had core and cladding diameters of 8.3 μmand125μm, respectively, and the coating of a short section of the fiber (about several cm in length) was removed prior to the tapering process. The fiber was pulled only from one side by a controllable motor. During the tapering, the torch moved back and forth along the uncoated segment as its flame brushes against the exposed core while the fiber was being stretched. The moving torch provided a uniform heat so that the tapered fiber was elongated with good uniformity along the heated region. The waist diameter of the fabricated microfiberis estimated to be around5μm. After the tapering process, the fiber was held straight by translation stages so that the sensing material could be deposited onto the tapered section for humidity sensor. Next, the prepared HEC/PVDF composite solution was slowly dropped onto the microfiber using syringe and left to dry for 48 hours. Figure 1(a) shows the experimental setup for the proposedsensortodetectchangeinrelativehumidityusing the silica nonadiabatic tapered fiber coated with HEC/PVDF composite. The input and output ports of the microfiber are connected to amplified spontaneous emission (ASE) laser source and optical spectrum analyzer (OSA), respectively. Thesensorprobeisplacedinasealedchamberwithadish filled with saturated salt solution. Exposing the HEC/PVDF composite to the RH changes inside the chamber produces variations in the output optical power. In the experiment, the performance of the proposed sensor was investigated for various changes in relative humidity ranging from 50% to 80% using 1365 data logging humidity-temperature meter. Inset of Figure 1(a) shows the sample of the polymer composite solution, which was obtained by blending of HEC and PVDF and its microscopic image. The linear type of tapered POF was then prepared using acetone, deionized water and sand paper in accordance with chemical etching technique. The POF has an overall cladding diameter of 1 mm, a numerical aperture of 0.51, and an acceptance angle of 61. The refractive indexes of the core and cladding are 1.492 and 1.402, respectively. The acetone was appliedtothepofusingacottonbudandneutralizedwith deionized water. The acetone reacted with the surface of the polymertoformmilkywhitefoamontheoutersurfaceof the cladding which was then removed by the sand paper. This process was repeated until the tapered fiber has a stripped region waist diameter of about 0.45 mm. The total length of the tapered fiber for this section was around 10 mm. Finally, the tapered POF was cleansed again using the deionized water. Both ends of the POF were held and straightened on translation stages to deposit the HEC/PVDF onto the tapered fiber using the similar process as the silica fiber. Experimental setup of the proposed POF-based relative humidity sensor is shown in Figure 1(b), which consists of a light source, an external mechanical chopper, the proposed sensor, 1365 data logging humidity-temperature meter, a silicon photodetector, a lock-in amplifier, and a computer. The input and output ports of the tapered POF are connected to the laser source and photodetector, respectively. The light source used in this experiment is a He-Ne laser operating at a wavelength of 633 nm with an average output power of 5.5mW.Itwaschoppedatafrequencyof113Hzbyamechanical chopper to avoid the harmonics from the line frequency, whichisabout50to60hz.thehe-nelightsourcewas launched into the tapered POF placed in a sealed chamber with a dish filled with saturated salt solution. The output light was sent into the silicon photodetector to be converted into electrical signal. Then the electrical signal together with the reference signal from the mechanical chopper was fed into the lock-in amplifier. Finally, the output from the lock-in

Advances in Materials Science and Engineering 3 Output power (dbm) 22.0 22.2 22.4 22.6 y = 0.0007x 2 + 0.123x 27.305 R 2 = 0.9982 16.6 16.7 16.8 16.9 17.0 22.8 y = 0.0004x 2 0.0428x 15.874 R 2 = 0.9861 17.1 23.0 17.2 50 55 60 65 70 75 80 Relative humidity (RH) (%) Figure 2: The transmitted light from the silica tapered fiber against the relative humidity. amplifier was delivered to a computer through an RS232 port interface, and the signal was processed. The reference signal from the chopper was matched with the input electrical signal from the photodiode. This makes a very sensitive detection system that will remove the noise generated by the laser source, photodetector, and the electrical amplifier in the photodetector. In the experiment, the performance of the proposed sensor was investigated for various changes in relative humidity ranging from 50% to 80% using 1365 data logging humidity-temperature meter. 3. Result and Discussion The characteristic of the proposed sensor against RH is investigated with and without the HEC/PVDF composite coating for both sensor probes.figure 2 shows the variation of the transmitted light intensity through the nonadiabatic tapered silica fiber against the RH. As seen, the intensity of the transmitted light from the microfiber increases with the increment of humidity for both cases. Without the HEC/PVDF layer, an output power dynamic range of 0.24 db is obtained for 50% to 80% RH variation. The sensitivity of the sensor significantly increases when the tapered fiber is coated by the HEC/PVDF composite. It is observed that the intensity of the transmitted light of the coated microfiber leaps in a quadratic fashion to the increase of the relative humidity. For instance, the intensity of the transmitted light increases by 0.89 db as the RH is increased from 50% to 80% as shown in Figure 2. The adjusted R-square value or the coefficient of the determination which corresponds to the measure of the goodness of fit is 0.9982. In dry state, the humidity sensitive composite layer has an RI value of 1.492, which is slightly higher than that of the core. This suggests that the propagating light inside the tapered fiber leaks out from the core at some areas where the composite layer is thick. At these areas, the effective refractive index of the cladding is slightly higher than that of the core. This causes the microfiber to become a lossy waveguide and reduces the intensity of the light propagating through the device. As the cladding layer hydrates, the RI value falls Output power (dbm) Output voltage (mv) 1.4 1.2 1.0 0.8 0.6 0.4 y=7e 05x 2 0.0061x + 0.6416 R 2 = 0.9737 0.2 50 55 60 65 70 75 80 85 Relative humidity (%) y = 0.0006x 2 + 0.1045x 3.3891 R 2 = 0.9869 Figure 3: Output voltage against RH for the POF-based sensor with and without HEC/PVDF composite coating. below that of the core and thereby increases the intensity of propagating light. The sensing system has a sensitivity of 0.0228 db/%rh and a slope linearity of more than 99.91%. Figure 3 shows the variation of the transmitted light from the tapered POF against the RH for fiber with and without HEC/PVDF composite deposited onto the tapered region. As expected, the change in the intensity of the transmitted light of the HEC/PVDF composite on tapered fiber increases with RH in a quadratic manner. The adjusted R-square value or the coefficient of the determination is the measure of the goodness of fit which is 0.9869. The considerably high values of the adjusted R-square allow the prediction of unknown relative humidity by the model. This is opposed to the trend demonstrated by the bare fiber where the output remains constant despitetheincreaseofrelativehumidity.thehumiditysensitive layer of the composite has an RI value which is higher than that of the core in dry state. This situation creates a lossy waveguide, and as the cladding layer hydrates, the RI value falls below that of the core and increases the intensity of light propagating through the core. Since the plastic fiber has a higher refractive index than that of the silica fiber, the POFbased sensor is more sensitive compared with that of the silica-fiber one. Figure 4 depicts the output voltage from the photodetector which shows that the transmitted light intensity linearly increases as the relative humidity rises from 55 to 80%. The bare fiber (without HEC/PVDF) has a sensitivity of 0.0034 mv/%rh with a slope linearity of more than 94.71% and limit of detection of 45.45%. Meanwhile, the probe with the HEC/PVDF composite produces a better sensitivity of 0.0231 mv/%rh with a better slope linearity of more than 99.65% and a limit of detection of 5.75%. The lower limit of detection for the probe with HEC/PVDF shows that the system is more efficient. Overall, the sensor is observed to be sufficiently stable with a standard deviation of 0.133 mv for POF probe with HEC/PVDF composite as recorded in time duration of 100 seconds. Throughout the experiment,

