AquaNereda Aerobic Granular Sludge Technology

Similar documents
RYKI WASTEWATER TREATMENT PLANT FIRST NEREDA IN POLAND Authors: Joana Doutor, Janusz Sławiński and Bart de Bruin

Aerobic Granular Sludge System

GRANULAR ACTIVATED SLUDGE

OPERATING RESULTS FROM THE FIRST FULL SCALE AEROBIC GRANULAR SLUDGE NEREDA PLANT EPE WWTP

Innovative wastewater treatment using aerobic granular sludge The Nereda technology

Aqua MSBR MODIFIED SEQUENCING BATCH REACTOR

SBR PROCESS FOR WASTEWATER TREATMENT

NEREDA Innovative technology for cost-effective, energy efficient, sustainable and profitable wastewater treatment

Key Points. The Importance of MCRT/SRT for Activated Sludge Control. Other (Confusing) Definitions. Definitions of SRT

AquaPASS. Aqua MixAir System. Phase Separator. System Features and Advantages. Anaerobic. Staged Aeration. Pre-Anoxic.

Hybrid Sequencing Batch Reactors (SBR) Offer an Efficient Wastewater Treatment

TWO YEARS OF BIOLOGICAL PHOSPHORUS REMOVAL WITH AN ADVANCED MSBR SYSTEM AT THE SHENZHEN YANTIAN WASTEWATER TREATMENT PLANT

Proprietary AquaTron technology incorporates three (3) innovative features that increase its efficiency and reduces cost:

Waste water treatment

COMPARISON OF SBR AND CONTINUOUS FLOW ACTIVATED SLUDGE FOR NUTRIENT REMOVAL

Contents General Information Abbreviations and Acronyms Chapter 1 Wastewater Treatment and the Development of Activated Sludge

ISAM INTEGRATED SURGE ANOXIC MIX

SBR FOR LOW FLOW APPLICATIONS

USE OF GRANULAR SLUDGE TO INCREASE THE CAPACITY OF SEQUENCING BATCH REACTORS

Water Technologies. The AGAR Process: Make Your Plant Bigger Without Making it Bigger

We Know Water. AnoxKaldnes. Moving Bed Biofilm Reactor (MBBR) Integrated Fixed-Film Activated Sludge (IFAS) and ANITA Mox Deammonification

Case Study. Biological Help for the Human Race. Bathurst Municipal Wastewater Treatment Works, New South Wales, Australia.

NEW BIOLOGICAL PHOSPHORUS REMOVAL CONCEPT SUCCESSFULLY APPLIED IN A T-DITCH PROCESS WASTEWATER TREATMENT PLANT

Nutrient Removal Optimization at the Fairview WWTP

TREATMENT OF HOSPITAL WASTEWATER USING ACTIVATED SLUDGE COMBINED WITH BIOLOGICAL CONTACTOR

Module 17: The Activated Sludge Process - Part III Answer Key

- 1 - Retrofitting IFAS Systems In Existing Activated Sludge Plants. by Glenn Thesing

BIOLOGICAL PHOSPHOROUS REMOVAL AN OPERATOR S GUIDE

New Developments in BioWin 5.3

BIOSPHERE MOVING BED BIOLOGICAL SYSTEMS

FIRST APPLICATION OF THE BABE PROCESS AT S-HERTOGENBOSCH WWTP. Pettelaarpark 70, PO Box GA, s-hertogenbosch, The Netherlands

AN OPERATOR S PERSPECTIVE; THE FIRST NEREDA WWTP IN KINGAROY, AUSTRALIA.

ADVANCING NOVEL PROCESSES FOR BIOLOGICAL NUTRIENT REMOVAL

Case Study. BiOWiSH Aqua. Biological Help for the Human Race. Municipal Wastewater Bathurst Waste Water Treatment Works Australia.

Simultaneous Nutrient Removal: Quantification, Design, and Operation. Leon Downing, Ph.D., PE Donohue & Associates

NITROGEN REMOVAL GRANT WEAVER, PE & WWTP OPERATOR PRESIDENT THE WATER PLANET COMPANY. Create Optimal Habitats

Choices to Address Filamentous Growth

SECTION 8.0 NEWPCC SECOND PRIORITY CONTROL ALTERNATIVES

City of Elk River Wastewater Treatment Facility Improvements. Achieving Wastewater Treatment Goals

Global Leaders in Biological Wastewater Treatment

Nutrient Removal Processes MARK GEHRING TECHNICAL SALES MGR., BIOLOGICAL TREATMENT

