A STUDY OF THE IMPACT OF COMMON AGRICULTURAL POLICY OF EU ON PRODUCTION OF COTTON IN GREECE: IMPLICATIONS FOR U.S. COTTON EXPORTS

Similar documents
THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S.

Representative Farm Models: Thompson Seedless Grapes

The Impact of India s Cotton Yield on U.S. and World Cotton Markets

The Common Market Organisation (CMO) for fruit and vegetable products is currently

SECTOR ASSESSMENT (SUMMARY): AGRICULTURE, NATURAL RESOURCES, AND RURAL DEVELOPMENT 1

May 10, USDA World Supply and Demand Estimates

John Deere. Committed to Those Linked to the Land. Market Fundamentals. Deere & Company August/September 2014

THE WORLD COTTON MARKET SITUATION

Peeling tomato paste subsidies

Specialty Crop Representative Farm Models: Forecasts, Policy Analysis and International Comparative Studies

AFPC ECONOMIC CONTRIBUTIONS OF THE US COTTON INDUSTRY TO THE US ECONOMY. Agricultural and Food Policy Center Texas A&M University.

John Deere. Committed to Those Linked to the Land. Market Fundamentals. Deere & Company June/July 2014

Exploring Options for a New Farm Bill

Examining EU Policies Applied to Processing Tomatoes

PRODUCTION AND TRADE POLICIES AFFECTING THE COTTON INDUSTRY

John Deere. Committed to Those Linked to the Land. Market Fundamentals. Deere & Company September 2013

January 12, USDA World Supply and Demand Estimates

The Iowa Pork Industry 2008: Patterns and Economic Importance by Daniel Otto and John Lawrence 1

Can the production of non food crops be economically viable?

EU support of its processing tomato industry and the competitive consequences for California

John Deere Committed to Those Linked to the Land Market Fundamentals

U.S. Farm Policy and Developing Countries 미국의농장정책및개발도상국. Dr. Gary W. Williams Professor of Agricultural Economics Texas A&M University

Overall outlook of the raw tobacco, olive oil and cotton common market organisations (CMOs)

Greening of Subsidies and Food Security

F E A T U R E V O L U M E 8 I S S U E 3 A M B E R WAV E S E C O N O M I C R E S E A R C H S E R V I C E / U S D A. WFP/Tom Haskell

AFPC. Climate Change Project Texas Representative Feedgrain Farms. Research Report 14-1 February Agricultural and Food Policy Center

August 10, USDA World Supply and Demand Estimates

An Analysis of the Economic Impact of Cap-and-Trade Policy on the California Food Processing Industry: A Look at Processed Tomatoes and Dairy Products

December 12, USDA World Supply and Demand Estimates

Agricultural Outlook Forum Presented: March 1-2, 2007 U.S. Department of Agriculture

National Pork Producers Council

The Outlook for Grain Markets and Texas Agriculture in Emily Kerr and Michael Plante

The University of Georgia

Legislative Outlook on 2007 Farm Bill

September 12, USDA World Supply and Demand Estimates

June 9, USDA World Supply and Demand Estimates

U.S Department of Agriculture. Agricultural Outlook Forum February 22 & 23, 2001 NEW DEVELOPMENTS IN FOREIGN COTTON PRODUCTION AND CONSUMPTION

January 12, USDA World Supply and Demand Estimates

Market Fundamentals. August October 2017

Factors Affecting Cotton Production in Pakistan: Empirical Evidence from Multan District

A new Common Agricultural Policy for a more sustainable European agriculture. DG Agriculture and Rural Development European Commission

Revenue Components. Yield Government Programs Crop Insurance

The state of the farm economy: Some big-picture considerations. Patrick Westhoff

2007 U.S CORN PRODUCTION RISKS: WHAT DOES HISTORY TEACH US? Darrel Good and Scott Irwin May 17, 2007 MOBR 07-01

June 12, USDA World Supply and Demand Estimates

IJF(Jv POLICY WORKING PAPER. EFFECTS OF DEBT AND FREEZING TARGET PRICES AFfER 1990 ON ECONOMIC VIABILITY OF REPRESENTATIVE CROP FARMS IN TEXAS

