Evaluation of adhesion promoters for Parylene C on gold metallization

Similar documents
Identifying Cohesive Failure of Screen Protectors with Acoustic Emission

Embedding of Active Components in LCP for Implantable Medical Devices

NANO SCRATCH TESTING OF THIN FILM ON GLASS SUBSTRATE

Etching Mask Properties of Diamond-Like Carbon Films

Fraunhofer-Institute for Biomedical Engineering, Sankt Ingbert, Germany

Evaluation of Mechanical Properties of Hard Coatings

Flexible Substrates for Smart Sensor Applications

Full Nanomechanical Characterization of Ultra-Thin Films

High Barrier Multi-Layer Parylene Coating

Ultra High Barrier Coatings by PECVD

Using Argon Plasma to Remove Fluorine, Organic and Metal Oxide Contamination for Improved Wire Bonding Performance

Supporting Information: Model Based Design of a Microfluidic. Mixer Driven by Induced Charge Electroosmosis

LOW FRICTION LAYERS AND THEIR PROPERTIES. Martina Sosnová

UV15: For Fabrication of Polymer Optical Waveguides

Tribomechanical Properties of DLC Coatings Deposited by Magnetron Sputtering on Metallic and Insulating Substrates

Tablet Coating Failure Using Micro Scratch Testing

AIMCAL R2R Conference

Previous Lecture. Vacuum & Plasma systems for. Dry etching

Nanoscratch evaluation of adhesive strength of Cu/PI films

Biostability and corrosion resistance of a biocompatible encapsulation and interconnect technology for implantable electronics

TECHNICAL PAPER. Author: Samuel Pellicori Materion Coating Materials News

NANO SCRATCH/MAR TESTING OF PAINT ON METAL SUBSTRATE

THE VDI-3198 INDENTATION TEST EVALUATION OF A RELIABLE QUALITATIVE CONTROL FOR LAYERED COMPOUNDS

Today s Class. Materials for MEMS

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems

Characterization of Parylene-C Thin Films as an Encapsulation for Neural Interfaces

A Multilayer Process for 3D-Molded-Interconnect-Devices to Enable the Assembly of Area-Array Based Package Types

Lecture Day 2 Deposition

The most important parameters determining the performance of a cutting blade are:

Application Note #1007 All-Inclusive Scratch Testing of Coatings and Thin Films Using Bruker's Universal Test System

High Rate Deposition of Reactive Oxide Coatings by New Plasma Enhanced Chemical Vapor Deposition Source Technology

Effect of substrate heating on elimination of pinholes in sputtering deposited SiO2 films on LiNbO3 single crystal substrates

Keysight Technologies Scratch Testing of Multilayered Metallic Film Stacks. Application Note

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Fabrication Techniques for Thin-Film Silicon Layer Transfer

Platypus Gold Coated Substrates. Bringing Science to the Surface

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

Surface Micromachining

Plasma for Underfill Process in Flip Chip Packaging

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam

Ellipsometry as a tool for identifying process issues in roll-to-roll sputter deposited metal-oxide coatings

CHAPTER 5 EFFECT OF POST DEPOSITION ANNEALING ON THE SURFACE MORPHOLOGY OF THE DLC FILM

Scratch Testers. Coating Adhesion, Scratch and Mar Resistance. ::: World Leader in Scratch Testing

Durable Neutral Color Anti-Reflective Coating for Mobile Displays

Roll-to-roll Technology for Transparent High Barrier Films

Proceedings Demonstration of Intracortical Chronic Recording and Acute Microstimulation Using Novel Floating Neural Probes

Adhesion enhancement of DLC hard coatings by HiPIMS metal ion etching pretreatment and its tribological properties José Antonio Santiago Varela

Proof of Concept and Properties of Micro Hydraulic Displacement Amplifier

IMRE/ETPL Flagship Project

Linear Broad Beam Ion Sources ACC-30x150 IS, ACC-40x300 IS and ACC-40 x 600 IS

AN ABSTRACT OF THE THESIS OF

Friction. Friction is the resistance to motion during sliding or rolling, that is experienced when

Keywords: liquid crystal, ion beam irradiation method, pretilt angle, amorphous carbon.