COLD WEATHER NITRIFICATION OF LAGOON EFFLUENT USING A MOVING BED BIOFILM REACTOR (MBBR) TREATMENT PROCESS

SIMPLE and FLEXIBLE ENERGY SAVINGS And PERFORMANCE ENHANCEMENT for OXIDATION DITCH UPGRADES

Upgrade of an Oxidation Ditch Using Bio-Mass Carriers

Aeration Basics the Bug s Eye View

Presentation Outline

CTB3365x Introduction to Water Treatment

Goals of Process Analysis. Process Operation of the Winslow WWTP. Initial Operations Analysis. Flow Data from 1/2014 to 3/2015 8/14/2015

Palmer Wastewater Treatment Plant Environmental Impacts. A summary of the impacts of this treatment alternative are listed below:

Activated Sludge Process Control: Nitrification

ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL WITHIN MEMBRANE BIOREACTORS. 255 Consumers Road Toronto, ON, Canada, M2J 5B6

ENHANCING THE PERFORMANCE OF OXIDATION DITCHES. Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis

BEING GOOD STEWARDS: IMPROVING EFFLUENT QUALITY ON A BARRIER ISLAND. 1.0 Executive Summary

RE ENGINEERING O&M PRACTICES TO GET NITROGEN & PHOSPHORUS REMOVAL WITHOUT FACILITY UPGRADES

Removal of High C and N Contents in Synthetic Wastewater Using Internal Circulation of Anaerobic and Anoxic/Oxic Activated Sludge Processes

AnoxKaldnes. Moving Bed Biofilm Reactor (MBBR) and Integrated Fixed-Film Activated Sludge (IFAS)

General Information on Nitrogen

BIOLOGICAL WASTEWATER BASICS

1/11/2016. Types and Characteristics of Microorganisms. Topic VI: Biological Treatment Processes. Learning Objectives:

Domestic Waste Water (Sewage): Collection, Treatment & Disposal

AMPC Wastewater Management Fact Sheet Series Page 1

AMPC Wastewater Management Fact Sheet Series Page 1

WASTEWATER TREATMENT PLANT MASTER PLAN 6. BUSINESS CASE EVALUATION OF ALTERNATIVES

We Know Water. AnoxKaldnes. Moving Bed Biofilm Reactor (MBBR) Integrated Fixed-Film Activated Sludge (IFAS) and ANITA Mox Deammonification

WASTEWATER DEPARTMENT. Bentonville Wastewater Treatment Plant Facts:

Evaluation of Conventional Activated Sludge Compared to Membrane Bioreactors

WWTP Side Stream Treatment of Nutrients Considerations for City of Raleigh s Bioenergy Recovery Project. Erika L. Bailey, PE, City of Raleigh

AMMONIA REMOVAL USING MLE PROCESS EXPERIENCES AT BALLARAT NORTH. David Reyne. Central Highlands Water Authority

DISCUSSION PAPER. 1 Objective. 2 Design Flows and Loads. Capital Regional District Core Area Wastewater Management Program

CSR Process Simulations Can Help Municipalities Meet Stringent Nutrient Removal Requirements

Biological Phosphorus Removal Technology. Presented by: Eugene Laschinger, P.E.

Aerobic Granular Biomass Technology: advancements in design, applications and further developments

Chapter 11. Secondary Clarifiers

Removal of High Ammonia Levels from Municipal Wastewater Using Humic Acid and Selective Bio-Augmentation

Aqua-Aerobic MBR Topics

Secondary Treatment Process Control

Advances in Nitrogen and Phosphorus Removal at Low DO Conditions

OPTIMIZING THE OPERATION OF ACTIVATED SLUDGE WASTEWATER TREATMENT FACILITIES GRANT WEAVER, PE & WASTEWATER OPERATOR WEBINAR MARCH 18, 2014

THE SEQUENCED AERATION PROCESS MONTAGUE, MASSACHUSETTS

2015 HDR, Inc., all rights reserved.

The High-Tech of a Creek. The Biofilm Technology for Large Wastewater Treatment Plants.

Design, Construction and Startup of the First Enhanced Nutrient Removal Plant in Maryland Funded by the Chesapeake Bay Restoration Fund

CLR Process. Vertical Loop Configuration

NUTRIENT REMOVAL PROCESSES IN WASTEWATER TREATMENT. We re Glad You re Here!

LEMNA BIOLOGICAL TREATMENT PROCESS LEMTEC TM TECHNOLOGIES, INC.

