Environmental Economic Theory No. 10 (26 December 2017)

Similar documents
Environmental Economic Theory No. 9 (11 December 2018)

Environmental Economic Theory No. 7 (5 December 2017)

Environmental Economic Theory No. 2

PCP (2017): Environmental Economic Theory, No. 1 Benefits and Costs, Supply and Demand

CREATING ENVIRONMENTAL MARKETS. Modeling Solutions to Environmental Problems

Economics 230a, Fall 2015 Lecture Note 6: Policies for Dealing with Externalities

Chapter 25: Monopoly Behavior

EXTERNALITIES. Problems and Applications

In-class Practice questions for Perfect Competitive Market

Exhaustible Resources Lecture 4

Coase vs. Pigou in the Petroleum Market

Lecture 2 Pollution control

Econ 380 Problem Set #6 Answer Sheet. 1. (3 points) The marginal control cost curves for two air pollutant sources are given by

Economics 155/Earth Systems 112 Spring Final Exam

LECTURE NOTES ON MICROECONOMICS

Monopolistic Markets. Regulation

Lecture 4a Environmental regulation

All but which of the following are true in the long-run for a competitive firm that maximizes profits?

ECON 115. Industrial Organization

a. Find MG&E s marginal revenue function. That is, write an equation for MG&E's MR function.

Economics 361 Assessment

Chapter 24: Monopoly. Watanabe Econ Monopoly 1 / 61. Watanabe Econ Monopoly 2 / 61. Watanabe Econ Monopoly 3 / 61

Basic Micro: Demand. To see how much demand changes with changes price we are interested in the slope of the demand curve, i.e dq

Coffee is produced at a constant marginal cost of $1.00 a pound. Due to a shortage of cocoa beans, the marginal cost rises to $2.00 a pound.

Externalities and the Environment

Lecture 5: Externalities

Introduction to Economic Institutions

ECO 162: MICROECONOMICS INTRODUCTION TO ECONOMICS Quiz 1. ECO 162: MICROECONOMICS DEMAND Quiz 2

The economics of competitive markets Rolands Irklis

Harvard University Department of Economics

Market Design: Externalities

Price Discrimination: Part 1

ECOS3013 ENVIRONMENTAL ECONOMICS

Perfect Competition Definition

Area VI. Area II + IV + VI. Area II. Area I + III + V. Area III + V

ECON 115. Industrial Organization

Econ 381/ES312 Midterm 2: Sample Questions

Learning Outcomes Assessment. Instructor: Timothy Dang Academic year Economics 361

Chapter 11 Perfect Competition

Public Economics by Luca Spataro. Market failures: Externalities (Myles ch. 10. sections 4.4, 5, 7.2 & 7.3 excluded)

Robust Supply Function Bidding in Electricity Markets With Renewables

5. a. From Ernie s supply schedule and Bert s demand schedule, the quantity demanded and supplied are:

Lecture 17 - Externalities, the Coase Theorem and Market Remedies

MPC MPC. Under a Pigouvian subsidy, s, the firm s MPC curve shifts up to MPC = MPC + s. This is less

Edexcel Economics AS-level

MIGRATION AND POLLUTION *

Midterm 2 Sample Questions. Use the demand curve diagram below to answer the following THREE questions.

AQA Economics A-level

Third degree price discrimination. Welfare Analysis

5-3 - Copyright 2017 Pearson Education, Inc. All Rights Reserved

Past Exams Economics of the Environment and Natural Resources/Economics of Sustainability K Foster, CCNY, Spring 2012

Monopoly. 3 Microeconomics LESSON 5. Introduction and Description. Time Required. Materials

Now suppose a price ceiling of 15 is set by the government.

Command & Control and Emission Trading

Solution to Midterm 2 Lecture 1 (9:05-9:55) 50 minutes Econ 1101: Principles of Microeconomics Thomas Holmes November 13, 2006

Accounting Theory. Elective Module Master Level Fall 2018/19

ECONOMY AND ENVIRONMENT, 2018 SUMMARY AND RECOMMANDATIONS

MICROECONOMIC FOUNDATIONS OF COST-BENEFIT ANALYSIS. Townley, Chapter 4

Should Consumers Be Priced Out of Pollution-Permit Markets?