Wireless implantable chip with integrated Nitinol-based pump for radio-controlled local drug delivery

Supporting Information for: Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

Product specification TiNOX energy

Analysis of AE Signals during Scratch Test on the Coated Paperboard

With the increasing of the use of polymers in the microelectronic industry,

Tribological Properties of Hybrid Process DLC Coating against Magnesium Alloy

Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, Freiburg, Germany

Supplementary Figure S1. Swelling and mechanical properties as a function of the PS-b- PAA block copolymer composition. a, Swelling kinetics of PAA

Development of New Generation Of Coatings with Strength-Ductility Relationship, Wear, Corrosion and Hydrogen Embrittlement Resistance Beyond the

Cu Wiring Process for TFTs - Improved Hydrogen Plasma Resistance with a New Cu Alloy -

Micromachining AMT 2505

LOT. Contents. Introduction to Thin Film Technology. Chair of Surface and Materials Technology

All fabrication was performed on Si wafers with 285 nm of thermally grown oxide to

Oki M A-60J 16Mbit DRAM (EDO)

Sputter-free and reproducible laser welding of electric or electronic copper contacts with a green laser

Modeling of friction and structural transformations in diamond-like carbon coatings

COMPARISON OF WELDING/BONDING METHODS

TEMPERATURE-DEPENDENT REFRACTIVE INDICES OF OPTICAL PLANAR WAVEGUIDES

Comparison of Different Sputter Processes for ITO: Planar DC versus Planar AC

Australian Journal of Basic and Applied Sciences. Utilization of Oxygen Plasma For Plasma Ashing and Etching Process

Illuminating Innovations

Saturation Phenomena in Conjunction with Corona Treatment on Different Substrates

Tribological and Catalytic Coatings

Thermal effects and friction in forming

CHEMICAL PRE-TREATMENTS OF ALUMINIUM MATERIALS IN ORDER TO INCREASE SELECTED PROPERTIES OF SURFACE

Surface Micromachining

ANTI-STICTION COATINGS FOR HIGH RELIABILITY MEMS

A discussion of crystal growth, lithography, etching, doping, and device structures is presented in

Supporting Information

AIMCAL Fall Technical Conference & 19th International Conference on Vacuum Web Coating

Enabling Technology in Thin Wafer Dicing

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

PLASMA TREATMENT OF X-Wire. Insulated Bonding Wire

PSA CHALLENGES AND APPLICATIONS IN SEMICONDUCTOR MANUFACTURING

Tribology Advanced Scratch Testing Applications -Suresh Kuiry, Ph.D.

Gold to gold thermosonic bonding Characterization of bonding parameters

Available online at ScienceDirect. Physics Procedia 56 (2014 ) Ultra-short pulse laser structuring of molding tools

Chapter 2 Capacitive Sensing Electrodes

Electrical and Fluidic Microbumps and Interconnects for 3D-IC and Silicon Interposer

Effect of Chromium-Gold and Titanium- Titanium Nitride-Platinum-Gold Metallization on Wire/Ribbon Bondability

FABRICATION OF SWTICHES ON POLYMER-BASED BY HOT EMBOSSING. Chao-Heng Chien, Hui-Min Yu,

New Dual Magnetron Plasma Source Designed For Large Area Substrate Pretreatment and Oxide Film Deposition P. Morse, R. Lovro, M. Rost, and J.