We Know Water. AnoxKaldnes. Moving Bed Biofilm Reactor (MBBR) Integrated Fixed-Film Activated Sludge (IFAS) and ANITA Mox Deammonification

WASTEWATER TREATMENT SYSTEM

Advances in Wastewater Treatment Technology

Compact Waste Water Treatment MBR /MBBR Technology

Upgrading Lagoons to Remove Ammonia, Nitrogen, and Phosphorus *nutrient removal in cold-climate lagoon systems

Traditional Treatment

Effect of the start-up length on the biological nutrient removal process

DELIVERING SUSTAINABLE WASTEWATER TREATMENT USING AEROBIC GRANULAR SLUDGE THE NEREDA STORY

Waste Water Treatment Plant Overview and Tour

CORPORATION THE EXPERIENCED LEADER IN SEQUENCING BATCH REACTOR TECHNOLOGY

Turbo4bio System For the Treatment of Sewage & Organic Effluents

Oxidation Ditch Technologies

Aqua Hybrid BNR. Description

Advantages & Applications of MBBR Technologies

State-of-the-art Treatment Technology for Challenging Wastewaters Generated from Processing Opportunity Crudes

Transcription:

Aerobic Granular Sludge AquaNereda Aerobic Granular Sludge Technology The AquaNereda Aerobic Granular Sludge (AGS) Technology is an innovative biological wastewater treatment technology that provides advanced treatment using the unique features of aerobic granular biomass. An aerobic granular biomass is comprised of compact granules that provide advantages compared to other secondary treatment processes. This advanced nutrient removal process can reduce footprint up to 75% and energy up to 50% when compared to conventional activated sludge systems. One of the defining characteristics of the granule is rapid settling which in turn allows for an increase in the biomass concentration. The granules are comprised of true biomass and do not require carriers. The layered microbial community that forms the granule is able to achieve enhanced biological nutrient removal, including simultaneous nitrification/denitrification and phosphorous reduction. Background: A public-private research partnership in the Netherlands between Delft University of Technology and Royal HaskoningDHV led to the development of the first technology applying aerobic granular sludge, full-scale. Currently, over 30 full-scale Nereda plants are operational or under design and construction across five continents, of which the oldest are more than 10 years in operation. As of September 2016, Aqua-Aerobic Systems, Inc. became the exclusive licensee of the technology in the United States. Advantages: The aerobic granular sludge process offers numerous advantages when compared to a conventional activated sludge process, including but not limited to: Enhanced Settling Properties: In an AGS process, the bacteria are present as large dense granules as opposed to suspended flocs. The granular density increases the settling rate up to 15 times faster than sludge from a conventional activated sludge system. Figure 1 below compares the settling properties of aerobic granules and conventional activated floc after five minutes. Figure 1: Aerobic Granular Sludge (left) vs. Conventional Activated Sludge (right) 2017 Aqua-Aerobic Systems, Inc.

Page 2 of 8 By overcoming settling limitations seen in conventional activated sludge systems, the mixed liquor can be increased significantly which allows for a greater treatment capacity. The sludge volume index decreases to values of 30-50 ml/g which allows the bioreactor to operate at MLSS concentrations of 8,000 mg/l or well above. Up to 75% Reduced Footprint: Footprint is reduced due to the full nutrient removal process taking place in a single reactor. Supplemental tanks such as primary clarifiers, selector basins, separate anoxic and aerobic compartments, and secondary clarifiers are not required. In addition, the biomass operates at a higher concentration thus allowing for an increased treatment capacity within a single tank. Up to 50% Energy Savings: Reduction of air requirements in the bioreactor tank allow for energy savings. The substrate and oxygen utilization rates in a granular system lower the specific energy and airflow. Based on the operation in a single reactor, the equipment required for the aerobic granular sludge process is significantly reduced when compared to conventional activated sludge systems. As such, recycle sludge pumps are not needed in an AquaNereda plant. The combination of reduced aeration and mechanical components results in an energy savings of up to 50%. Figure 2: Full Scale Power Consumption Data from Garmerwolde WWTP (Nereda runs in parallel to CAS) The compact bioreactor combined with the granular sludge metabolic rates allow for lower specific energy as seen in Figure 2. In addition, there is an automated control of the process that allows energy savings and process optimization. Low Life Cycle Cost: The reduction in mechanical equipment necessary to achieve enhanced BNR requirements lowers the construction, operating, and maintenance costs. In addition, chemical consumption is reduced due to the high bio-p uptake in the granular biomass. These savings in operation and maintenance, as well as the lower construction costs, result in attractive whole life cycle costs. Process: Aerobic Granule: Aerobic granular sludge combines the technical advantages of biofilm systems, including compactness and high metabolic rates, with those of activated sludge, such as the ability to achieve full biological nutrient removal in one mixed biomass population, without the need for biofilm carriers. Aerobic, anoxic and anaerobic biological