4 Advances in Materials Science and Engineering Output voltage (mv) 1.4 1.2 1.0 0.8 0.6 0.4 y = 0.0034x + 0.3219 R 2 = 0.897 0.2 55 60 65 70 75 80 Relative humidity (%) y = 0.0231x 0.6083 R 2 = 0.993 Figure 4: Performance of the POF-based RH sensor within a measurement range from 55% to 80%. [3] M.Z.Muhammad,A.A.Jasim,H.Ahmad,H.Arof,andS.W. Harun, Non-adiabatic silica microfiber for strain and temperature sensors, Sensors and Actuators A, vol. 192, pp. 130 132, 2013. [4] S. W. Harun, K. S. Lim, S. S. A. Damanhuri, and H. Ahmad, Microfiber loop resonator based temperature sensor, Journal of the European Optical Society, vol. 6, Article ID 11026, 2011. [5]S.Muto,O.Suzuki,T.Amano,andM.Morisawa, Aplastic optical fibre sensor for real-time humidity monitoring, Measurement Science and Technology, vol.14,no.6,pp.746 750, 2003. [6] C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, Optical fiber humidity sensor based on a tapered fiber coated with agarose gel, Sensors and Actuators B,vol.69,no.1,pp.127 131, 2000. [7] J.Estella,P.DeVicente,J.C.Echeverría, and J. J. Garrido, A fibre-optic humidity sensor based on a porous silica xerogel film as the sensing element, Sensors and Actuators B,vol.149,no.1, pp.122 128,2010. the corresponding output voltage was measured by a lockin amplifier which provided accurate measurements even though the signal was relatively very small compared with noise. Furthermore, a well-regulated power supply is used for the red He-Ne laser and this minimizes the fluctuation of source intensity. These results show that the proposed sensor is applicable for relative humidity sensing and also has the ability to provide real time measurement. 4. Conclusion A simple humidity sensor is proposed and demonstrated using a tapered fiber coated with HEC/PVDF composite as a probe. In the case of silica fiber probe, the intensity of the transmitted light increases by 0.89 db as the relative humidity risesfrom50%to80%.thisisattributedtotheeffective refractive index of the composite, which increases as the humiditylevelreducedandresultedinariseofthetransmitted light. The sensitivity of the proposed sensor is estimated to be around 0.0228 db/%rh with a linearity of more than 99.91%. In case of the POF probe, the output voltage of the sensor increases linearly with a sensitivity of 0.0231 mv/%rh and a linearity of more than 99.65% as the relative humidity increases from 55% to 80%. Acknowledgment The authors acknowledge the financial support from the Ministry of Higher Education (Grant no. ER012-2012A). References [1] T. L. Yeo, T. Sun, and K. T. V. Grattan, Fibre-optic sensor technologies for humidity and moisture measurement, Sensors and Actuators A,vol.144,no.2,pp.280 295,2008. [2] H. A. Rahman, S. W. Harun, M. Yasin et al., Tapered plastic multimode fiber sensor for salinity detection, Sensors and Actuators A,vol.171,no.2,pp.219 222,2011.

Nanotechnology International International Corrosion Polymer Science Smart Materials Research Composites Metallurgy BioMed Research International Nanomaterials Submit your manuscripts at Materials Nanoparticles Nanomaterials Advances in Materials Science and Engineering Nanoscience Scientifica Coatings Crystallography The Scientific World Journal Textiles Ceramics International Biomaterials