THE INCREASE IN THICKNESS UNIFORMITY OF FILMS OBTAINED BY MAGNETRON SPUTTERING WITH ROTATING SUBSTRATE

Chapter 4 Fabrication Process of Silicon Carrier and. Gold-Gold Thermocompression Bonding

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005

Neuralynx Plating Solutions and Protocols User Manual

Transcription:

Current Directions in Biomedical Engineering 2015; 1:493 497 V. Radun*, R. P. von Metzen, T. Stieglitz, V. Bucher, and A. Stett Evaluation of adhesion promoters for Parylene C on gold metallization Abstract: Delamination of thin film polymeric coatings from metallization layers is a common cause of failure in biomedical implants. To address the problem, different adhesion promotion techniques can be applied which include surface pre-treatment with oxygen and argon plasma and the use of different adhesion promoters. In this paper the applicability of titanium (Ti), silicon oxide (SiO x ), diamond-like carbon (DLC), tetramethylsilane (TMS) and aluminium oxide (AlO x ) as adhesion promoters is evaluated. A cross cut, peel and scratch test are used to qualify and quantify the adhesion before and after storage in phosphate buffered saline (PBS) for 48 hours at a temperature of 37 C. Promising results could be achieved by a combination of Ti and DLC as well as by AlO x. Keywords: Adhesion; Parylene C; Micro-implants; Adhesion measurement; Cross cut test; Peel test; Scratch test DOI: 10.1515/CDBME-2015-0118 1 Introduction Active biomedical micro-implants usually employ flexible electrode arrays for recording or stimulation purposes. The basic structure of those arrays consists of a metallization and an encapsulating polymer as top and bottom layer. Due to the restrictive requirements on materials in biomedical applications, such as biocompatibility, mechanical and electrical properties, there are only few applicable polymers. Popular choices are polyimide and Parylene C [1, 2]. However, a critical aspect of these thin-film coatings is insufficient adhesion to inorganic surfaces. Especially in physiological environment poor adhesion con- *Corresponding Author: V. Radun: Natural and Medical Sciences Institute (NMI) Tübingen, Markwiesenstraße 55, 72770 Reutlingen, Germany and Hochschule Furtwangen, Jakob-Kienzle- Straße 17, 78054 Villingen-Schwenningen, Germany, E-mail: Victoria.Radun@nmi.de; rav@hs-furtwangen.de R. P. von Metzen, A. Stett: Natural and Medical Sciences Institute (NMI) Tübingen, Markwiesenstraße 55, 72770 Reutlingen, Germany, E-mail: Rene.vonMetzen@nmi.de, Alfred.Stett@nmi.de T. Stieglitz: Institut für Mikrosystemtechnik IMTEK, Georges-Köhler-Allee 102, 79110 Freiburg, Germany, E-mail: stieglitz@imtek.de V. Bucher: Hochschule Furtwangen, Jakob-Kienzle-Straße 17, 78054 Villingen-Schwenningen, Germany, E-mail: buv@hs-furtwangen.de stitutes one of the major challenges. On the one hand, layer delamination and resulting water intrusion changes the electrical functionality through to system failure. On the other hand, without intact adhesion mechanical loads can easily break the delicate metallization structures, also resulting in system failure [3]. As a consequence, adhesion can be identified as limiting factor for long-term reliability. Despite technological advances a lifetime functionality of neural electrodes has not yet been accomplished. In order to improve durability and reliability efforts have been made to quantify and improve adhesion. Different adhesion promotion techniques were investigated in the past and moderate improvements could be achieved by the application of surface pre-treatments. The use of argon plasma has two effects: It removes contaminations from the surface and simultaneously roughens it for better mechanical interlocking of two distinct layers [4]. Applying oxygen plasma afterwards has proved to successfully increase adhesion due to further surface roughening as well as surface activation [4]. By increasing the amount of carbonyl groups higher surface reactivity is achieved [4]. Additionally, adhesion promoters can be used to form chemical bonds to both, metallization and polymeric surface. In this paper samples of a multi-layer system with the polymer on top of the metallization layer were fabricated according to standard fabrication processes for neural electrodes. Both surface pre-treatments were applied and the influence of different adhesion promoters was tested and compared. In order to understand and further improve adhesion a reliable measurement setup is necessary. However, until now the quantitative assessment of adhesion of thin film layer systems is problematic. To address that problem, test methods from different fields of applications were transferred to biomedical layer systems: First, a cross cut test serves as rough estimation of the adhesion properties [5]. Second, the peel test is used for first quantifications. However, one has to keep in mind undesired side effects during testing such as non-linear viscoplastic deformation of the materials [2, 6]. As third test method, the scratch test was applied to secure the previous results. To obtain realistic results, all samples were immersed in PBS at body temperature to simulate the influence of the wet and ionic body fluids.