14.03 Fall 2004 Problem Set 3

PARETO-IMPROVING CONGESTION PRICING AND REVENUE REFUNDING WITH ELASTIC DEMAND

At P = $120, Q = 1,000, and marginal revenue is ,000 = $100

AGEC 652 Lecture 35 and 36

1. When emissions are measured on the horizontal axis, the marginal cost of abating emissions is

An Integrated Approach to the Theory of Externalities: An Exposition. Pankaj Tandon Boston University

Full file at

AP Microeconomics Review With Answers

Econ 302: Microeconomics II - Strategic Behavior. Problem Set # 3 May 31

Downloaded for free from 1

TOPICS IN CAP-AND-TRADE LECTURE PLAN 8: MARCH 8, 2011 Hunt Allcott

Monopoly. John Asker Econ 170 Industrial Organization January 22, / 1

A monopoly market structure is one characterized by a single seller of a unique product with no close substitutes.

Edexcel Economics (A) A-level Theme 1: Introduction to Markets and Market Failure 1.4 Government Intervention

ECONOMICS 103. Topic 5: Externalities. External costs and benefits

Chapter 16: Equilibrium

Externalities, Property Rights and Public Goods

Externalities, Property Rights and Public Goods

The efficiency of indirect instruments for waste externalities: Integrated approaches to environmental policy

6EC01 key definitions

EC101 DD/EE Midterm 2 November 5, 2015 Version

Edexcel (A) Economics A-level

The Efficiency of Voluntary Pollution Abatement when Countries can Commit

Econ*1050 Introductory Microeconomics Instructor: Vitali Alexeev. Quiz 6 (Chapter 8)

Boston College Problem Set 6, Fall 2012 EC Principles of Microeconomics Instructor: Inacio G L Bo

Answer each of the questions below. Round off values to one decimal place where necessary.

Econ351 Lecture 2. Review of Main Economic Concepts

Supply and demand: Price-taking and competitive markets

NAME: INTERMEDIATE MICROECONOMIC THEORY FALL 2006 ECONOMICS 300/012 Final Exam December 8, 2006

I. An Introduction to Externalities and Market Failures. II. Externalities. EC 441: Handout 5A: Externalities and Solutions

Externalities. PowerPoint Slides prepared by: Andreea CHIRITESCU Eastern Illinois University

Competitive markets. Microéconomie, chapter 9. Solvay Business School Université Libre de Bruxelles

Lecture 6. Externalities. 1 gkaplanoglou public finance

Managerial Economics, 01/12/2003. A Glossary of Terms

Chapter 3. Evaluating Trade-Offs: Benefit Cost Analysis and Other Decision- Making Metrics

Tradable Pollution Permits

Accounting Theory. Elective Module Master Level Fall 2017/18

ESP Review of a key graphical models (2017)

Perfect Competition & Welfare

AS Economics: ECON1 Economics: Markets and Market Failure 2009/10

COURSE CONTENTS. (Effective from the Academic Year onwards)

Transcription:

Professional Career Program Environmental Economic Theory No. 10 (26 December 2017) Chapter 12. Incentive-based strategies: Emission charges and subsidies Instructor: Eiji HOSODA Textbook: Barry.C. Field & Martha K. Fields (2009) Environmental Economics - an introduction, McGraw-Hill, International Edition 1

The purpose of this lecture We study emission charges (subsidies) approaches, where, in order to bring about socially desirable circumstances*, authorities charge (pay) on the amount of discharged (reduced) pollutants. These approaches utilize incentives of dischargers, and are considered more flexible than command-and-control approaches. We study (1) emission charges, and (2) abatement subsidies in order. 2

The purpose of this chapter (cont.) * Socially desirable circumstances imply those in which resources including environmental elements are allocated efficiently in terms of social welfare. In other words, socially optimum allocation of resources including environmental elements are attained in those circumstances. 3