Page 3 of 8 processes take place simultaneously in the granular biomass. Figure 3 below displays the differences between activated sludge floc and aerobic granular sludge. Figure 3: Activated Sludge vs. Aerobic Granular Sludge (courtesy Delft University of Technology) In a conventional activated sludge system, bacteria are present in flocs which are suspended in bulk liquid. Liquid solid separation in a flocculant sludge system occurs by using sedimentation in clarifiers. Due to the fact that flocs have low density, the settling time is much greater than a denser granular biomass, which will achieve full settling in five minutes. As a result, a conventional plant is designed at 2,500 mg/l 5,000 mg/l of mixed liquor, compared to an aerobic granular sludge plant at 8,000 mg/l or higher. Aerobic granular sludge, as seen on the right in Figure 4, displays a greater concentration of specialized microorganisms that are layered. Different types of microorganisms will grow in the granule that can result in a typical particle size of 1.2-1.5 mm in diameter. Nitrifiers reside on the outer layer of the granule and denitrifying bacteria are present in the deeper layers. Figure 4: (left) Zones of the Granule / Figure 5: (right) Oxygen Penetration During aeration oxygen can penetrate about 100-200 microns into the granule before the oxygen is depleted as seen in Figure 5. This results in the inner part of the granule near the core to be an anaerobic zone and the outside layers to be aerobic and anoxic zones as seen in Figure 4. Both the oxygen and substrate are transported into the granule via diffusion. Phosphate accumulating organisms (PAO s) and glycogen accumulating organisms (GAO s) are present throughout the biomass and have the ability to form extracellular polymeric substance (EPS) that is the building block for granular formation. Extra Cellular Polymeric Substance (EPS): Due to its robust structure, the granule has the ability to withstand upset conditions. The extracellular polymeric substance serves as the backbone of the granule and enables the system to withstand fluctuations in chemical spikes, load, salinity, ph, toxic shocks, etc. This chemical backbone makes it difficult to interfere with the

Page 4 of 8 enhanced settling and stable process characteristics. This process stability along with superb settling properties results in a reliable robust granular system that is easy to operate. Granule Formation: With AquaNereda Aerobic Granular Sludge Technology, selection mechanisms are applied to create dense granules from flocculant biomass, see Figure 6. As an alternate, a plant can be seeded with granules from another site. Figure 6: The Transformation of Conventional Activated Sludge to Aerobic Granular Sludge The conventional biomass flocs are selectively wasted by increasing sedimentation stress. The stress continues to increase thus enlarging the size and density of the flocs which causes the flocs to settle faster and evolve into granules. Only the bacteria that can adapt due to the selection mechanisms are able to survive in a granule form. AquaNereda Cycle Structure: Within a single reactor, the AGS technology creates proper conditions to reliably maintain a stable granule, without the need of a carrier. Due to the layered microbial community within the granule structure, simultaneous processes take place in the granular biomass, including enhanced biological phosphorus reduction, and simultaneous nitrification/denitrification. Based on the unique characteristics of granular biomass, the AquaNereda Aerobic Granular Sludge Technology uses an optimized batch cycle structure, see Figure 7. There are three main cycles of the process to meet advanced wastewater treatment objectives. The duration of the phases will be based upon the specific waste characteristics, the flow and the effluent objectives: Figure 7: The AquaNereda Cycle Structure

Page 5 of 8 Fill/Draw: The first phase of the cycle structure is Fill/Draw where the influent flow first enters the reactor. The anoxic and anaerobic conditions provide biomass conditioning and phosphorus release. At the same time, treated water is displaced towards the effluent. React: Influent flow is terminated in the second phase of the cycle structure known as the React (Aeration) phase. In this phase the biomass is subjected to aerobic and anoxic conditions. The granules perform simultaneous nitrification/denitrification. Concurrently, nitrate is transported by diffusion between outer aerated and inner anoxic layers of the granule, eliminating the need for pumping large recycle flows in the plant. Within the bioreactor, luxury uptake of phosphorus is promoted. The automated control of the process allows energy savings and process optimization. Settling: Upon completion of the aeration phase, the technology proceeds into a Settle phase. Here the influent flow still does not enter the reactor. The granular biomass is separated from the treated water during a very short settling period. Excess sludge is wasted in order to maintain the desired amount of biomass. Finally, the technology is ready for a new cycle and influent enters the reactor while the treated water is discharged. Advanced Controls: The process and cycle structures are optimized through the use of automated controls. When wastewater flows, loadings and temperatures fluctuate, the process parameters will be adjusted for efficient performance. Applications: Typical applications for an aerobic granular sludge system include: retrofit of existing tanks, increasing treatment capacity, upgrade of existing treatment systems to meet more stringent effluent requirement, or greenfield sites, and enhanced biological nutrient removal. See Figure 8 for some typical configurations in which these AquaNereda technologies have been and can be applied. There is not a limit on the number of Nereda reactors that can be used in each application. Figure 8: Typical Aerobic Granular Sludge Configurations Greenfield: Configuration 1: New construction of 3 Nereda reactors or more. In this case at least one of the Nereda reactors is being fed at any time throughout the cycle structure.