494 V. Radun et al., Evaluation of adhesion promoters for Parylene C on gold metallization 2 Methods The multilayer systems under test were fabricated by means of various thin film technologies. Each sample consisted of a gold metallization, the coating polymer Parylene C and a specific adhesion promoter in between. Generally speaking, adhesion refers to the attractive force between two materials that has to be overcome in order to separate them. Adhesion mechanisms can be differentiated into three types: The physical bonds (Van der Waals and polar attractions), chemical bonds (ionic, covalent bonds) and mechanical interlocking caused by surface roughness [7]. Due to many influencing factors no universally applicable method of adhesion measurement exists until now. For this reason, the results of three different adhesion tests were evaluated and compared. 2.1 Sample fabrication The sample fabrication of the upper layer system consisted of three different steps. First, an approx. 300 nm gold metallization was sputter deposited on a 4.9 x 4.9 cm 2 glass substrate (Z550 sputter system). After an intermediate cleaning step, the inorganic adhesion promoters and their combinations were either again sputter deposited (Ti, AlO x ) or deposited using plasma-enhanced chemical vapour deposition (DLC, TMS, SiO x ) with different layer thicknesses in the range of 100 nm. Finally, a 10 µm coating of Parylene C was polymerized on top of the adhesion promoting layer using the Gorham process [2]. The exact deposition parameters are summarized in Table 1. For each material combination three samples were fabricated. A system without any adhesion promoter served as reference. 2.2 Cross cut test To obtain a basic overview of the adhesion achieved with different adhesion promoters, the cross cut test was performed after storage of the samples. Based on the guideline of ISO 2409:2007, a grid with six vertical and six horizontal cuts in a distance of 2 mm was lasered (LPKF Protolaser U) through the polymer surface. The Intertape 4118 with an adhesion force of 2.8 N/cm (specified by manufacturer) was applied over the lattice pattern and afterwards manually removed at an angle of approximately 60. According to the extent of delamination, the adhesion is classified into six categories ranging from 0% (key figure = 0) to more than 65% (key figure = 5) delaminated structures [5]. Three tests were performed per multi-layer system. 2.3 Peel test An adhesion test method with a higher degree of validity and significance is the peel test. The test was employed after immersion in PBS since beforehand adhesion succeeded cohesion which resulted in torn samples. For the test, peel strips with dimensions of 1 x 4.9 cm 2 were prepared using laser structuring. One end of those strips was attached to the load cell of the testing machine (Zwick/Roell Z020). At the same time the substrate was fixed to the table. During the test the peel gripper moved upwards with a constant velocity of 10 mm/min while the substrate s horizontal position was adjusted as to keep the peel angle at 90. The recorded peel force divided by the width of the peel strip equals the adhesion force P 90 [2]. For each combination three tests were performed. 2.4 Scratch test Apart from the cross cut and peel test the so-called scratch test is a well-established method to qualify and compare the adhesion of different coatings. With the NanoScratch Tester by csm instruments a scratch in the surface is applied using a sphero-conical diamond stylus with a radius of 2 µm. It is drawn across the surface at a constant speed of 1 mm/min. Simultaneously, the employed normal force increases from 0.01 N to 0.2 N resulting in increasing stresses at the layer interface. At a certain point, adhesion failure occurs and the coating delaminates. The critical load L c is a measure for the adhesion strength and is identified by optical means [8]. During the test procedure, normal force, frictional force, penetration depth and displacement are recorded and one test is performed per multi-layer system. 3 Results 3.1 Cross cut test Prior to storage in PBS all samples except those applying DLC, Ti-SiO x and TMS as adhesion promoter showed excellent adhesion with a key figure of 0 in the cross cut test. This implies that the weakest interface is that between the applied tape and Parylene C with a specified adhesion