The purpose of this chapter (cont.) There are mainly two ways for expressing the social optimality. One is the Pareto optimality, and the other the maximization of the social surplus. Although the former is more rigorous and more general, the latter is easier to handle. We have utilized the latter expression so far. 4

The purpose of this chapter (cont.) Then, the social optimality is expressed by the equality MAC = MD. Moreover, the equi-marginal principle holds, so that marginal abatement costs are equal among dischargers of pollutants. 5

By means of a figure MAC MD The efficient level of the emission is e*, and the social costs are expressed by the area (a + b). At the emission level e*, the social costs are minimized. At the socially optimal point, MAC = MD holds. a e* b e max e 6

By means of a figure MAC a MAC b MAC T MD e a e max e b e max e* = e a + e b 2e max At the emission level e*, the social costs are minimized. At the socially optimal point, the equimarginal principle holds. 7

1. Emission charges Emission charges are imposed on the dischargers of pollutants, according to the discharged amount, so that they can take the environmental costs into account when they are involved in productive activities. By so-doing, incentives of producers are wisely utilized, and the efficient level of abatement can be attained once the optimal charge rate is determined and imposed on dischargers. 8

Basic Economics: How emission r MAC t* a O The tax payment charges work. If the authority is wise enough to e* b Emissions MD The abatement cost be able to set the charge rate which attains the socially efficient level of emission e*, the discharger voluntarily determines the amount emission at e*. At e*, clearly, MAC = t* holds, where t* denotes the optimal emission tax rate. The total abatement cost in this case is expressed by the area b, while the tax payment is expressed by a. Thus, the polluter has to pay (a + b). e 1 9

Pigouvian (Pigovian) tax In the economic theory, emission charges are not differentiated from emission tax. Thus, they are often used interchangeably. Such tax is called Pigouvian (Pigovian) tax, since Pigou first put forward the idea. 10

Basic Economics: How emission charges work. (cont.) Suppose the total abatement cost is expressed as TAC = f(e 0 - e) where f (e 0 - e) > 0 and f (e 0 - e) > 0 hold. Clearly, f (e 0 - e) is the marginal abatement cost. If the authority imposes t* on the amount of the emission, the total cost for a firm is TC = f(e 0 - e) + t*e, which must be minimized. Thus, MAC = f (e 0 - e) = t* must hold. 11

Basic Economics: How emission charges work. (cont.) How is t* determined? Notice that the optimal point is determined by the quality MAC(e*) = MD(e*). Set t* = MAC(e*) = MD(e*). The, by definition, the optimal condition is satisfied. 12

A remark For the authority to determine the optima tax rate, it must have correct information on marginal damages and marginal abatement costs of firms. It is often so costly to collect such information that the authority must estimate those costs with limited amount of information. 13

Difference in income distribution between emission charges and CAC What is the difference between emission charges and CAC, when the authority sets the target emission at e*? It seems that the same amount of reduction of emission is obtained by the two methods, and actually so. Apart from an issue of cost effectiveness mentioned later, there is a difference in income distribution. 14

Explanation by means of a figure r MAC In the case of CAC, the costs for a discharger are expressed by the area b when the emission restriction is given at e*. The abatement costs only. O t* a The abatement cost b e* Emissions e 1 On the other hand, in the case of emission charges, the costs for a discharger are expressed by the area (a + b), namely the abatement costs plus the tax payment, when the tax rate is given at t*. The tax payment That is why business people would prefer CAC to emission charge scheme, if they were forced to choose one of them. 15

The costs for polluters and a society MAC MD The optimal emission level is e*. Suppose that the authority is clever so that it knows e* and imposes the tax t* on emission. The total abatement costs: e O t* a b e 1 c d e e* Emissions f e 0 The total tax payments: (a + b + c + d), which are transfer payments. Thus, these are costs for the discharger, but not costs for the whole society. Net costs for the whole society are (b + d + e). Explain why? 16