Challenges and Issues in the African Cotton Sector

The Iowa Pork Industry 2003: Patterns and Economic Importance

EU milk margin index estimate up to 2018

Chapter 3. Cooperatives Roberta M. Severson, Extension Associate, and Todd M. Schmit, Associate Professor

Changing Tobacco Markets: Effects on Burley Tobacco Farms 1,2

Jason Henderson Vice President and Branch Executive Federal Reserve Bank of Kansas City Omaha Branch April 25, 2012

BioEnergy Policy Brief July 2009 BPB

AFPC. Analysis of the Effects of Short Corn Crop Scenarios on the Likelihood of Meeting the Renewable Fuel Standard RESEARCH

Contribution of Agribusiness to the Magic Valley Economy, 2010

Title: Economic Impacts of Ethanol Production in Georgia

Cotton Outlook February 2018

Economic Impact of Agriculture and Agribusiness in Miami-Dade County, Florida

CLIMATE CHANGE EFFECTS AND AGRICULTURAL SECTOR. ANY PERSPECTIVE FOR AN EUROPEAN RISK MANAGEMENT POLICY? Giuseppe Cucuzza

Analyzing the Impact of Chinese Wheat Support Policies on U.S. and Global Wheat Production, Trade and Prices

Crossroads Resource Center

International Development Enterprises (India) IDEI is a not-for-profit company working in India since 1991

BUILDING ENTERPRISE BUDGETS FOR INDIANA SPECIALTY CROP GROWERS

AFPC. Climate Change Project Iowa Representative Feedgrain Farms. Research Report 14-3 February Agricultural and Food Policy Center

EU Milk Margin Estimate up to 2016

Focus. Panhandle Model Farms 2012 Case Studies of Texas. High Plains Agriculture

FAPRI-UMC Report December 8, 2005

THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S.

The Revenue Program Option in the 2008 U.S. Farm Bill: Evaluating Performance Characteristics of the ACRE Program

MEMO/11/685. CAP Reform an explanation of the main elements. 1.Direct Payments. Brussels, 12 October 2011

Appendix III State Report Summaries

Decisions to be Made

Factors Affecting Global Agricultural Markets Over Next 10 Years

Jeanne Reeves Cotton Incorporated June 4, 2013

User Manual - Custom Finish Cattle Profit Projection

Spyridon Mamalis. Geotechnical Chamber of Greece Eastern Macedonia and Thrace Institute of Technology

The Common Agricultural Policy (CAP) is the first common policy adopted by the

The University of Georgia

2011 Beltwide Cotton Conferences, Atlanta, Georgia, January 4-7, 2011

Influences of Decoupled Farm Programs on Agricultural Production

Focus. Panhandle Model Farms 2016 Case Studies of Texas. High Plains Agriculture. DeDe Jones Steven Klose

SOYBEANS: AN EARLY WEATHER MARKET

EU Milk Margin Estimate up to 2015

THE SOUTH AFRICAN GRAIN MARKETS QUARTERLY EARLY WARNING REPORT NO. 01 OF 2013

FAPRI Beginning Farmer and Rancher Development Project

Changes in Southern Cotton and Peanut Producing Regions

Row Crop Market Outlook for 2018

Agri-Service Industry Report

2017 Crop Market Outlook

The Comparative Advantage of Upland Cotton Production in Texas

The Importance of Irrigated Crop Production to the Texas High Plains Economy. Authors

For the non-organic farming option (i.e. no change of current farming practices) the results of the scenario simulations in Czech Republic indicate

Structural Changes in U.S. Cotton Supply

Recent changes in Uzbekistan s cotton procurement: Implications and reform agenda ahead

7 Reasons why Taxing Agricultural Inputs is a Bad Idea

NC Ag Situation & Outlook 2016: Coping with the Downturn

UNDERSTANDING ACRE FOR COTTON. Suwen Pan, Darren Hudson, Don Ethridge, Maria Mutuc, Mohamadou Fadiga, and Phil Johnson 1

Darren Hudson and Bing Liu 1. International Center for Agricultural Competitiveness Briefing Paper BP Released April 2018