V. Radun et al., Evaluation of adhesion promoters for Parylene C on gold metallization 495 Table 1: Deposition parameters for metallization, different adhesion promoters and polymer encapsulation. Material Process parameters Plasma Time / Power Layer thickness Au 360 s / 1000 W ~300 nm Silane A174 Ar, O 2 300s DLC (TMS / C 2 H 2 ) Ar 230 s / 400 V 100 nm TMS Ar 230 s / 400 V 105 nm Ti 360 s / 1000 W ~30 nm Ti SiO x (O 2 / HMDSO) Ar 420 s / 150 W 100 nm Ti Silane A174 Same as separate processes for Ti and Silane A174 Ti DLC Silane A174 Same as separate processes for Ti, DLC and Silane A174 AlO x Silane A174 Ar, O 2 Pulsed DC sputtering T = 1.5 µs, F = 200 khz, 7200 s / 5000 W 510 nm Parylene C Ar, O 2 Pressure = 10 Pa ~10 µm Table 2: Summary of cross cut test results. Adhesion promoter Key figure before storage Key figure after storage None 0 1 Ti 0 1 DLC 1 2 Ti-SiO x 1 3 TMS 2 4 Ti Silane A174 0 0 Ti DLC Silane A174 0 0 AlO x Silane A174 0 0 Silane A174 0 2 strength of 2.8 N/cm. 48 hours of storage in PBS resulted in a decreased adhesion strength as denoted in Table 2. 3.2 Peel test All samples that were tested prior to immersion in PBS were torn due to better adhesion of the layers than cohesion of the Parlyene C. Cohesion failed at a peel force of approximately 4.90 ±0.26 N. Only after storage of 48 hours, the polymer coating could be peeled off the samples listed in Table 3. The other samples could not be evaluated. However, the coarse ranking of the results corresponds to that of the cross cut test. 3.3 Scratch test In Figure 1 the results of the scratch test on different samples are arranged corresponding to increasing adhesion strength. The critical normal force L c at which first delamination occurred is denoted by the dashed lines. In numbers, the normal force ranges from 0.11 N (Ti), 0.12 N (SiO x ), 0.13 N (DLC), 0.14 N (TMS) to 0.15 N (no adhesion promoter). Note that the first delamination cracks show smooth edges which indicates low adhesion strength. 4 Discussion By applying different adhesion test methods, the performance of various adhesion promoters was investigated and evaluated. Table 4 summarizes the results. Marked in blue is the consistency of the test results while orange shading indicates contradictory results. With the exception of the results for Ti as adhesion promoter, cross cut and peel test yield qualitatively corresponding results. A critical aspect of the peel test is the validity of the results if the sample is not clamped perfectly unbowed. Furthermore, the measuring range of the test is limited to approximately 4.9 N/cm since above that the tear strength of a