Two-part of emission charge To avoid heavy cost burden on firms by emission charges, two-part emission charges may be adopted. According to this idea, tax exemption is applied to some amount of emission, and charges are imposed on the amount which is larger than a certain level. 17

Explanation by means of a figure MAC MD Two-part emission charge: t = 0 if e < e 1, and t = t* if e = e 1 or e > e 1. O t* a b e 1 c d e e* Emissions f e 0 Then, the tax payment is only (c + d), while the optimal emission level e* is attained. This two-part charge scheme is preferable to discharges, compared to the flat emission charge scheme. 18

r t* t 1 t 0 What if the damage function is MAC MD unknown. When the damage function is not known in advance, a successive approximation approach may be required until the social optimality is attained. Set the tax rate, say, at t 0. Then, the emission rate is e 0. If the reduction is not sufficient for improvement of the ambient quality, then raise the tax rate, say to t 1. Continue this process until the ambient quality becomes the targeted level e*. Yet, this method is very costly for the authorities as well as for dischargers, who invest for abatement of pollutants. O e* e 1 e 0 Emissions 19

Emission charges and costeffectiveness Emission charge approaches realize the equimarginal principle, so that the costeffectiveness is fulfilled. That is, t* = MAC A = MAC B holds. Thus, these approaches are cost effective. This cannot be made by CAC. 20

Emission charges and costeffectiveness Emission charge approaches realize the equi-marginal principle, since each firm tries to equalize its marginal abatement costs and the tax rate. That is, t* = MAC A = MAC B holds. This equation implies that these approaches are cost effective. t* MAC A a b c d MAC B The total abatement costs are (b + d), while the total tax payment is (a + c). Here too, the tax payment is transfer payment, and not costs for the society. 21

Cost-effectiveness: mathematics Suppose the total amount of emission is given as a policy target. Namely, e A + e B = e (given). Minimize the total abatement costs. Minimize AC A (e A0 e A ) + AC B (e B0 e B ) + l (e A + e B e ). Then, we have MAC A = MAC B = l. If we set t* = l, we can minimize the total abatement costs. Clearly, this tax rate minimizes the total costs, namely, the total abatement costs and tax payment, given the 22 total emission amount.

Important remarks Authorities are not always so clever to determine the optimal tax; t may not equal l. Yet, notice that MAC A = MAC B = t holds, implying that the equi-marginal principle still holds. What does this mean? If the tax rate is determined at t, the maximum amount of the emission e** (may not be efficient level) is determined. Hence, for attaining the level e**, the total abatement costs are minimized, since the equi-marginal principle holds. 23

The relationship between a tax rate and the net social costs Net social costs At any point on the curve, cost effectiveness is guaranteed. At E (the tax rate t*), efficiency is also guaranteed. E Socially optimal point t** t* t 24

The case where t* =l: By means of a figure MAC a MAC b MAC T MD t*= l e a e max e b e max e* = e a + e b 2e max 25

When emissions are non-uniform. There are cases that emissions of sources are not uniformly mixed. A unit of discharge from one source may give different impacts from other sources. Then, the principle of the uniform tax rate does not hold any more, since different sources give different impacts. Suppose emission from the source 1 (source 2) has an emission coefficient h 1 (h 2 ). 26

Modification of the equi-marginal principle The total costs are expressed as AC 1 (e 10 e 1 ) + AC 2 (e 20 e 2 ) +D(h 1 e 1 + h 2 e 2 ). From minimization of this, the following is obtained: MAC 1 = h 1 D and MAC 2 = h 2 D. Thus, we have MAC 1 /h 1 = D = MAC 2 /h 2. 27

Modification of the equi-marginal principle (cont.) Set the tax rate for source 1 and 2 as t 1 = h 1 D and t 2 = h 2 D respectively. Clearly, if h 1 = h 2 holds, the basic equi-marginal principle applies. 28