Dissecting the cotton value chain: Part 1 The farm level

AGRICULTURAL TRADE AND ITS IMPORTANCE

Transcription:

A STUDY OF THE IMPACT OF COMMON AGRICULTURAL POLICY OF EU ON PRODUCTION OF COTTON IN GREECE: IMPLICATIONS FOR U.S. COTTON EXPORTS Final Report: Cotton Inc. Project #12 228 Srinivasa Konduru, Department of Agricultural Business; Fumiko Yamazaki & Mechel Paggi Center for Agribusiness; Jordan College of Agricultural Sciences and Technology; California State University, Fresno, CA Abstract Greece is the largest producer of cotton in Europe and sixth largest exporter worldwide in 2010 (FAOSTAT). Cotton constitutes about nine percent of the total value of agricultural production in Greece. Currently Greece exports about three quarters of its cotton production and they have increased by an average of almost ten percent in the period 2002-09. In this context, it is important to understand whether the changes in Common Agricultural Policy (CAP) of European Union are going to impact Greek cotton sector and whether area under cotton cultivation is going to change in future. The overall objective of this paper is to assess the competitiveness of Greek cotton producers and potential implications for Greece as a competitor in the world cotton market. The focus was on developing an updated estimate of the costs of production in Greece and developing a representative farm model for cotton production in Greece. These models are further utilized for understanding the impact of direct payments under Common Agricultural Policy (CAP) of Europe and ultimately on the competitiveness of Greek cotton in international markets. The results demonstrate that the net income of the cotton farmers represented from this study group will decrease considerably without the presence of direct payments. The results also show that the probability of earning a loss increases, whereas the probability of earning a higher net income decreases when direct payments are discontinued. This may lead to a shift in cultivation patterns of cotton farmers and they may shift to other crops. Introduction Greece is the largest producer of cotton in Europe and sixth largest exporter worldwide in 2010 (FAOSTAT). Cotton constitutes about nine percent of the total value of agricultural production in Greece. Currently Greece exports about three quarters of its cotton production and they have increased by an average of almost ten percent in the period 2002-09. Though Greece may be small in terms of production and export of cotton compared to that of US and that the production of cotton in Greece is going down in the last few years, it is an important competitor to US as it is the second largest supplier of cotton to neighboring Turkey, which is also a major market for US cotton and second largest export market after China (FAOSTAT). In this context, it is important to understand whether the changes in Common Agricultural Policy (CAP) of European Union are going to impact its cotton sector and whether area under cotton cultivation is going to change in future, thereby impacting its exports to Turkey. The overall objective of this paper is to assess the competitiveness of Greek cotton producers and potential implications for Greece as a competitor in the world cotton market. The focus will be on developing an updated estimate of the costs of production in Greece and develop representative farm models for cotton production in Greece. These models will be utilized for understanding the impact of direct payments under Common Agricultural Policy (CAP) of Europe and ultimately on the competitiveness of Greek cotton in international markets. The results further can be used to understand the potential impact on US cotton sector and its competitiveness in international markets. In the following section, a brief description of the cotton sector of Greece and Common Agricultural Policy of European Union is presented. The third section provides a discussion of the data collection and methodology for this study. The final section discusses results and provides conclusions. Cotton Sector in Greece Cotton is an important crop for Greece as it is only one of the two countries producing cotton in European Union along with Spain. The cotton harvested in Greece accounts for only about 0.5% of the total agricultural production of European Community (LMC international, 2007). The main cotton growing areas of Greece are Thessaly and Macedonia. Cotton constitutes 60 percent of the arable area in Thessaly, whereas in Macedonia, it is about half of the total arable land. Most of the cotton is grown in small, highly specialized farms (Tsaliki, 2005). In 2012, cotton was grown in about 260,000 ha of land producing about 1.15 million bales and exporting almost 90 percent of it (see table 1). The majority of cotton farmers in Greece grow between 5 and 12.5 acres of cotton, whereas the average cotton growing area is 11.25 acres in 2005 (LMC international, 2007). Almost all the cotton crop is grown under