Page 6 of 8 Configuration 2: New construction of Nereda reactors and a pre-equalization tank: This configuration is proven to be one of the most common and cost effective. This configuration is not limited to two reactors, and in some cases, depending on the magnitude of peak flows to the plant, a pre-equalization may prove beneficial in systems with more than 2 reactors. Hybrid: Configuration 3: In a hybrid extension configuration, the surplus granules from the AquaNereda technology can be utilized to inoculate an existing conventional activated sludge plant. This can result in increased plant capacity and robustness. Retrofit: Configuration 4: Retrofit an existing Conventional Activated Sludge, SBR or MBR system with the AquaNereda technology. This configuration makes use of the existing infrastructure while increasing the system capacity and reducing energy and chemical use. Full-Scale Installations Profiles: Epe, Netherlands: Epe is an example of Configuration 1. Greenfield (3 reactors), see Figure 9. This plant has an average design flow of 2.11 MGD and a peak hour flow of 9.5 MGD. The plant is performing very well and easily stays within the discharge requirements of total nitrogen below 8 mg/l and total phosphorus of less than 0.5 mg/l in the winter. The energy consumption is 40% lower than similar size CAS systems in the area. Garmerwolde, Netherlands: Figure 9: Full Scale Installation Epe, NL Garmerwolde is an example of Greenfield (2 Reactors + Pre-Equalization Tank), see Figure 10. This plant has an average design flow of 7.9 MGD and peak hour flow of 26.5 MGD. The plant was designed to split the flow 60% to the existing CAS system and 40% to the Nereda system. At this point, the Nereda reactors are processing up to 60% of the overall plant capacity while meeting permit. The plant well exceeds the discharge requirements of total nitrogen below 7 mg/l and total phosphorus of less than 1 mg/l.

Page 7 of 8 Figure 10: Full Scale Installation Gammerwolde, NL Frielas, Portugal: Frielas is an example of Configuration 4. Retrofit CAS, see Figure 11 below. The Frielas STP was designed for an average design flow of 18.5 MGD average flow. Only one of the six existing aeration reactors was retrofitted as a Nereda reactor, designed for 3.17 MGD and a peak hour flow of 11.76 MGD. The reactor comprises approximatly 1.06 million gallons. Since the start-up of the Nereda reactor, the whole Frielas STP is now in compliance; the other reactors are currently under review to determine if augmentation and innoculation of granular sludge is possible. Deodoro, Brazil: Figure 11: Full Scale Installation Frielas, Portugal Rio de Janerio, Deodoro is an example of a Greenfield application, see Figure 12. This is the largest Nereda application in the world thus far and is currently treating a first phase average design flow of 17.1 MGD and a peak hour flow of 28.8 MGD. The plant will be expanded and completed in 2025; it will be able to treat an average design flow of 22.8 MGD and a peak hour flow of 38.8 MGD. This six tank Nereda plant became

Page 8 of 8 operational in May 2016 just before the start of the Olympic Games in Rio de Janerio. The system was designed for effluent limits of 25 mg/l BOD, 10 mg/l TSS, 1 mg/l ammonia and 1.5 mg/l phosphate. Figure 12: Full Scale Installation Deodoro, Brazil Dublin Ringsend, Ireland: Ringsend, Ireland is currently under design and is an example of a full scale retrofit SBR application, see Figure 13. Upon completion, the Nereda plant will treat an average design flow of 159 MGD and a peak hour flow of 315 MGD. The design mixed liquor concentration will be increased from 2,500 mg/l with the previous system to 8,000 mg/l with the Nereda process. Due to the robust process stability of the aerobic granules, the Nereda technology will be able to withstand the high salinity of the influent wastewater which was detrimental to the treatment with activated sludge. The existing system was designed to achieve an effluent TN of 20 mg/l. The Nereda technology is designed to achieve a more stringent effluent limit of 10 mg/l TN and the technology will achieve Bio-P removal, without the addition of treatment volume. Figure 13: Retrofit Full Scale Installation Dublin Ringsend, Ireland Nereda is a registered trademark of Royal HaskoningDHV