Emission charges and uncertainty Case 1 Case 2 MAC 1 MAC 2 t h t l t* a b c e 1 e 2 e 3 e* e 4 e* When there is uncertainty, the authority may not be able to set the optimal tax rate. But In Case 1, even if the higher or lower tax rate is applied, the emission rates obtained are very close to the optimal one. In Case 2, nonoptimal tax rate may possibly realize the emission rates which are very different from the optimal emission rate. The elasticity of MAC curve does matter when there is uncertainty. d e f 29

Double dividends How can tax revenues be used? It is often argued that they can be used to reduce the conventional tax burden, i.e., employment taxes. Then, the environmental burden is reduced on one hand, while the employment could be increased. A win-win solution! Thus, there are two good things, which are often called double dividends. 30

Really such merits? Case 1 Case 2 MAC 1 MAC 2 t h t l a d b c e f e 1 e 2 e 3 e 4 Suppose the tax rate is increased from t l to t h, the tax revenues are also increased from (b + c) to (a + b) in Case 1. In Case 2, however, the tax revenues are decreased from (e + f) to (d + e). Then, the employment tax cannot be reduced. 31

Dynamics: Emission charges and innovation MAC 2 MAC 1 Suppose the tax rate is set at t. Then, the discharger has incentives for R&D for new abatement technology. If the innovation is successful and the marginal abatement curve shifts down as in the figure, the discharger can save the cost (c + d). O t a e 2 b c e 1 d e If the standard approach is taken and the target rate remains e 1 after the innovation, the cost savings are only d. What if the standard is changed from e 1 to e 2 under CAC?. Emissions 32

Enforcement To implement emission charges approach, the authority must measure or monitor the emission rates from all the sources. Otherwise, fair charges could not be imposed on the dischargers, who may oppose this approach in such a case. Yet, the same argument can be applicable to the command-and-control approaches, since the compliance must be checked by the authority. 33

The second best approaches It may be difficult to charge on dischargers according to the amount of emission, since monitoring is not easy in some cases. Pollution which comes from non-point sources, say pollution of agricultural fertilizer, is a good example. Then, alternative ways of charging may be adopted. Input charges may be adopted. Yet, generally speaking, this method is second best and not optimal. 34

Distributional impacts Emission charges give impacts on relative prices and outputs, as well as distribution. If the charge is imposed on a single firm in a competitive circumstances, the firm cannot shift the cost increase, and must reduce outputs. If the charge is imposed on the entire industry, the social MC curve or the social supply curve shifts up, so that the price increases, depending upon the elasticity of demand. If the demand is not elastic, consumers are affected also. 35

2. Abatement subsidies The same effects as emission charges are brought about by abatement subsidies on emission reduction in the short run. This is so, because the subsidies are the opportunity costs for dischargers. Distributional effects are, however, different, since dischargers are given subsidies, and their profits are increased. Thus, in the long run, there may be entry of firms, and the number of firms may be increased. The optimal condition may not be satisfied. 36

Why so? Suppose the subsidy rate is s* which is equal to the optimal tax rate (t* = MD = MAC). The firms minimize the total costs TAC(e 0 e) s* (e 0 e). Thus, we have MAC = s*. But this is true, insofar as there is no entry to the relevant market. If there is entry of other firms, the optimal condition is not satisfied. 37

If there is entry of other firms,... If there is entry of other firms, why isn t the optimal condition satisfied? To consider this, we have to remember how the social (aggregate) abatement cost function is deduced? See Lecture No. 3, p.26: It is obtained by the minimization of {TAC 1 (e max e a ) + TAC 2 (e max e b ) l (e e a e b )} If, say, firm c enters the market, the above equation is changed, and so the social abatement cost function is also changed. (How should the above be modified?) Hence, the optimal point is affected by the entry. 38

Application of subsidies A deposit-refund system is the combination of a tax and a subsidy. When consumers buy some drinks, they are charged on bottles or containers (a deposit = a tax or a charge). If they return the bottles or containers, they are refunded (a subsidy). If they do not return the bottles or containers, they remain charged. Yet, for the deposit-refund to be successful, a collection system must be prepared carefully. 39