irrigated conditions, though the availability of irrigation water is more in Thessaly than in Macedonia. There are approximately 30 ginning companies in Greece and the top 5 companies handle about 60 percent of ginning capacity. The Greek cotton sector was plagued by low production, bad quality, defaults, and delivery problems in 2009, but it regained its status by 2011-12 (Gain Report, 2012). The Common Agricultural Policy (CAP) of European Union (EU) has undergone various changes and the present policy focuses more on direct support for farmer s incomes rather than on price and production support for specific crops. So, following this principle, most aid to farmers became decoupled, meaning that the farmers receive a single payment not linked to the production of a specific crop (LMC international, 2007). But, cotton is one of the crops in which some aid remained coupled, meaning linked to production of the crop, as single farm payment would bring significant risk of production disruption to cotton producing regions. So, the decoupled single area payment was set up at 65 percent of the national share of aid available to producers and the remaining 35 percent remained coupled to cotton but calculated on the basis of a per hectare payment. Table 1. Area, Production and Exports of Cotton in Greece 1995-2012 Area Harvested Production Exports 1995 440 2067 1450 1996 420 1506 1200 1997 388 1698 1000 1998 412 1783 964 1999 430 2021 1080 2000 410 2035 1424 2001 410 2093 1000 2002 355 1715 1150 2003 363 1530 1225 2004 375 1800 1170 2005 358 1975 1350 2006 370 1550 1250 2007 340 1550 1299 2008 280 1150 800 2009 200 940 875 2010 230 940 750 2011 285 1330 1000 2012 260 1150 1000 Notes: Area Harvested in thousand hectares, Production and Exports in thousand 480lb bales. Source: FAS, USDA Changes in Common Agricultural Policy (CAP) of EU As the EU makes strategic choices for the long-term future of its agriculture and rural areas, the CAP needs to operate within the context of sound economic policies and sustainable public finances contributing to the achievement of the objectives of the EU. In order to link with Europe 2020 strategy of having smart, sustainable and inclusive growth, the European Commission organized an extensive public debate in 2010 to determine the future CAP. The discussions have indicated that in order to achieve Europe 2020 objectives, the future CAP should contain a greener and more equitably distributed first pillar and a second pillar focusing more on competitiveness and innovation, climate change and the environment. In order to achieve the objectives of future CAP namely, viable food production, sustainable management of natural resources and climate action and balanced territorial development, three broad policy options have been proposed (CAP 2020).

The first option would focus on adjustments and improvements in the area of the most significant criticism to the CAP, i.e. the issue of equity in the distribution of direct payments between Member States. This option would ensure continuity and stability with the current CAP, thus facilitating long-term planning for operators along the food chain. The second option makes major overhauls in order to ensure that it becomes more sustainable, and that the balance between different policy objectives, farmers and Member States is better met. This would be done through more targeted measures which would also be more understandable to the EU citizen. This option would imply greater spending efficiency and greater focus on the EU value added. The third option would be a more far reaching reform of the CAP with a strong focus on environmental and climate change objectives, while phasing out gradually the income support and most market measures. This paper analyses the impact of third policy option as the first policy option ensures continuity of current CAP and the second policy option is difficult to quantify for an economic analysis (CAP 2020). Figure 1: Map of Greece Data Collection and Methodology Data Collection Data was collected in two cotton producing regions of Greece namely Thessaly and Macedonia. Rapid Rural Appraisal (RRA) methodology has been adopted to collect information, where in a multidisciplinary team conducted focus group discussions in various villages to get information and develop hypotheses. In each state, information was collected from focus groups in different villages and the information was aggregated. There were a total of five focus group discussions conducted with three in Thessaly and two in Macedonia in summer of 2012. Each focus group constituted about 5-7 farmers and a survey instrument was used to provide structure to the discussion. Table 2 provides summary information on the cost of cultivation collected in all the focus group discussions. The cost of production of cotton in Thessaly is 6 percent higher than Macedonia due to differences in irrigation, pest control and land preparation expenses. In focus group discussions, the average yield of seed cotton that was reported in Thessaly is 1.6 tons per acre compared to only 1.3 tons per acre in Macedonia due to more irrigation in Thessaly. The gross profit in Thessaly is 25 percent more than in Macedonia demonstrating the importance of higher yields prevalent in Thessaly. The gross profit excludes returns to family labor and managerial compensation. The cost of production in the above table does not include transportation expenses from farm to processor. In all the locations, the buyer/broker who buys cotton from the farmers is responsible for the transportation and he also performs quality checking at the time of transaction. Almost all the transactions of the farmers are with private dealers who in turn may represent cotton ginners. The data gathered from the two regions is aggregated by giving appropriate weights according to their share in the total cotton acreage in Greece to obtain a country wide representative cotton model. The results can be seen in the last column of table 2.