496 V. Radun et al., Evaluation of adhesion promoters for Parylene C on gold metallization Table 3: Summary of peel test results. Adhesion promoter P 90 in mn/cm (after storage) Mean value + standard deviation Ti 355, other two samples were torn DLC 63 ±33 Ti SiO x 51 ± 6 TMS Not measurable - delaminated Silane A174 1575 ± 489 Table 4: Summary of all test results. Adhesion promoter Key figure P 90 in mn/cm L c Evaluation adhesion in N None 1 torn 0.15 Good Ti 1 355, 2 torn 0.11 Ok DLC 2 63 ± 33 0.13 Bad Ti SiO x 3 51 ± 6 0.12 Bad TMS 4 delaminated 0.14 Bad Ti Silane A174 0 torn Above test limit Ti DLC 0 torn Above test limit Silane A174 AlO x Silane 174 0 torn Above test limit Silane A174 0 1575 ± 489 Ok Figure 1: Summary of scratch test results. 10 µm thick Parylene C test strip is exceeded and the material s cohesion fails. Even though, a test result exists for the peel test with Ti as adhesion promoter, two of the samples were torn due to the above-mentioned limitation. Drying effects after immersion almost immediately increased the adhesion strength again above the limit such that only one sample could be measured. In [6] similar measurements were performed. A comparison is possible for the adhesion performance if no adhesion promoter or silane A174 is applied. Generally, silane A174 decreases adhesion strength between gold and Parylene C. However, the numerical values do not correspond, possibly due to different test substrates. While [6] uses smooth silicon wafers, the surface roughness of glass substrates used in this work may be higher, thus increasing mechanical interlocking. The scratch test proved to be more challenging to interpret correctly due to the ductility of the polymeric surface. It can be seen in figure 1 that plastic deformation took place since piles of the coating are repeatedly accumulated at the length of the scratch. Furthermore, there are process-related inhomogeneities in the thickness of the Parylene C coating which can further falsify the result since the critical force depends on the surface thickness. This is also a possible explanation for deviations between the scratch test results and the previous tests results. In summary, it can be said that the combination of Ti and DLC as well as AlO x showed promising potential as adhesion promoters and will be subject of further studies. In the future, not only the adhesion of Parylene C to metallization layers but also that of polyimide will be tested. Furthermore, samples of the second layer system (polymer, adhesion promoter, metallization) will be fabricated and investigated. Accelerated aging tests for a longer time period will give some indication of the achievable long-term adhesion.

V. Radun et al., Evaluation of adhesion promoters for Parylene C on gold metallization 497 Acknowledgment: The authors would like to thank the research group of Dr. Claus Burkhardt (NMI Reutlingen) for supplying gold coated samples. Author s Statement Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent has been obtained from all individuals included in this study. Ethical approval: The research related to human use has been complied with all the relevant national regulations, institutional policies and in accordance the tenets of the Helsinki Declaration, and has been approved by the authors institutional review board or equivalent committee. References [2] Von Metzen, R.: Parylene C as a Substrate Material for Micro Implants. Der Andere Verlag, 2013. [3] Ordonez, J.S., Boehler, C., Schuettler, M., Stieglitz, T.: Longterm Adhesion Studies of Polyimide to Inorganic and Metallic Layers. MRS Proceedings, 2012. [4] Ordonez, J.S., Schuettler, M., Boehler, C., Boretius, T., Stieglitz,T.: Thin films and microelectrode arrays for neuroprosthetics. MRS Bulletin, 37, pp 590-598, 2012. [5] Lau, K.: Plasmagestützte Aufdampfprozesse für die Herstellung haftfester optischer Beschichtungen auf Bisphenol-A Polycarbonat, Dissertation, 2006. [6] Hassler, C., von Metzen, R. P., Ruther, P. and Stieglitz, T.: Characterization of parylene C as an encapsulation material for implanted neural prostheses. J. Biomed. Mater. Res., 93B: 266 274. doi: 10.1002/jbm.b.31584 [7] Ordonez, J.S.: Miniaturization of Neuroprosthetic Devices and the Fabrication of a 232-Channel Vision Prosthesis with a Hermetic Package, Dissertation, 2013. [8] Kuiry S.: Advanced Scratch Testing for Evaluation of Coatings, www.bruker-axs.com (13.03.2015). [1] Rodger D.C., Li W., Ameri H., Ray A., Weiland, J.D., Humayun, M. S., Tai Y. C.: Flexible parylene-based microelectrode technology for intraocular retinal prostheses, IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2006.