Table 2. Cost of Cotton Cultivation and Gross Profit in Greece ($ per Acre) Thessaly Macedonia Greece Land Preparation 162 150 157 Seeds & Planting 93 83 89 Fertilizers 150 153 151 Pest Control 124 75 104 Irrigation 107 150 124 Weed Control 74 50 64 Defoliants 33 33 33 Harvesting 113 113 113 Total Costs 852 805 833 Yield(tons/acre) 1.60 1.30 1.48 Price ($/kg) 0.63 0.65 0.64 Market Revenue 1000 845 938 Govt. Support 375 375 375 Total revenue 1375 1220 1313 Profit 523 415 480 Methodology Stochastic simulation models are used to generate a large random sample of outcomes for a dependent variable where that dependent variable is a function of some selected set of explanatory variables. A unique feature of these types of models is that there is an explicit recognition that the independent variables have some probability distribution around their mean values. The forecast of the dependent variable is thus a function of the probability distributions of the explanatory variables as well as their mean value. The simulated distribution of the dependent variables thus captures the variability or risk associated with forecasting the dependent variable that cannot be obtained by using simply the mean value of the explanatory variables. If the explanatory variables are uncorrelated an appropriate univariate probability distribution is chosen (e.g. normal, Poisson, empirical, etc). It is also possible to capture the joint variability of two or more correlated explanatory variables on the dependent variable. The joint variability can be captured by determining the multivariate probability distribution (e.g. multivariate normal, multivariate empirical, etc.) for the two or more correlated explanatory variables. The multivariate probability distribution is developed much the same as the univariate probability distribution but includes information in the correlation matrix to account for the correlation between the independent variables. The determination of the appropriate probability distributions and the construction of stochastic models are followed from Richardson (2010). The simulated forecast of dependent variables using either univariate or multivariate probability distributions of the explanatory variables is very useful in informing decision makers of the variability or risk in the dependent variable forecast, the skewness of the forecast, and the probability of a specific outcome for the dependent variable. Most stochastic simulation models have more than one dependent variable. The dependent variables in a stochastic simulation models are often referred to as Key Output Variables (KOV s). From the sample of farms in the rapid assessment study, the impact of fertilizer subsidies and minimum support prices (MSP) on the profitability of Indian cotton farms can be analyzed. Two Indian cotton representative farm simulation models have been developed for the states of Gujarat and Maharashtra using information collected through focus groups. Representative farm models are stochastic simulation models that are used to analyze the impacts of current and changing market conditions and government policies on a number of KOV s. Examples of KOV s in a representative farm models are yearly net income, cash flow position, financial ratios such as debt to equity or liquidity, and net present values of net income.

These models can be used for several purposes. They simulate the producer s income statement, statement of cash flows, and balance sheet as well as any financial indicator calculated from those three statements. From there we can analyze the impact a new policy may have on a producer s net income or net present value prior to implementation. They can also determine the impact a change in production practices may have on the producer s financial statements prior to actually changing practices. In other words, these models act as a decision making tools. The models are constructed in a way that allows for easy analysis of several variables. By using a stoplight chart, one of the graphical capabilities of the model, we can compare probabilities for one or more alternatives for the target values of net present values of net income. In order to generate the stoplight chart, two value targets, lower and upper, are chosen from observed returns. The stoplight function calculates the probabilities of: (a) exceeding the upper target (green), (b) being less than the lower target (red), and (c) observing values between the targets (yellow). In this study, the stochastic simulation models are used to analyze the impact of direct payments on the net income of the representative cotton farm in Greece. The analysis forecasts the net income for a period of two years from 2013-14. Results and Conclusion As direct payments from CAP constitute a major proportion of the total income received by cotton farmers in Greece, a counterfactual scenario forecasts the net income of Greek farmers without the direct payments for a two year period from 2013-14. In the counterfactual scenario, the revenue received by Greek cotton farmers is only from the market and the direct payment from EU to farmers of about $375 per acre is not considered. The total revenue without direct farm payments is incorporated into the representative farm model of cotton to get the results of the counterfactual scenario. The results of the simulations of baseline model and counterfactual model are analyzed for any differences in the cost of production, net income and net present value of sum of income streams of both years 2013 and 2014. The two year forecast shown in Table 3 estimates that the net income of the farmers decreases by about 30 percent in both the years. Charts 1A and 1B in Figure 2 provide a comparison of the simulated probability distributions of net present value of sum of net income after taxes per acre in years 2013 and 2014 with and without subsidy. The removal of direct payments reduces the probability of earning a net income of more than $375 per acre by 60 percent and the probability of earning a positive net income of less than $375 also decreases by 15 percent, whereas the probability of earning a loss increases by 74 percent. Table 3. Comparison of Results with Baseline Forecast. Without Direct ($ Per Acre) Baseline Payments 2013 2014 2013 2014 Net Income 306 383-73 5 Production Cost 841 770 841 770 Net Present Value (Sum of Income Stream 2013-2014) 620-64

Chart 1A Chart 1B Figure 2. Stop-light Charts With and Without Direct Payments Conclusion In this paper we have analyzed the impact of direct payments under CAP of EU on the net income of Greek cotton farmers. We have used information collected from focus group discussions of farmers in two cotton growing regions of Greece. EU provides various kinds of support including direct farm payments of $375 per acre to cotton farmers in Greece to improve the profitability of their farming enterprises and to increase their living standards. But, due to the growing fiscal deficit in EU and the move towards free markets, EU is changing the CAP and started discussing about decreasing the support payments. This study analyzes the impact on removal of direct farm payments on the profitability of Greek cotton farm. This study analyses the profitability of cotton farms in Greece with and without the direct payments. The results demonstrate that the net income of the cotton farmers represented from this study group will decrease considerably without the presence of direct payments. The results also show that the probability of earning a loss increases, whereas the probability of earning a higher net income decreases when direct payments are removed as shown in the stop light charts. This may lead to a shift in cultivation patterns of cotton farmers and they may shift to other crops. But, as the direct farm payments support every other crop as well, the shift in cropping patterns may be very minimal. The crops where direst payments do not constitute a major proportion of total revenue would be candidates for an increased allocation of land at the expense of cotton. In order to understand more details about the shift in cropping patterns, we need to understand the profitability of other substituting and competing crops of cotton in those areas. In this scenario, the results suggest that the US cotton farmers may benefit from decreasing export competition as cotton production declines in Greece and US may have more access to cotton markets to Turkey. Acknowledgements The authors like to acknowledge the financial support given by Cotton Incorporated, support and participation of Dr. Jeanne Reeves in the project, cooperation and logistical support given by Dr. Theofanis Gemtos of University of Thessaly and Dr. Sakis Gertsis of American Farm School, and Center for Agribusiness (CAB), Fresno for supplemental funding.

References CAP towards 2020 (2010). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee of the Regions, European Commission, Brussels. FAPRI, 2010. U.S. and World Agricultural Outlook 2010, FAPRI, Ames, Iowa. Food and Agriculture Organization Statistics (FAOSTAT), Accessed in Jan 2013. http://faostat.fao.org/site LMC International (2007). Study on the Cotton Sector in the European Union, European Commission, Brussels. Richardson, James (2010). Simulation for Applied Risk Management. Texas A & M Univ., College Station, TX. Tsaliki, Elleni (2005). Cotton Situation in Greece, NAGREF, Cotton and Industrial Plants Institute, Thessaloniki, Greece. United States Department of Agriculture, 2012, GAIN Report, No. GR1201, Foreign Agricultural Service, U.S. Department of Agriculture, Washington, D.C.